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Abstract: In the paper, we study Lie n superderivations and generalized Lie n superderivations of super-
algebras, using the theory of functional identities in superalgebras. We prove that if A = A0 ⊕ A1 is a
prime superalgebra with deg(A1) ≥ 2n + 5, n ≥ 2, then any Lie n superderivation of A is the sum of
a superderivation and a linear mapping, and any generalized Lie n superderivation of A is the sum of a
generalized superderivation and a linear mapping.
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1 Introduction
Let A be an associative algebra. A linear mapping d ∶ A → A is called a derivation if d(xy) = d(x)y + xd(y)
for all x, y ∈ A. A Lie derivation δ of A is a linear mapping from A into itself satisfying δ[x, y] = [δ(x), y] +
[x, δ(y)] for all x, y ∈ A. A Lie triple derivation is a linear mapping ψ ∶ A → A which satis�es ψ[[x, y], z] =
[[ψ(x), y], z] + [[x,ψ(y)], z] + [[x, y],ψ(z)] for all x, y, z ∈ A. Obviously, each derivation is a Lie derivation
and each Lie derivation is a Lie triple derivation. Brešar [1] described the structure of Lie derivations and Lie
triple derivations on prime rings and obtained that each Lie derivation or Lie triple derivation of a prime ring
is the sum of a derivation and an additive mapping. Wang [2] studied the structure of Lie superderivations of
superalgebras in 2016. Lie n-derivationswere introducedbyAbdullaev [3],where the formof Lie n-derivations
of a certain von Neumann algebra was described. In 2012, Benkovič and Eremita [4] gave the form of Lie n-
derivations on triangular rings, which has been generalized to generalized matrix algebras in [5].

The concept of a generalized derivation was introduced by Brešar [6] and generalized by Hvala [7], who
has proved in [8] that each generalized Lie derivation of a prime ring is the sum of a generalized derivation
and a central mapping which vanishes on all commutators.

A functional identity can be described as an identical relation involving elements in a ring together
with functions. The goal when studying a functional identity is to describe the form of these functions or
to determine the structure of the ring admitting the functional identity in question. The theory of functional
identities in rings originated from the results of commuting mappings [9]. The name “functional identity”
was introduced by Brešar in [10]. The crucial tool in the theory of functional identities in rings is the d-
free set, which was developed by Beidar and Chebotar in [11, 12]. Making use of the theory of functional
identities in rings, Herstein’s conjectures on Lie mappings in rings have been settled [13–15]. After this, Wang
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[16] established the theory of functional identities in superalgebras and gave the de�nition of d-superfree
sets. As an application, Wang [17] described Lie superhomomorphisms from the set of skew elements of a
superalgebra with superinvolution into a unital superalgebra. The knowledge of functional identities and
d-superfree sets of superalgebras refer to [16], [18] and [19].

In the paper, our purpose is to study Lie n superderivations and generalized Lie n superderivations of su-
peralgebras, using the theory of functional identities in superalgebras. Section 2 presents somepreliminaries.
In the third section we discuss the structure of Lie n superderivations. In Section 4 the results of generalized
Lie n superderivations are stated and proved.

2 Preliminaries
Throughout the paper, by an algebra we shall mean an algebra over a �xed unital commutative ring Φ. We
assume without further mentioning that 1

2 ∈ Φ.
An associative algebra A over Φ is said to be an associative superalgebra if there exist two Φ-submodules

A0 and A1 of A such that A = A0 ⊕ A1 and AiAj ⊆ Ai+j, i, j ∈ Z2. We call A0 the even and A1 the odd part of A.
The elements of Ai are homogeneous of degree i and we write ∣ai ∣ = i for all ai ∈ Ai. For a superalgebra A, we
de�ne σ ∶ A → A by (a0+a1)σ = a0−a1, then σ is an automorphism of A such that σ2 = 1. On the other hand,
for an algebra A, if there exists an automorphism σ of A such that σ2 = 1, then A becomes a superalgebra
A = A0 ⊕ A1, where Ai = {x ∈ A∣xσ = (−1)ix}, i = 0, 1. A superalgebra A is called a prime superalgebra if and
only if aAb = 0 implies a = 0 or b = 0, where at least one of the elements a and b is homogeneous.

