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Abstract: In the paper, we study Lie n superderivations and generalized Lie n superderivations of super-
algebras, using the theory of functional identities in superalgebras. We prove that if A = Ao @ A; is a
prime superalgebra with deg(41) > 2n + 5, n > 2, then any Lie n superderivation of A is the sum of
a superderivation and a linear mapping, and any generalized Lie n superderivation of A is the sum of a
generalized superderivation and a linear mapping.
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1 Introduction

Let A be an associative algebra. A linear mapping d : A — A is called a derivation if d(xy) = d(x)y + xd(y)
for all x,y € A. A Lie derivation ¢ of A is a linear mapping from A into itself satisfying §[x, y] = [6(x),y] +
[x,5(y)] forall x,y € A. A Lie triple derivation is a linear mapping ¢ : A — A which satisfies ¢'[[x, y],z] =
[[¥(x),y¥],z] + [[x,¥(¥)], z] + [[x, ¥], ¥(z)] for all x, y, z € A. Obviously, each derivation is a Lie derivation
and each Lie derivation is a Lie triple derivation. BreSar [1] described the structure of Lie derivations and Lie
triple derivations on prime rings and obtained that each Lie derivation or Lie triple derivation of a prime ring
is the sum of a derivation and an additive mapping. Wang [2] studied the structure of Lie superderivations of
superalgebras in 2016. Lie n-derivations were introduced by Abdullaev [3], where the form of Lie n-derivations
of a certain von Neumann algebra was described. In 2012, Benkovi¢ and Eremita [4] gave the form of Lie n-
derivations on triangular rings, which has been generalized to generalized matrix algebras in [5].

The concept of a generalized derivation was introduced by Bresar [6] and generalized by Hvala [7], who
has proved in [8] that each generalized Lie derivation of a prime ring is the sum of a generalized derivation
and a central mapping which vanishes on all commutators.

A functional identity can be described as an identical relation involving elements in a ring together
with functions. The goal when studying a functional identity is to describe the form of these functions or
to determine the structure of the ring admitting the functional identity in question. The theory of functional
identities in rings originated from the results of commuting mappings [9]. The name “functional identity”
was introduced by BreSar in [10]. The crucial tool in the theory of functional identities in rings is the d-
free set, which was developed by Beidar and Chebotar in [11, 12]. Making use of the theory of functional
identities in rings, Herstein’s conjectures on Lie mappings in rings have been settled [13-15]. After this, Wang
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[16] established the theory of functional identities in superalgebras and gave the definition of d-superfree
sets. As an application, Wang [17] described Lie superhomomorphisms from the set of skew elements of a
superalgebra with superinvolution into a unital superalgebra. The knowledge of functional identities and
d-superfree sets of superalgebras refer to [16], [18] and [19].

In the paper, our purpose is to study Lie n superderivations and generalized Lie n superderivations of su-
peralgebras, using the theory of functional identities in superalgebras. Section 2 presents some preliminaries.
In the third section we discuss the structure of Lie n superderivations. In Section 4 the results of generalized
Lie n superderivations are stated and proved.

2 Preliminaries

Throughout the paper, by an algebra we shall mean an algebra over a fixed unital commutative ring ¢. We
assume without further mentioning that % €.

An associative algebra A over @ is said to be an associative superalgebra if there exist two ¢#-submodules
Apand A; of Asuchthat A = Ao @ A; and A;A;j € Ayyj, 1, € Z>. We call Ag the even and A the odd part of A.
The elements of A; are homogeneous of degree i and we write |a;| = i for all a; € A;. For a superalgebra A, we
defines: A -~ Aby (ao+a1)? = ao—ai, then ¢ is an automorphism of A such that o* = 1. On the other hand,
for an algebra A, if there exists an automorphism o of A such that o> = 1, then A becomes a superalgebra
A=Ao® A1, where A; = {x € A|x° = (-1)'x}, i = 0, 1. A superalgebra A is called a prime superalgebra if and
only if aAb = 0 implies a = 0 or b = 0, where at least one of the elements a and b is homogeneous.

On a superalgebra A, define for any x, y € Ap U A; the Lie superproduct

e yls = 3y = (=) Plyx.
Thus
[a, b]s = [ao, bo]s + [a1, bo]s + [ao, b1]s + [a1, b1]s,

wherea = ag + ai, b = bo + b1.

In [20] Montaner obtained that a prime superalgebra A is not necessarily a prime algebra but a semiprime
algebra. Hence one can define the maximal right ring of quotients Q,; of A, and the useful properties of Qmr
can be found in [21]. By [21, proposition 2.5.3] ¢ can be uniquely extended to Qn,. Therefore, Qn is also a
superalgebra. Moreover, we can get that Q,; is a prime superalgebra.

On the other hand, we will introduce some important concepts of the theory of functional identities in
superalgebras.

Let Q = Qo @ Q1 be a unital superalgebra with grading automorphism o and center C = Co @ C; satisfying
[C, Q] = 0. Fix an element w ¢ Q as follows: If either o = 1 or o is outer, we set w = 0. Otherwise, we denote
w as an invertible element in Q such that o(x) = wxw L forall x € Q. Itis easy to check that w € Qo, w? € Co,
wXo = xow for all xo € Qo, and wx; = —xyw for all x; € Q1. We shall call the w the grading element of Q. If
a=b+cw,b,ceC,wesetd=>b - cw.

Letm e N*, Uy, U, ---,Un are subsets of Q such that either I4; € Qo or U; € Q1 forevery 1 <i < m.Sete; =
+1, where either ¢; = 1ifif; ¢ Qo or¢; = -1 ifUf; € Q1. S1, Sz, -+, Sm are nonempty sets, Z, 7 ¢ {1, 2,---,m}
and &;: S; — U, l e T u J, are surjective maps. Set S = M1 Sk U=TII",Upand A= {§|leTu T}.