On a superalgebra A, de�ne for any x, y ∈ A0 ∪ A1 the Lie superproduct

[x, y]s = xy − (−1)∣x∣∣y∣yx.

Thus
[a, b]s = [a0, b0]s + [a1, b0]s + [a0, b1]s + [a1, b1]s ,

where a = a0 + a1, b = b0 + b1.
In [20]Montaner obtained that a prime superalgebra A is not necessarily a prime algebra but a semiprime

algebra. Hence one can de�ne the maximal right ring of quotients Qmr of A, and the useful properties of Qmr

can be found in [21]. By [21, proposition 2.5.3] σ can be uniquely extended to Qmr. Therefore, Qmr is also a
superalgebra. Moreover, we can get that Qmr is a prime superalgebra.

On the other hand, we will introduce some important concepts of the theory of functional identities in
superalgebras.

Let Q = Q0⊕Q1 be a unital superalgebra with grading automorphism σ and center C = C0⊕C1 satisfying
[C, Q] = 0. Fix an element ω ∈ Q as follows: If either σ = 1 or σ is outer, we set ω = 0. Otherwise, we denote
ω as an invertible element in Q such that σ(x) = ωxω−1 for all x ∈ Q. It is easy to check that ω ∈ Q0, ω2 ∈ C0,
ωx0 = x0ω for all x0 ∈ Q0, and ωx1 = −x1ω for all x1 ∈ Q1. We shall call the ω the grading element of Q. If
a = b + cω, b, c ∈ C, we set ā = b − cω.

Let m ∈ N∗, U1,U2,⋯,Um are subsets of Q such that either Ui ⊆ Q0 or Ui ⊆ Q1 for every 1 ≤ i ≤ m. Set εi =
±1, where either εi = 1 if Ui ⊆ Q0 or εi = −1 if Ui ⊆ Q1. S1,S2,⋯,Sm are nonempty sets, I ,J ⊆ {1, 2,⋯,m}
and δl ∶ Sl → Ul, l ∈ I ∪ J , are surjective maps. Set Ŝ = ∏m

k=1 Sk, Û = ∏m
k=1 Uk and∆ = {δl ∣l ∈ I ∪ J }.

We shall consider functional identities on Ŝ of the following form

∑
i∈I

Eii(x̄m)δi(xi) + ∑
j∈J

δj(xj)F jj(x̄m) = 0; (1)

∑
i∈I

Eii(x̄m)δi(xi) + ∑
j∈J

δj(xj)F jj(x̄m) ∈ C + Cω, (2)

for all x̄m ∈ Ŝ, where Ei ∶ ∏k≠i Sk → Q and Fj ∶ ∏k≠j Sk → Q.
Suppose that ω = 0 or each Ui ⊆ Q0. There exist maps

pij ∶ ∏
k≠i,j
Sk → Q, i ∈ I , j ∈ J , i ≠ j,
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λl ∶ ∏
k≠l
Sk → C + Cω, l ∈ I ∪ J ,

such that

Eii(x̄m) = ∑
j∈J
j≠i

δj(xj)pijij(x̄m) + λ
i
i(x̄m);

F jj(x̄m) = −∑
i∈I
i≠j

pijij(x̄m)δi(xi) − λ
j
j(x̄m),

(3)

for all x̄m ∈ Ŝ, where λl = 0 if l /∈ I ∩ J .
Otherwise, there exist maps

pij ∶ ∏
k≠i,j
Sk → Q, i ∈ I , j ∈ J , i ≠ j,

λl , µl ∶ ∏
k≠l
Sk → C l ∈ I ∪ J ,

such that

Eii(x̄m) = ∑
j∈J
j≠i

δj(xj)pijij(x̄m) + λ
i
i(x̄m) + µii(x̄m)ω;

F jj(x̄m) = −∑
i∈I
i≠j

pijij(x̄m)δi(xi) − λ
j
j(x̄m) − εjµ

j
j(x̄m)ω,

(4)

for all x̄m ∈ Ŝ, where λl = 0 = µl if l /∈ I ∩ J . We shall refer to (3) and (4) as a standard solution of (1) and (2).

De�nition 2.1 ([16, De�nition 3.1]). Let d ∈ N∗. A triple (Ŝ;∆; Û) is called d-superfree if the following
conditions are satis�ed:
(a) For all m ∈ N ∗ and I ,J ⊆ {1, 2,⋯,m} with max{∣I∣, ∣J ∣} < d + 1, we have that (1) implies (3) and (4).
(b) For all m ∈ N ∗ and I ,J ⊆ {1, 2,⋯,m} with max{∣I∣, ∣J ∣} < d, we have that (2) implies (3) and (4).

If each Sk = Uk and each δl = idUl , then the Û is said to be d-superfree provided that (Ŝ;∆; Û) is so. Let
R = R0 ⊕R1 be a graded Φ-submodule of Q. For every 1 ≤ i ≤ m, either Ui = R0 or Ui = R1. Then R is said to be
d-superfree provided that each Û is d-superfree. And, we can get the following result.

Lemma 2.2 ([16, Theorem 4.16]). Let A = A0⊕A1 be a prime superalgebra. If deg(A1) ≥ 2d + 1, then A is
d-superfree.

Let {x1, x2,⋯, xm} be a �nite set of variables and k be a nonnegative integer such that k ≤ m. We denote by
Mk

m the set of all multilinear monomials of degree k in the variables {x1, x2,⋯, xm}. It is understood that
M0

1 = {1}. We writeMm = ⋃m
k=0Mk

m. For a given monomial M = xi1⋯xiu ∈ Mm where u ≤ m − k. We denote
byMk

m(M) the set of all multilinear monomials of degree k in the variables {x1,⋯, xm}/{xi1 ,⋯, xiu} and
writeMm(M) = ⋃m−u

k=0 Mk
m(M).

For every 1 ≤ t ≤ m, let St andRt be two sets and let δt ∶ St →Rt be a surjective mapping. We set

M(s̄m) = δi1(si1)δi2(si2)⋯δiu(siu),

where sit ∈ Sit .
We set Ŝ = ∏m

i=1 Si and Ŝ(M) = ∏m−u
t=1 Sjt . For anygiven F ∶ Ŝ(M) → Qwe introduce amapping FM ∶ Ŝ → Q

by the rule
FM(s̄m) = FM(s1,⋯, sm) = F(sj1 ,⋯, sjm−u),

for any s̄m ∈ Ŝ.
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Let M ∈ Mk
m and let λM ∶ Ŝ(M) → C + Cω. A mapping Ŝ → Q de�ned by the rule s̄m → λMM(s̄m)M(s̄m) for

any s̄m ∈ Ŝ is called a superquasi-monomial and is denotedbyλMM. A sum∑L∈Mm
λLL of di�erent superquasi-

monomials will be called a superquasi-polynomial.
An element x ∈ A0 ∪ A1 is said to be algebraic over C of degree ≤ n if there exist c0, c1, . . . , cn ∈ C, not all

zero and such that ∑n
i=0 cix

n−i = 0. The element x is said to be algebraic over C of degree n if it is algebraic
over C of degree ≤ n and is not algebraic over C of degree ≤ n − 1. By deg(x) we shall mean the degree of x
over C (if x is algebraic over C) or∞ (if x is not algebraic over C). Given a nonempty subset S ⊆ A0 ∪ A1, we
set

deg(S) = sup{deg(x)∣x ∈ S}.

Let A be a superalgebra. For i ∈ {0, 1}, a superderivation of degree i is actually a Φ-linear mapping di ∶ A → A
which satis�es di(Aj) ⊆ Ai+j, j ∈ Z2, and di(ab) = di(a)b+(−1)i∣a∣adi(b) for all a, b ∈ A0∪A1. If d = d0+d1,
then d is called a superderivation.

Let A be a superalgebra. For i ∈ {0, 1}, a Φ-linear mapping gi ∶ A → A is called a generalized
superderivation of degree i if gi(Aj) ⊆ Ai+j, j ∈ Z2, and gi(xy) = gi(x)y + (−1)i∣x∣xdi(y) for all x, y ∈ A0 ∪ A1,
where di is a superderivation of degree i. If g = g0 + g1, then g is called a generalized superderivation.