We shall consider functional identities on S of the following form

S EN(&m)8i(x1) + 3 8(x))F) (Xm) = 03 Q)
ieZ jeJ
> Ei(Xm)8i(xi) + Y. 6(x)Fi(Xm) € C + Cw, ®)
ieZ jeJ

for all X, € S, where E; : [];.; Sx -~ Q and Fj i Tlisj Sk — Q.
Suppose that w = 0 or each U; < Qo. There exist maps

pij:HSkQQ’ iEI, jEj, ii]‘,
k#i,j
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Mi[[Sk=C+Cw, leZTug,

k=l
such that
Ei(Xm) = Y 8(2)pjj (%) + A (Xm )3
jeTg
" " i ( (% G
Fj(Xm) == ZI:pij(Xm)ai(Xi) - )‘j(Xm)’
liij
for all X, e§,where)\1 =0ifl¢ZInJ.
Otherwise, there exist maps
pi: [[Sk—>Q, ieZ, jeJ, i#],
k#i,j
Mo [[Sk=C leZuJ,
k=l
such that
Ei(Xm) = Y 806)Pj(Xm) + A (Xm) + p1i (Xm w3
=
]j:ti (4)

Fl(%m) = - ;p:{i(xm)ai(xf) = X (Xm) = €11} (Xm)w,

i#j
for all X € S, where \; = 0 = y; if [ ¢ 7 n J. We shall refer to (3) and (4) as a standard solution of (1) and (2).

Definition 2.1 ([16, Definition 3.1]). Let d ¢ N*. A triple (S; A;U) is called d-superfree if the following
conditions are satisfied:

(a) Foralme N* andZ, J < {1, 2,---,m} withmax{|Z|, |J|} < d + 1, we have that (1) implies (3) and (4).
(b) Foralme N* andZ, J < {1, 2, -, m} withmax{|Z|, |J|} < d, we have that (2) implies (3) and (4).

If each Sy = Uy and each & = idy,, then the I/ is said to be d-superfree provided that (S; 4;{) is so. Let
R = Rp ® Ry be a graded #-submodule of Q. For every 1 < i < m, either 4; = Ro orU; = R1. Then R is said to be
d-superfree provided that each I{ is d-superfree. And, we can get the following result.

Lemma 2.2 ([16, Theorem 4.16]). Let A = Ao @ A1 be a prime superalgebra. If deg(A1) > 2d + 1, then A is
d-superfree.

Let {x1, X2, -, Xm } be a finite set of variables and k be a nonnegative integer such that k < m. We denote by
M’fn the set of all multilinear monomials of degree k in the variables {x1, X2, -, xm }. It is understood that
MY = {1}. We write My, = UL, M. For a given monomial M = x;,---x;, € My where u < m — k. We denote
by M& (M) the set of all multilinear monomials of degree k in the variables {xi, -, Xm }\{Xi,, - X;, } and
write My, (M) = U MK (M).

For every 1 < t < m, let St and R; be two sets and let §; : S — R be a surjective mapping. We set

M(Em) = 5i1 (si1 )5iz (Siz )nldiu (siu )’

where s;, € S;,.
WesetS = [T, Siand S(M) = [1";* S;,. Forany given F : S(M) — Q we introduce a mapping F : § — Q
by the rule
FY(8m) = F¥(s1, -+ 5m) = F(8),, Sj,.,)»

forany 5, € S.
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Let M e M¥, and let Ay : S(M) — C + Cw. A mapping S — Q defined by the rule 5, — AM (5,1)M(5m) for
any 5., € Sis called a superquasi-monomial and is denoted by Ay M. Asum ¥, . m,, ML of different superquasi-
monomials will be called a superquasi-polynomial.

An element x € Ap U A1 is said to be algebraic over C of degree < n if there exist co, €1,..., Ccn € C, not all
zero and such that 37 ¢ix"' = 0. The element x is said to be algebraic over C of degree n if it is algebraic
over C of degree < n and is not algebraic over C of degree < n — 1. By deg(x) we shall mean the degree of x
over C (if x is algebraic over C) or oo (if x is not algebraic over C). Given a nonempty subset S ¢ Ag U A1, we
set

deg(S) = sup{deg(x)|x € S}.

Let A be a superalgebra. For i € {0, 1}, a superderivation of degree i is actually a ¢-linear mapping d; : A — A
which satisfies d;(4;) € Ai.j, j € Z2, and d;(ab) = di(a)b+ (-1)1%lad;(b) foralla, b ¢ AgUA;.1fd = do +d1,
then d is called a superderivation.

Let A be a superalgebra. For i € {0,1}, a #-linear mapping g; : A — A is called a generalized
superderivation of degree i if g;(A;) € Aij, j € Z», and g;(xy) = gi(x)y + (-1)Mxd;(y) forall x,y € Ag U Ay,
where d; is a superderivation of degree i. If g = g + g1, then g is called a generalized superderivation.

The following identity will be used frequently,

[aibj, ks = [ai, bjck]s + (—1)ii+ik[bj, Crails ai, bj, cx € Ag U Ay, 5)

where i, j, k € {0, 1}.

3 Lie n superderivations of superalgebras

In the section, we describe the structure of Lie n superderivations on a superalgebra.

Definition 3.1. Let A be a superalgebra. For m € {0, 1}, a Lie superderivation of degree m is actually a &-linear
mapping am : A - Awhichsatisfies am(A;) € Amij»j € Za,and am([x,¥]s) = [am(x), ¥]s+(=1)"[x, am(¥)]s
forallx,y e Ao uAi.If a = ap + a1, then a is called a Lie superderivation on A.

Obviously, each superderivation is a Lie superderivation on A.