The following identity will be used frequently,

[aibj , ck]s = [ai , bjck]s + (−1)ij+ik[bj , ckai]s ai , bj , ck ∈ A0 ∪ A1, (5)

where i, j, k ∈ {0, 1}.

3 Lie n superderivations of superalgebras
In the section, we describe the structure of Lie n superderivations on a superalgebra.

De�nition 3.1. Let A be a superalgebra. For m ∈ {0, 1}, a Lie superderivation of degree m is actually aΦ-linear
mappingαm ∶ A → Awhich satis�esαm(Aj) ⊆ Am+j, j ∈ Z2, andαm([x, y]s) = [αm(x), y]s+(−1)m∣x∣[x,αm(y)]s
for all x, y ∈ A0 ∪ A1. If α = α0 + α1, then α is called a Lie superderivation on A.

Obviously, each superderivation is a Lie superderivation on A.

De�nition 3.2. Let A be a superalgebra. For m ∈ {0, 1}, a Φ-linear mapping βm ∶ A → A is called a Lie triple
superderivation of degree m if βm(Aj) ⊆ Am+j, j ∈ Z2, and

βm([[x, y]s , z]s) = [[βm(x), y]s , z]s + (−1)m∣x∣[[x, βm(y)]s , z]s + (−1)m(∣x∣+∣y∣)[[x, y]s , βm(z)]s ,

for all x, y, z ∈ A0 ∪ A1. If β = β0 + β1, then β is called a Lie triple superderivation on A.

Let us de�ne the following sequence of polynomials: p1(x) = x and

pn(x1, x2, . . . , xn) = [pn−1(x1, x2, . . . , xn−1), xn]s n ⩾ 2.

Thus, p2(x1, x2) = [x1, x2]s, p3(x1, x2, x3) = [[x1, x2]s , x3]s, etc.

De�nition 3.3. Let n ⩾ 2 be an integer. Let A be a superalgebra. For m ∈ {0, 1}, aΦ-linearmapping γm ∶ A → A
is called a Lie n superderivation of degree m if γm(Aj) ⊆ Am+j, j ∈ Z2, and

γm(pn(x1, x2, . . . , xn)) = pn(γm(x1), x2, . . . , xn)

+
n
∑
i=2

(−1)m(∣x1∣+∣x2∣+...+∣xi−1∣)pn(x1, x2, . . . , xi−1, γm(xi), xi+1, . . . , xn),

for all x1, x2, . . . , xn ∈ A0 ∪ A1. If γ = γ0 + γ1, then γ is called a Lie n superderivation on A.
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Theorem 3.4. Let Q = Q0 ⊕ Q1 be a unital superalgebra with center C = C0 ⊕ C1. Let A = A0 ⊕ A1 be a
superalgebra and a subalgebra of Q. Suppose that γ ∶ A → Q is a Lie n superderivation, n ≥ 2. If A is an (n+2)-
superfree subset of Q, then γ = d + h, where d ∶ A → Q is a superderivation and h ∶ A → C + Cω is a linear
mapping.

Proof. By the de�nition of Lie n superderivations, we assume that γm is a Lie n superderivation of degree m,
m ∈ {0, 1}. According to (5), we have

[. . . [[aibj , ck]s , x3]s , . . . , xn]s =[. . . [[ai , bjck]s , x3]s , . . . , xn]s
+ (−1)ij+ik[. . . [[bj , ckai]s , x3]s , . . . , xn]s ,

(6)

for all ai , bj , ck , x3, . . . , xn ∈ A0 ∪ A1. Applying γm to (6), we have

0=[. . . [[γm(aibj), ck]s , x3]s , . . . , xn]s + (−1)m(i+j)[. . . [[aibj , γm(ck)]s , x3]s , . . . , xn]s
+ (−1)m(i+j+k)[. . . [[aibj , ck]s , γm(x3)]s , . . . , xn]s
+ . . . + (−1)m(i+j+k+...+∣xn−1∣)[. . . [[aibj , ck]s , x3]s , . . . , γm(xn)]s
−[. . . [[γm(ai), bjck]s , x3]s , . . . , xn]s − (−1)mi[. . . [[ai , γm(bjck)]s , x3]s , . . . , xn]s
− (−1)m(i+j+k)[. . . [[ai , bjck]s , γm(x3)]s , . . . , xn]s
− . . . − (−1)m(i+j+k+...+∣xn−1∣)[. . . [[ai , bjck]s , x3]s , . . . , γm(xn)]s
−(−1)ij+ik([. . . [[γm(bj), ckai]s , x3]s , . . . , xn]s+(−1)mj[. . . [[bj , γm(ckai)]s , x3]s , . . . , xn]s
+ (−1)m(i+j+k)[. . . [[bj , ckai]s , γm(x3)]s , . . . , xn]s
+ . . . + (−1)m(i+j+k+...+∣xn−1∣)[. . . [[bj , ckai]s , x3]s , . . . , γm(xn)]s).