Definition 3.2. Let A be a superalgebra. For m € {0, 1}, a &-linear mapping 3 : A — A is called a Lie triple
superderivation of degree m if Bm(A;) € Am4j, j € Z2, and

Bm([% Y155 20s) = [[Bm (%), Y15, 205 + (1) ™% n(N)]ss 2Js + ()™ PP, y]s, Bm(2)]s,
forallx,y,z e Ao UA1. If 8 = Bo + 31, then § is called a Lie triple superderivation on A.
Let us define the following sequence of polynomials: p;(x) = x and
Pn(X1,X2, ...y Xn) = [Pn-1(X1, X245 -+« s Xn=1), Xn]s nx2.
Thus, p2(x1,x2) = [x1, X2]s, P3(X1, X2, X3) = [[x1, X2]s, X3]s, €tC.

Definition 3.3. Let n > 2 be an integer. Let A be a superalgebra. For m € {0, 1}, a #-linear mapping ym : A — A
is called a Lie n superderivation of degree m if ym(A;) € Am+j, j € Z2, and

ym(Pn(X1, X2, + oo 5 Xn)) = Pn(ym(X1)s X2, ooy Xn)

n
+ Z(_1)m(‘X1|+‘X2|+m+‘XFl|)pn(xls X2y 0005 Xi-1, ’Vm(Xi), Xit1s oo ,Xn),
i=2

forall x1,x2,...,xn € Ao UA1. If v = vo0 + 71, then v is called a Lie n superderivation on A.
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Theorem 3.4. Let Q = Qo ® Q1 be a unital superalgebra with center C = Co & C1. Let A = Ao ® A1 be a
superalgebra and a subalgebra of Q. Suppose that v : A — Q is a Lie n superderivation,n > 2. If Ais an (n+2)-
superfree subset of Q, then v = d + h, where d : A — Q is a superderivationand h : A — C + Cw is a linear

mapping.

Proof. By the definition of Lie n superderivations, we assume that v, is a Lie n superderivation of degree m,
m € {0, 1}. According to (5), we have
[. .o [[albl, Ck]s, X3]s, P ,Xn]s :[. .o [[al, b]Ck]s, X3]s, ceey Xn]s

+ (=)7K [[b), ck@ils, X3]ss -+ s Xns

(6)

for all a;, bj, ¢k, X3, ..., Xn € Ao U A1. Applying v, to (6), we have

O=[... [[vm(@ib;)s ckls» X35 - - » XnJs + (=)™ D[ [[aibj, ym(cr)]ss X3]5s - - - Xn s
+ (=)™ aibj, cilss ym(X3)]ss + > Xns
oo (m)mER DT g s, X3 Tss e s ym(Xn) ]
—[...[[vm(ai), bjck]s, x3]s, -+« » Xn]s — -D)™[...[[ai, Ym(bjci)]s, X355+ s Xn]s
— (=)™ i, bjciss ym(X3)]ss + -+ » Xn]s
— = (m)mUER D g ik Ts, X3 sy e s ym(Xn)]s
=D)L [[m(by)s cxails, x3)ss -+ XnJs+(=1) ™o [[By m (k@) s, X315, -+ Xns
+ (=)™ by, ceails, ym(X3)]ss - -2 Xns
+ont (1)l ceai]sy X3]ss v s Am(Xn) ]s).

It follows from (5) that

0=[.... [[m(aiby), s + (=)™ Lai, byym(ci)]s + (1) ™" by, (e ails
~ [ym(@) by, eids + (1) T by, coym ()]s = (<1)™ [as, ym(bjei)]s
_ (—1)U+lk|:')’m(b])Ck, ai]s + (_1)ij+ik+mk+jk+mi+ji[Ck, al’}/m(bl)]s

— ()T by (k@) s X3]s, - -+ Xnls,
for all a;, bj, ¢k, X3, ..., Xn € Ao U Ay. Since [a;, bj]s = —(—1)‘7[b,~, ails, it follows that

0 =[... [[ym(aib;), cils — [ym(@i)bj, cils — (~1)™ [@ivm(B;), ckls — (~1)™ ([ai, ym(bjck)]s

~ [ai, ym(by)cxls = (1) [ai, byym(ci)]s) = (=1)7 ™ ([by, ym(crar) s @

- [bi’ 'Ym(ck)ai]s - (_1)mk[bj» Ck’Vm(ai)]s), X3]s, e ,Xn]s-
Define B: A x A - Q by

B(x,y) = 1m(xy) = 1m(x)y = (1) xym(y),
forall x,y € Ag U A;. It follows from (7) that
[...[[B(a, b)), cils — (=1)™[ai, B(bj, ci)]s = (~=1)7 ™ [b;, B(ck, ai)]ss X3]55 -+ s Xn]s =0, (8)

for all a;, bj, ¢k, x3,...,xn € Ag U A;. Since A is an (n + 2)-superfree subset of Q, n > 2, [16, Theorem 3.8]
implies

B(Xo, Y0) = A1XoYo + A1YoXo + p1(X0)Yo + 11 (Yo)Xo + vi(Xo, ¥o);
B(xo0,y1) = XA2Xoy1 + /\;)MXO +p2(Xo)y1 + Mlz(h)Xo +12(X0,Y1);
B(x1,Y0) = A3X1Yo + A3YoX1 + p3(X1)Yo + 3 (Yo) X1 + v3(X1,Yo);
B(x1,y1) = Aaxay1 + AgYaxa + pa(X1)yr + pa(y1)xa +va(xa, Y1),

©)
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where ks A;( €Cm + me, ,uk,/.L;( IAi - Cm+i + Cm+iw, Vi ZAi X Aj - C+ CUJ, ke {1, 2,3, 4}, 1,] € {0, 1}
We shall now compute v (xyz) in two different ways. On the one hand,

ym(xyz) = B(xy, 2) + ym(xy)z + (-1)" P xy . (2)

= B(xy,z) + (B(x, y) + m(X)y + (=1)™xym(y))z + (~1)" P+ xy 0 (2).
On the other hand,

mlx|

Ym(xyz) = B(X,yz) + ym(x)yz + (=1)7"X7m(y2)
= B(x,yz) + m(0)yz + (~1)™x(B(y,2) + yn(¥)z + (-1)"yym(2)).