It follows from (5) that

0 =[. . . [[γm(aibj), ck]s + (−1)m(i+j)[ai , bjγm(ck)]s + (−1)mi+mj+ij+mi+ik[bj , γm(ck)ai]s
− [γm(ai)bj , ck]s + (−1)mj+ij+mk+ik[bj , ckγm(ai)]s − (−1)mi[ai , γm(bjck)]s
− (−1)ij+ik[γm(bj)ck , ai]s + (−1)ij+ik+mk+jk+mi+ji[ck , aiγm(bj)]s
− (−1)ij+ik+mj[bj , γm(ckai)]s , x3]s , . . . , xn]s ,

for all ai , bj , ck , x3, . . . , xn ∈ A0 ∪ A1. Since [ai , bj]s = −(−1)ij[bj , ai]s, it follows that

0 =[. . . [[γm(aibj), ck]s − [γm(ai)bj , ck]s − (−1)mi[aiγm(bj), ck]s − (−1)mi([ai , γm(bjck)]s
− [ai , γm(bj)ck]s − (−1)mj[ai , bjγm(ck)]s) − (−1)ij+ik+mj([bj , γm(ckai)]s
− [bj , γm(ck)ai]s − (−1)mk[bj , ckγm(ai)]s), x3]s , . . . , xn]s .

(7)

De�ne B ∶ A × A → Q by
B(x, y) = γm(xy) − γm(x)y − (−1)m∣x∣xγm(y),

for all x, y ∈ A0 ∪ A1. It follows from (7) that

[. . . [[B(ai , bj), ck]s − (−1)mi[ai ,B(bj , ck)]s − (−1)ij+ik+mj[bj ,B(ck , ai)]s , x3]s , . . . , xn]s = 0, (8)

for all ai , bj , ck , x3, . . . , xn ∈ A0 ∪ A1. Since A is an (n + 2)-superfree subset of Q, n ≥ 2, [16, Theorem 3.8]
implies

B(x0, y0) = λ1x0y0 + λ′1y0x0 + µ1(x0)y0 + µ′1(y0)x0 + ν1(x0, y0);
B(x0, y1) = λ2x0y1 + λ′2y1x0 + µ2(x0)y1 + µ′2(y1)x0 + ν2(x0, y1);
B(x1, y0) = λ3x1y0 + λ′3y0x1 + µ3(x1)y0 + µ′3(y0)x1 + ν3(x1, y0);
B(x1, y1) = λ4x1y1 + λ′4y1x1 + µ4(x1)y1 + µ′4(y1)x1 + ν4(x1, y1),

(9)
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where λk , λ′k ∈ Cm + Cmω, µk , µ′k ∶ Ai → Cm+i + Cm+iω, νk ∶ Ai × Aj → C + Cω, k ∈ {1, 2, 3, 4}, i, j ∈ {0, 1}.
We shall now compute γm(xyz) in two di�erent ways. On the one hand,

γm(xyz) = B(xy, z) + γm(xy)z + (−1)m(∣x∣+∣y∣)xyγm(z)

= B(xy, z) + (B(x, y) + γm(x)y + (−1)m∣x∣xγm(y))z + (−1)m(∣x∣+∣y∣)xyγm(z).

On the other hand,

γm(xyz) = B(x, yz) + γm(x)yz + (−1)m∣x∣xγm(yz)

= B(x, yz) + γm(x)yz + (−1)m∣x∣x(B(y, z) + γm(y)z + (−1)m∣y∣yγm(z)).