Comparing the above expressions, we get

B(xy,z) - B(x,yz) + B(x,y)z - (-1)""xB(y, 2) = 0, (10)
forallx,y,ze Ag UA;.

When |x| = |y| = |z| = 0, it follows from (10) that

Mxyz + Xizxy + pa(xy)z + pr (2)xy + i (xy, z)

- Mxyz = ANyzx — p1 (X)yz — py (y2)x - vi(x, yz)

+ XYz + ANyxz + p (X)yz + pr (Y)xz + v1(x, y)z

- \xyz = A\ixzy — pa (y)xz — py(2)xy — va(y, z)x = 0.
An easy computation shows that:
- The coefficient of zxy is \];

- The coefficient of xz is ] (¥) — p1(¥);
—  The coefficient of z is p1(xy) + v1(x, y).

By [16, Theorem 3.7], we have

A1 =05 p1(¥o) = p1(Yo); ma(xoyo) = ~v1(Xo, o).
When |x| = |z| = 0 and |y| = 1, it follows from (10) that

A3Xyz + X3zXy + 3 (Xy)Z + 3 (2)xy + v3(xy, 2)
—XaXyz = Ayyzx — pa(X)yz — ph (y2)x - v2(x, yz)
+ XaXyZ + MNoyxz + 2 (X)yz + py (¥)xz + v2(x, y)z
- A3xyz - Myxzy — ps(y)xz — 5 (2)xy - v3(y,2)x = 0.
An easy computation shows that:
- The coefficient of zxy is \j;
- The coefficient of yzx is —\};
—  The coefficient of xz is 5 (¥) — u3(¥);
- The coefficient of x is —u5 (yz) - v5(y, 2);
— The coefficient of z is u3(xy) + v2(x, y).

By [16, Theorem 3.7], we have

X =A3=05 p3(y1) = pa(y1)s pa(y12o) = —v3(y1,20); p3(Xoy1) = —v2(Xo, y1)-
When |x| = 0 and |y| = |z| = 1, it follows from (10) that
MXYZ + NyZXY + pa(XY)Z + s (2)Xy + va(xy, 2)
- \ixyz = \yzx — p1 (X)yz - ph (yz)x - vi(x, yz)
+ XYz + NYXZ + p2(X)yz + pa (V)xz + v2 (X, y)z
— Xaxyz = Ngxzy — pa(y)Xz — pa(2)xy - va(y, 2)x = 0.

An easy computation shows that:
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— The coefficient of xyz is X\ — \1;

- The coefficient of zxy is \};

—  The coefficient of yz is p (x) — p1(x);

- The coefficient of xz is p5 (y) — s (y);

- The coefficient of x is —u} (yz) - v4(y, 2).

By [16, Theorem 3.7], we have

A=Az Ay =05 pa(xo) = pa(x0); pa(y1) = pa(y1)s mi(viza) = —va(y1, z1).

By the definition of B, we have

B([-.-[[X1,X2]ss X3]ss+ -+ » Xn]ssw1) — B(wi, [+« [[X1,X2]s5 X3 ]ss - - s Xn]s)

=ym([[---[[X15 X2]ss X3]ss - - s Xn]ss wi]s) = ym([- - - [[X15 X2]ss X355+ - » Xn]s)w1
= [ - [[x15X2]s5 X3]s5 « + - s Xn]sym(w1) + ym(w1)[- - - [[X15 X2]s5 X3 ]s5 « - - s Xn]s
+wiym([---[[x15%2]ss X3]ss - - s Xn]s)

=[[- - [ym([x15 X2]s)s X355+« s Xnlss wils + [[- - [[X15 X2]ss ym(X3) 55 -« « s Xn]s, wi]s
oot [ [[x1s X2]s5 X3]ss - o o s ym(Xn) ]ss wils = B([- - - [[X15 X2]s5 X3]s5 - + - s Xn—1]s» Xn)w1
+ B(xn, [ [[%15X2]s5 X3]s5 -« - s Xn-1]s)w1 + wi B([- - - [[X1, X2]ss X355+ -+ » Xn-1]s> Xn)
—w1B(Xn, [« [[x15X2]ss X3]ss - -« s Xn=1]s) = ym ([ - - [[X15 X2]s5 X3]s5 - - - s Xn=1]s ) Xnw1
= [ [[x15X2]s5 X355« + + s Xn—1 ]sYm (Xn)w1 + ym (Xn) [ - - [[X15 X2]s> X355+« » Xn—1]sw1
+ Xnym ([« [[X15 X2]ss X355+« s Xn—1]s)w1 + wiym ([ - - [[X15 X2]ss X355« + + s Xn—1]s)Xn
+wif.-[[x1,X2]ss X3 )55+« o s Xn=1]sym(Xn) — wiym (Xn)[- .- [[X15X2]s5s X3]ss -« - s Xn-1]s
—wiXnym ([ - [[*1,X2]s, X3]s5 - - s Xn-1]s)

=[[- - [ym([x15 X2]s)s X3]ss - e s Xn]ss wils = B([. .. [[X15 X2]s5 X35« + s Xn=1]ss Xn)w1
+ B(xn, [+ [[x15%2]55 X3 ]ss + « + s Xn=1]s)w1 + w1 B([. - . [[¥15 X2]s> X3]s5 -+ - s Xn—1]s> Xn)
—w1B(xn, [+ [[X1,X2]s, X3]s5 -« s Xn=1]s) = B([- . - [[x1, X2]s5 X3]ss - + - s Xn=2]s» Xn-1)Xnw1
+ B(Xn=1, [+ -+ [[X1:X2]ss X3]s5 « + - s Xn=2]s)Xnw1 — . .. = B([X1, X2]s, X3) X4 . . . Xnw1
+ B(x3, [X1,X2]s)X4 « « - Xnw1 — ym([X1, X2]s)X3 -« . Xnw1 + .« . + w1ym([X1, X2]s) X3+« - X,

forall x1, x2, ..., Xn, w1 € Ap. Since the coefficient of x1x5 . . . xpw1 is (n—1) A1, [16, Theorem 3.7] yields A, = 0.
On the other hand, we have

B([...[[x1,x2]s, X3]ss + ++ s Xn]s, w1) = B(w, [+« [[X1, X2]s, X3]s5 « + + s Xn]s)

=ym([[- - - [[x1, X2]ss X3]ss -« s Xn]sswils) = ym([- - - [[X15 X2]s5 X3]s5 + - - s Xn]s)w1
= [ [[x1sx2]ss X3]s5 o s Xn]sym(w1) + ym(wi) o« [[X1, X2]s, X3]s5 « -+ s Xn]s
+wiym([- - [[x15 X2]ss X3]ss - - s Xn]s)

=[[--- [ym([x1,x2]s)s X3]ss -« s Xn]sswi]s + [[- - - [[X15 X2 ]ss ym (X3) sy« - s Xn]ss wi1]s

oot [ [[x1s X2]ss X3]ss -+ o s ym(Xn) ]ss wils + [[- - - [[X15 X2]s5 X3]ss - -+ » Xn]ss ym(w1)]s

[ [ym(x1)s x2]ss X355+« v s XnJsw1 = (1) [o v o [[X1 Ym(X2) Is» X355 « « + » XnJsw1
[ X1, X2 ]ss ym(X3) Iss « e+ s XnJsw1 — oo = [+ [[X15 X2 ]s5 X355« + o s ym(Xn) Jswn
= (oo [[X15 X2])s5 X3]s5 + - s Xn]sym(w1) + ym(w1)[- - - [[X1, X2]s5 X3]ss - - s Xn]s
rwio [[im(x1), X2]s5 X3]ss - o Xn]s + (=)™ w1 .. [[x1, ym(x2) ]s» X3]ss -+« + » Xn]s

+wrle.-[[x1,x2]ss ym(xX3) ]ss ooy Xn]s oo Fwr e [[X1, X2]55 X3 ]ss + o s Ym(Xn) s
=[[...[B(x1,x2) + B(X2,X1), X3]s, - -, Xn]s, w1]s,

forall xq,x2 € A1, Xx3,...,Xn, w1 € Ag. Since the coefficient of x1 x5 . . . Xpw1 iS A1 — A4, [16, Theorem 3.7] implies
A4 = A =0.



DE GRUYTER Lie n superderivations and generalized Lie n superderivations of superalgebras =—— 203

When |y| = 0 and |x| = |z| = 1, it follows from (10) that

1a(xy)z + 4 (2)xy + va(xXy, 2) = pa(X)yz = pa(yz)x - va(x, yz)
+X3xyz + p3 (0)yz + 3 (Y)xz +v3(%,¥)z = (-1)" p2(y)xz
- (D) "y (2)xy = (-1)"12(y, 2)x = 0.

Since the coefficient of xyz is A; and the coefficient of xz is u5(y) - (=1)™u2(y), [16, Theorem 3.7] yields

A3 =0 and pu3(yo) = (-1)"pa2(yo).
When |x| = |y| = |z| = 1, it follows from (10) that

12 (xy)z + 13 (2)xy +v2(xy, 2) - p3(X)yz - 15 (y2)x - v3(X, y2)
+ s (X)yz + g (¥)xz + va (X, ¥)z = (=1)" pa (y) xz
- (1" (2)xy = (-1)"va(y, 2)x = 0.

Since the coefficient of xz is u, (y) — (=1)™ u4(y), [16, Theorem 3.7] implies 14 (y1) = (=1)™ 4 (y1).
According to (9), we have

B(x0,¥0) = p1(x0)yo + p1(¥o)xo — p1(Xoyo);
B(xo0,y1) = p1(Xo)y1 + pa(¥1)Xo — pa(xoy1);
B(x1,Y0) = pa(x1)yo + (=1)"x1p11(Yo) = pa(x1y0);
B(x1,y1) = pa(x1)y1 + (1) "xapa(y1) = p1 (xayr)-

(1)

Set

Mm(X) _ {/Ll(X) X GAQ,
/M(X) X€A1.

It follows from (11) that:

= ym(Xo0y0) + pm(XoY0) = ym(X0)Yo + ptm(X0)Yo + Xoym(Yo) + Xopm(¥0);

= Am(Xoy1) + pm(Xoy1) = ym(X0)y1 + ptm(X0)y1 + Xoym(y1) + Xopm(y1);

= m(x1yo) + pm(x1¥0) = ym(x1)yo + pm(x1)yo + (=1)™ (x19m(y0) + X1m(¥0));
= ym(xay1) + pm(xay1) = ym(x0)y1 + pm(x1)y1 + (1) (x1ym(y1) + X1pm(y1))-

Let ym + um = dm and h = —po — 1, theny = d + h, where d = do + d; is a superderivationand h: A — C + Cw
is a linear mapping. O

By Lemma 2.2 and the above result, we have

Corollary 3.5. Let A = Ao ® A1 be a prime superalgebra with maximal right ring of quotients Q and extended
centroid C. Suppose that v : A — Q is a Lie n superderivation, n > 2. If deg(A1) > 2n+5, then~ = d + h, where
d: A - Qis asuperderivationand h : A - C + Cw is a linear mapping.

In particular, we get the following results, which will be used in the next section.

Theorem 3.6. Let Q = Qo ® Q1 be a unital superalgebra with center C = Co ® C1. Let A = Ao ® A1 be a
superalgebra and a subalgebra of Q. Suppose that o : A — Q is a Lie superderivation. If A is a 4-superfree
subset of Q, then a = d + h, where d : A — Q is a superderivation and h : A — C + Cw is a linear mapping.