Comparing the above expressions, we get

B(xy, z) − B(x, yz) + B(x, y)z − (−1)m∣x∣xB(y, z) = 0, (10)

for all x, y, z ∈ A0 ∪ A1.
When ∣x∣ = ∣y∣ = ∣z∣ = 0, it follows from (10) that

λ1xyz + λ′1zxy + µ1(xy)z + µ′1(z)xy + ν1(xy, z)
− λ1xyz − λ′1yzx − µ1(x)yz − µ′1(yz)x − ν1(x, yz)
+ λ1xyz + λ′1yxz + µ1(x)yz + µ′1(y)xz + ν1(x, y)z
− λ1xyz − λ′1xzy − µ1(y)xz − µ′1(z)xy − ν1(y, z)x = 0.

An easy computation shows that:
– The coe�cient of zxy is λ′1;
– The coe�cient of xz is µ′1(y) − µ1(y);
– The coe�cient of z is µ1(xy) + ν1(x, y).

By [16, Theorem 3.7], we have

λ
′
1 = 0; µ1(y0) = µ′1(y0); µ1(x0y0) = −ν1(x0, y0).

When ∣x∣ = ∣z∣ = 0 and ∣y∣ = 1, it follows from (10) that

λ3xyz + λ′3zxy + µ3(xy)z + µ′3(z)xy + ν3(xy, z)
− λ2xyz − λ′2yzx − µ2(x)yz − µ′2(yz)x − ν2(x, yz)
+ λ2xyz + λ′2yxz + µ2(x)yz + µ′2(y)xz + ν2(x, y)z
− λ3xyz − λ′3xzy − µ3(y)xz − µ′3(z)xy − ν3(y, z)x = 0.

An easy computation shows that:
– The coe�cient of zxy is λ′3;
– The coe�cient of yzx is −λ′2;
– The coe�cient of xz is µ′2(y) − µ3(y);
– The coe�cient of x is −µ′2(yz) − ν3(y, z);
– The coe�cient of z is µ3(xy) + ν2(x, y).

By [16, Theorem 3.7], we have

λ
′
2 = λ′3 = 0; µ3(y1) = µ′2(y1); µ

′
2(y1z0) = −ν3(y1, z0); µ3(x0y1) = −ν2(x0, y1).

When ∣x∣ = 0 and ∣y∣ = ∣z∣ = 1, it follows from (10) that

λ4xyz + λ′4zxy + µ4(xy)z + µ′4(z)xy + ν4(xy, z)
− λ1xyz − λ′1yzx − µ1(x)yz − µ′1(yz)x − ν1(x, yz)
+ λ2xyz + λ′2yxz + µ2(x)yz + µ′2(y)xz + ν2(x, y)z
− λ4xyz − λ′4xzy − µ4(y)xz − µ′4(z)xy − ν4(y, z)x = 0.

An easy computation shows that:
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– The coe�cient of xyz is λ2 − λ1;
– The coe�cient of zxy is λ′4;
– The coe�cient of yz is µ2(x) − µ1(x);
– The coe�cient of xz is µ′2(y) − µ4(y);
– The coe�cient of x is −µ′1(yz) − ν4(y, z).

By [16, Theorem 3.7], we have

λ1 = λ2; λ
′
4 = 0; µ1(x0) = µ2(x0); µ

′
2(y1) = µ4(y1); µ

′
1(y1z1) = −ν4(y1, z1).

By the de�nition of B, we have

B([. . . [[x1, x2]s , x3]s , . . . , xn]s ,ω1) − B(ω1, [. . . [[x1, x2]s , x3]s , . . . , xn]s)
=γm([[. . . [[x1, x2]s , x3]s , . . . , xn]s ,ω1]s) − γm([. . . [[x1, x2]s , x3]s , . . . , xn]s)ω1

− [. . . [[x1, x2]s , x3]s , . . . , xn]sγm(ω1) + γm(ω1)[. . . [[x1, x2]s , x3]s , . . . , xn]s
+ ω1γm([. . . [[x1, x2]s , x3]s , . . . , xn]s)