Corollary 3.7. Let A = Ao ® A1 be a prime superalgebra with maximal right ring of quotients Q and extended
centroid C. Suppose that o : A — Q is a Lie superderivation. If deg(A1) > 9, thena =d + h,whered : A — Q is
a superderivation and h : A — C + Cw is a linear mapping.
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Theorem 3.8. Let Q = Qo ® Q1 be a unital superalgebra with center C = Co ® C1. Let A = Ao ® A1 be a
superalgebra and a subalgebra of Q. Suppose that 3 : A — Q is a Lie triple superderivation. If A is a 5-superfree
subset of Q, then 3 =d + h, where d : A — Q is a superderivation and h : A — C + Cw is a linear mapping.

Corollary 3.9. Let A = Ao ® A1 be a prime superalgebra with maximal right ring of quotients Q and extended
centroid C. Suppose that 3 : A — Q is a Lie triple superderivation. If deg(A1) > 11, then 8 = d + h, where
d: A — Qis asuperderivationand h : A — C + Cw is a linear mapping.

4 Generalized Lie n superderivations of superalgebras

In the section, we describe the structure of generalized Lie n superderivations on a superalgebra.

Definition 4.1. Let A be a superalgebra. For m € {0, 1}, a $-linear mapping nm : A — A is called a generalized
Lie superderivation of degree m if nm(A;) € Am+j,j € Z2, and

1 ([, ¥]s) = 9m ()Y = (1) g (v)x + (=)™ Mxam (y) - (~1)™ PPy (x),

forall x,y € Ao U A1, where an is a Lie superderivation of degree m on A. If n = no + m1, then n is called a
generalized Lie superderivation on A.

Definition 4.2. Let A be a superalgebra. For m € {0, 1}, a #-linear mapping 0, : A — A is called a generalized
Lie triple superderivation of degree m if Om(A;) € Am+j, j € Z2, and
Om ([, Y5, 2]s) D ()yz = (~1) b (y)xz = (1) P g (2)xy
+ (_1)|X||y|+IXHZ\+|yHZ\9m(Z)yx N (—1)m|x‘x,8m(y)z— (—1)m‘y‘+|’(”y|y,8m(x)z
_ (_1)m\2|+\XIIZI+IyIIZIZﬂm(X)y n (_1)MIZI+\X\Iy\+ly||2|+\XHZ\Zﬁm(y)x
n (_1)m\>f\+m\ylxy5m(z) _ (_1)m\X\+M\y\+IXIInyX5m(Z)
_ (_1)M\X\+m\2\+IXIIZI+\y|\ZIZXﬂm(y) + (_1)m\yl+m|2|+\X\Iy\+|X|IZI+\yHZ\Zy5m(X)’

forallx,y,z e Ao U A1, where By is a Lie triple superderivation of degree m on A. If 0 = 0y + 01, then 0 is called
a generalized Lie triple superderivation on A.

According to the definition of Lie n superderivations, we give the definition of generalized Lie n superderiva-
tions.

Definition 4.3. Letn > 2 be aninteger. Let A be a superalgebra. For m € {0, 1}, a #-linear mapping 9m : A - A
is called a generalized Lie n superderivation of degree m if 9 (A;) € Am+j, j € Z2, and

2o
ﬁm(pn(xly X200 an)) = Z ZAVTIPY(leXZs e )Xﬂ)’
r=1[=1
forall x1,x2,...,xn € Ag U A1, where
Ay =1, Ay, = —(—1)Fl(xletiiah e o370 0,
Ay =Ayia A 255 <272,

pl(Xkl,sz, ,an) = (Xkl,XkZ, . ,an),

pzi-z+1(Xkl,Xk2, e ,an) = (in,Xkl, e ,in,l,inJrl, . ,an), l € {2, 3, ey Yl},
Pai-24j(Xkys Xieys + o5 Xiy) = P2i-24105(Xky s Xieys + 05 Xy ) 2 < < 272,
Tl(th,X[Z,...,th) :ﬂm(th)th...th,

Tz(th,th, e ,th) = (—1)m‘xt1‘th’ym(Xt2) oo Xty

T3 (th s Xtyseoes Xt") = (—1)m(|X'1|+‘X‘2‘)Xt1Xt2’ym(Xt3) oo Xty
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Tn(th s Xtyseons th) = (—1)m(|xtl|+"'+‘X‘"*1I)Xt1Xt2 . ’ym(th),

~m iS a Lie n superderivation of degree m on A.
That is, A; = 1 or Ay = -1, and p, is a permutable. If 9 = Yo + V1, then ¥ is called a generalized Lie n
superderivation on A.

The expression of generalized Lie n superderivations is too complicated, so we will study the structure of
generalized Lie triple superderivations firstly. In the same manner we can get the structure of generalized Lie
n superderivations.

Theorem 4.4. Let Q = Qo ® Q1 be a unital superalgebra with center C = Co @ C1. Let A = Ay ® A1 be a
superalgebra and a subalgebra of Q. Suppose that 6 : A — Q is a generalized Lie triple superderivation. If A is
a 5-superfree subset of Q, then 6 = g + I, where g : A — Q is a generalized superderivationandl: A — C + Cw is
a linear mapping.