=[[. . . [γm([x1, x2]s), x3]s , . . . , xn]s ,ω1]s + [[. . . [[x1, x2]s , γm(x3)]s , . . . , xn]s ,ω1]s
+ . . . + [[. . . [[x1, x2]s , x3]s , . . . , γm(xn)]s ,ω1]s − B([. . . [[x1, x2]s , x3]s , . . . , xn−1]s , xn)ω1

+ B(xn , [. . . [[x1, x2]s , x3]s , . . . , xn−1]s)ω1 + ω1B([. . . [[x1, x2]s , x3]s , . . . , xn−1]s , xn)
− ω1B(xn , [. . . [[x1, x2]s , x3]s , . . . , xn−1]s) − γm([. . . [[x1, x2]s , x3]s , . . . , xn−1]s)xnω1

− [. . . [[x1, x2]s , x3]s , . . . , xn−1]sγm(xn)ω1 + γm(xn)[. . . [[x1, x2]s , x3]s , . . . , xn−1]sω1

+ xnγm([. . . [[x1, x2]s , x3]s , . . . , xn−1]s)ω1 + ω1γm([. . . [[x1, x2]s , x3]s , . . . , xn−1]s)xn
+ ω1[. . . [[x1, x2]s , x3]s , . . . , xn−1]sγm(xn) − ω1γm(xn)[. . . [[x1, x2]s , x3]s , . . . , xn−1]s
− ω1xnγm([. . . [[x1, x2]s , x3]s , . . . , xn−1]s)

=[[. . . [γm([x1, x2]s), x3]s , . . . , xn]s ,ω1]s − B([. . . [[x1, x2]s , x3]s , . . . , xn−1]s , xn)ω1

+ B(xn , [. . . [[x1, x2]s , x3]s , . . . , xn−1]s)ω1 + ω1B([. . . [[x1, x2]s , x3]s , . . . , xn−1]s , xn)
− ω1B(xn , [. . . [[x1, x2]s , x3]s , . . . , xn−1]s) − B([. . . [[x1, x2]s , x3]s , . . . , xn−2]s , xn−1)xnω1

+ B(xn−1, [. . . [[x1, x2]s , x3]s , . . . , xn−2]s)xnω1 − . . . − B([x1, x2]s , x3)x4 . . . xnω1

+ B(x3, [x1, x2]s)x4 . . . xnω1 − γm([x1, x2]s)x3 . . . xnω1 + . . . + ω1γm([x1, x2]s)x3 . . . xn ,

for all x1, x2, . . . , xn ,ω1 ∈ A0. Since the coe�cient of x1x2 . . . xnω1 is (n−1)λ1, [16, Theorem 3.7] yields λ1 = 0.
On the other hand, we have

B([. . . [[x1, x2]s , x3]s , . . . , xn]s ,ω1) − B(ω1, [. . . [[x1, x2]s , x3]s , . . . , xn]s)
=γm([[. . . [[x1, x2]s , x3]s , . . . , xn]s ,ω1]s) − γm([. . . [[x1, x2]s , x3]s , . . . , xn]s)ω1

− [. . . [[x1, x2]s , x3]s , . . . , xn]sγm(ω1) + γm(ω1)[. . . [[x1, x2]s , x3]s , . . . , xn]s
+ ω1γm([. . . [[x1, x2]s , x3]s , . . . , xn]s)

=[[. . . [γm([x1, x2]s), x3]s , . . . , xn]s ,ω1]s + [[. . . [[x1, x2]s , γm(x3)]s , . . . , xn]s ,ω1]s
+ . . . + [[. . . [[x1, x2]s , x3]s , . . . , γm(xn)]s ,ω1]s + [[. . . [[x1, x2]s , x3]s , . . . , xn]s , γm(ω1)]s
− [. . . [[γm(x1), x2]s , x3]s , . . . , xn]sω1 − (−1)m[. . . [[x1, γm(x2)]s , x3]s , . . . , xn]sω1

− [. . . [[x1, x2]s , γm(x3)]s , . . . , xn]sω1 − . . . − [. . . [[x1, x2]s , x3]s , . . . , γm(xn)]sω1