Proof. By the definition of generalized Lie triple superderivations, we assume that 6, is a generalized Lie
triple superderivation of degree m and S, is a Lie triple superderivation of degree m, m € {0, 1}. According

to (5) we have o
[[aibj, ckls, di]s = [[a@i, bici]s, di]s + (=1)7 ¥ [b}, cxails, di]s, (12)

for all a;, bj, ck, d; € Ag U A1. Applying 0m to (12), we get

0 =Om(aib;)crd; — (1) 70, (cr)aibjd; - (1) 6,.(d)) aibjcy
+ (_1)ik+jk+il+jl+k19m(dl)ckaibj + (—1)mi+mjaib,'ﬁm(ck)d1 _ (_1)mk+ik+jkck/6m(aibj)dl
B (_1)ml+il+jl+kldlﬁm(aibj)ck + (_1)m1+ik+jk+il+j1+kldlﬁm(Ck)aibj
+ ()" g bick B (dy) - (-1)M T G @b B ()
—(—1)mimAmEEL ) g b B () + (—1) MmN g g (aib))—0m(ai) bickd,
+ (_1)ij+ik9m(bjck)aidl + (_1)il+jl+k19m(dl)aibjck B (_1)ij+ik+il+jl+k19m(dl)bjckai
— (-1)™a;Bm(bjci)d; + (1) K p ey B (@) dy + (-1)™ T 8, (a3) by
_ (—1)ml+ij+ik+il+ﬂ+kld15m(bjCk)ai _ (—1)mi+mj+mkaibjCkﬂm(dl)
+ (—1)mi+mj+mk+ij+ikbl‘ckaiﬁm(d() + (—1)mi+ml+”+ﬂ+kldlaiﬂm(bjCk)
—(—1)mmemBRISE b ) B (a5) = (<1) 7 (0m (B cxaidi = (=1)" 0 (ckai) bydy
~(-1)""™o, (d))bjcrai+ (-1 ™ g, (d))craibi— (—1)™ ™M ¢ @i B (b)) d)
4 (*1)mibj6m(ckai)d1* (*1)ml+”+ﬂ+kldlﬂm(bj)Ckai+ (*1)ml+jk+ji+“+ﬂ+kldlﬁm(Ckai)bj
+ (1) i (dy) - (<1)™ I b B (dy)

_ (—1)mj+ml+il+ﬂ+kld1bj5m(Ckai) i (_1)mi+mk+ml+jk+ji+il+jl+kldlCkalﬂm(bl_))’
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for all a;, bj, ¢k, d; € Ao U A1. An easy computation shows that

0 =Om (aiby)cid) - Om(ai)bjcids — (~1)" T Om(cr)aibjdy + (1) 0, (cra) bydy
+(-1)7 0 (bjcr)aid; — (=1) 7 0m (b)) craid; + (=1)™ ™ a;b;Bm(ci)d;
— (-1)™aiBm(bjck)d; + (~1)" K 0 B (ai)dy — (=1)" T *b; B (crai)d,
—(~1)™ ¥ ey B (aiby) dy+ (~1) ™y @3 B (b)) di— (1) " Ay B (aib) e
4 (—1)ml+il+ﬂ+kld1ﬁm(ai)bjCk _ (—1)mi+mi+il+ﬂ+ml+kldlaibjﬂm(Ck)
" (—l)mi+m1+”+ﬂ+kld1(1iﬁm(b]'Ck) 4 (—1)m1+ik+ik+il+ﬂ+kldlﬂm(Ck)aib]‘
_ (_1)ml+ik+jk+il+jl+kldlﬁm(Ckai)bj " (_1)mk+ml+ik+jk+il+jl+kldlCkﬁm(aibj)
_ (_1)mi+mk+ml+ik+ik+kl+il+ildlckaiﬁm(bj) _ (_1)ml+ij+ik+il+jl+kld16m(bjck)ai
" (_1)ml+ij+ik+jl+kl+ikdl/3m(bl_)ckal_ _ (_1)mj+mk+ml+ij+ik+jl+kl+ildlbjckﬂm(ai)

4 (—1)mj+ml+il+kl+il+ij+ikd1b,ﬂm(Cka,'),

(13)

forall a;, bj, ¢k, d; € AgUA;. By Theorem 3.8, we have Sy (x) = dm(x) + hm(x), where dp, is a superderivation
of degree mand hy, : A - C + Cw is a linear mapping. Define B: A x A — Q by

B(x%,y) = m(xy) = Om()y = (~1)"xdm(y),
forall x,y € Ap U A1. We can rewrite (13) as
B(ai, b)cidy + (-1)7 ¥ B(bj, cr)aidy + (-1) P B(cy, ai)bjdi + 3 AL = 0,
where Y, AfL is a superquasi-polynomial. By A is a 5-superfree subset of Q, [16, Theorem 3.8] implies

B(x0,Y0) = A1XoYo + /\,1)/0X0 + pa(Xo0)yo + //1 (yo)xo + v1(Xo0,Y0);
B(x0,¥1) = XA2xoy1 + Aay1Xo + p2(Xo)y1 + pa(y1)Xo + v2 (X0, y1);

(14)
B(x1,Y0) = A3x1Yo0 + A3yox1 + u3(x1)Yo + p3(Yo) X1 + v3 (X1, Yo);
B(x1,y1) = Aaxay1 + Agyixa + pa(x1)y1 + ps(y1)xa +va(x1, y1),
where A\, A\ € Cim + Cow, i, py : Ai = Cingi + Cmiw, v 2 Aj x Aj > C+ Cw, k€ {1,2,3,4},1i,j€{0,1}.
By computing 6m (xyz) in two different ways, we have
B(xy,z) + B(x,y)z - B(x,yz) =0, (15)

forall x,y,ze Ag U A;.
By substituting (14) into (15), we get
0 =A1xyz + A\zxy + pu1 (xy)z + 1 (2)xy + v1(xy, z)
+ MXyz + Myxz + pa (X)yz + p1(y)xz + v (X, y)z
— XYz = ANiyzx — p1(X)yz — pi(yz)x - vi(x, yz),

forall x,y, z € Ao;

0 =X3xyz + A32Xy + 13 (Xy)z + 5 (2)xy + v3(xy, 2)
+ MaXyZ + Aayxz + 12 (X)yz + pa (Y)Xz + v2 (X, y)z
- Aaxyz = Ayzx — 2 (X)yz - pa (y2)x - v2(x, yz),
forall x,z € Ao,y € As;
0 =\4XyZ + Ny2XY + pa(Xy)z + py (2)xy + va(xy, 2)
+ AaXyZ + Noyxz + 12 (X)yz + pa (Y)Xz + v2 (X, y)z

- X1xyz = Niyzx — p1 (X)yz - pi (yz)x - v1(x, yz),
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forallx € Ag,y,z € Ay;

0 =Xaxyz + Nzxy + pa(xy)z + 1 (2)Xy + va(xy, 2)
+ A3xyz + ANsyxz + u3(X)yz + ps(y)xz + v3(x, y)z
—MaXyz = Ayzx — pa(X)yz — s (yz2)x - vy (x, yz),

forally e Ao, x,z € Ay;

0 =M1xyz + A\1zxy + p1 (xy)z + 1 (2)xy + v1(xy, 2)
+ NaXYZ + NyXz + 14 (X)yz + py (V)xz + va(X, y) 2

— XYz = Ayzx — pa(X)yz — uy (y2)x - vi(x, yz),

forall z € Ao, x,y € A;. By [16, Theorem 3.7], we have

A1 = A1 = 4 =0, g (XoY0) = —v1(Xo, Yo);

A3 = A5 = M) = s = ph = 0, p3(Xoy1) = —v2(Xo, V1);
Xs = =A2, A = iy = 0, i (Xo) = p2(x0);

p3(x1) = pa(x1), pa(x1yo) = -v3(X1,Y0);
Hl(xl)’l) = —V4(X1,)/1)-

By the definition of B, we have

B([[xo0, wo], yo], z1) = B(z1, [[x0, Wo], yo])
=0m ([[[X0, Wo], yo, 21]) = Om([[X0, Wo], ¥o])z1 — [[x0, Wo], Yo]dm(z1)
+0m(21)[[X0, wol, yo] + (=1)"z1dm([[x0, Wo], Yo])
=0m([X0, Wo])y0z1 — Om(y0)[X0, Wolz1 = Om(21)[x0, Wo]yo
+0m(z1)Yo[Xo0, o] + [x0, Wo]Bm(Y0)z1 = YoBm([X0, Wo])21
= (=1)"z18m([x0, wo])yo + (=1)"218m(y0)[X0, Wo] + [X0, WolyoSm(21)
~yo[x0, Wo]Bm(z1) — (=1)"z1[x0, Wo]Bm(y0) + (=1)"z1y0m([X0, Wo])
= B([x0, Wo], yo)z1 + B(Yo, [X0, Wo])z1 — Om ([X0, Wo])yoz1
= [x0, wo]dm(y0)z1 + Om(y0)[ X0, Wo]z1 + yodm([X0, Wo])Z1
~ [[x0, wol, yoldm(z1) + m(21)[[x0, Wol, yo] + (=1)"z1dm([[x0, Wo], ¥0]),

for all xo, yo, wo € Ao, z1 € Aj. Since the coefficient of xowoyoz1 is A, it follows from [16, Theorem 3.7] that
X2 = 0 and )4 = 0. Therefore,

B(x0, ¥o0) = p1(x0)yo - p1(Xoyo);
B(xo0,y1) = p1(X0)y1 — pa(Xoy1);
B(x1,Y0) = pa(x1)yo = pa(X1yo);
B(x1,y1) = pa(x1)y1 = pa(X1y1).

(16)

Set

i (x) x € Ao,
pm(X) = {;u,(x) xeA.

It follows from (16) that 0 (xy) + fim(xy) = Om(x)y + (=1)™¥xdm(y) + pm(x)y, forall x, y € Ao U A;.
Let Om + um = gmand l = —po — 1, then 6 = g + 1, where g = go + g1 is a generalized superderivation and
l: A - C + Cw is alinear mapping. O

By Lemma 2.2 and the above result, we have
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Corollary 4.5. Let A = Ao ® A1 be a prime superalgebra with maximal right ring of quotients Q and extended
centroid C. Suppose that 3 : A — Q is a generalized Lie triple superderivation. If deg(A1) > 11, then 3 =g +1,
where g : A — Q is a generalized superderivation and | : A — C + Cw is a linear mapping.

According to the proof of Theorem 3.4 and Theorem 4.4, we have

Theorem 4.6. Let Q = Qo ® Q1 be a unital superalgebra with center C = Co ® C1. Let A = Ao ® A1 be a
superalgebra and a subalgebra of Q. Suppose that ¥ : A — Q is a generalized Lie n superderivation, n > 2. If
A is an (n + 2)-superfree subset of Q, then ¥ = g + 1, where g : A — Q is a generalized superderivation and
l: A - C+ Cwis a linear mapping.

By Lemma 2.2 and the above result, we have

Corollary 4.7. Let A = Ao ® A1 be a prime superalgebra with maximal right ring of quotients Q and extended
centroid C. Suppose that ¥ : A — Q is a generalized Lie n superderivation, n > 2. If deg(A1) > 2n + 5, then
9 =g+1,whereg: A — Qis a generalized superderivation and 1 : A — C + Cw is a linear mapping.

In particular, we have

Theorem 4.8. Let Q = Qo ® Q1 be a unital superalgebra with center C = Co ® C1. Let A = Ao ® A1 be a
superalgebra and a subalgebra of Q. Suppose that n : A — Q is a generalized Lie superderivation. If A is a
4-superfree subset of Q, thenn = g + |, where g : A — Q is a generalized superderivationandl: A — C + Cw is
a linear mapping.

Corollary 4.9. Let A = Ao ® A1 be a prime superalgebra with maximal right ring of quotients Q and extended
centroid C. Suppose that n : A — Q is a generalized Lie superderivation. If deg(A1) > 9, thenn = g + I, where
g : A — Qis a generalized superderivation and | : A — C + Cw is a linear mapping.
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