− [. . . [[x1, x2]s , x3]s , . . . , xn]sγm(ω1) + γm(ω1)[. . . [[x1, x2]s , x3]s , . . . , xn]s
+ ω1[. . . [[γm(x1), x2]s , x3]s , . . . , xn]s + (−1)mω1[. . . [[x1, γm(x2)]s , x3]s , . . . , xn]s
+ ω1[. . . [[x1, x2]s , γm(x3)]s , . . . , xn]s + . . . + ω1[. . . [[x1, x2]s , x3]s , . . . , γm(xn)]s

=[[. . . [B(x1, x2) + B(x2, x1), x3]s , . . . , xn]s ,ω1]s ,

for all x1, x2 ∈ A1, x3, . . . , xn ,ω1 ∈ A0. Since the coe�cient of x1x2 . . . xnω1 isλ1−λ4, [16, Theorem3.7] implies
λ4 = λ1 = 0.
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When ∣y∣ = 0 and ∣x∣ = ∣z∣ = 1, it follows from (10) that

µ4(xy)z + µ′4(z)xy + ν4(xy, z) − µ4(x)yz − µ′4(yz)x − ν4(x, yz)
+ λ3xyz + µ3(x)yz + µ′3(y)xz + ν3(x, y)z − (−1)mµ2(y)xz
− (−1)mµ′2(z)xy − (−1)mν2(y, z)x = 0.

Since the coe�cient of xyz is λ3 and the coe�cient of xz is µ′3(y) − (−1)mµ2(y), [16, Theorem 3.7] yields

λ3 = 0 and µ
′
3(y0) = (−1)mµ2(y0).

When ∣x∣ = ∣y∣ = ∣z∣ = 1, it follows from (10) that

µ2(xy)z + µ′2(z)xy + ν2(xy, z) − µ3(x)yz − µ′3(yz)x − ν3(x, yz)
+ µ4(x)yz + µ′4(y)xz + ν4(x, y)z − (−1)mµ4(y)xz
− (−1)mµ′4(z)xy − (−1)mν4(y, z)x = 0.

Since the coe�cient of xz is µ′4(y) − (−1)mµ4(y), [16, Theorem 3.7] implies µ′4(y1) = (−1)mµ4(y1).
According to (9), we have

B(x0, y0) = µ1(x0)y0 + µ1(y0)x0 − µ1(x0y0);
B(x0, y1) = µ1(x0)y1 + µ4(y1)x0 − µ4(x0y1);
B(x1, y0) = µ4(x1)y0 + (−1)mx1µ1(y0) − µ4(x1y0);
B(x1, y1) = µ4(x1)y1 + (−1)mx1µ4(y1) − µ1(x1y1).

(11)

Set

µm(x) =
⎧⎪⎪⎨⎪⎪⎩

µ1(x) x ∈ A0,
µ4(x) x ∈ A1.

It follows from (11) that:
– γm(x0y0) + µm(x0y0) = γm(x0)y0 + µm(x0)y0 + x0γm(y0) + x0µm(y0);
– γm(x0y1) + µm(x0y1) = γm(x0)y1 + µm(x0)y1 + x0γm(y1) + x0µm(y1);
– γm(x1y0) + µm(x1y0) = γm(x1)y0 + µm(x1)y0 + (−1)m(x1γm(y0) + x1µm(y0));
– γm(x1y1) + µm(x1y1) = γm(x1)y1 + µm(x1)y1 + (−1)m(x1γm(y1) + x1µm(y1)).

Let γm +µm = dm and h = −µ0 −µ1, then γ = d + h, where d = d0 + d1 is a superderivation and h ∶ A → C + Cω
is a linear mapping.

By Lemma 2.2 and the above result, we have

Corollary 3.5. Let A = A0 ⊕ A1 be a prime superalgebra with maximal right ring of quotients Q and extended
centroid C. Suppose that γ ∶ A → Q is a Lie n superderivation, n ≥ 2. If deg(A1) ≥ 2n + 5, then γ = d + h, where
d ∶ A → Q is a superderivation and h ∶ A → C + Cω is a linear mapping.

In particular, we get the following results, which will be used in the next section.

Theorem 3.6. Let Q = Q0 ⊕ Q1 be a unital superalgebra with center C = C0 ⊕ C1. Let A = A0 ⊕ A1 be a
superalgebra and a subalgebra of Q. Suppose that α ∶ A → Q is a Lie superderivation. If A is a 4-superfree
subset of Q, then α = d + h, where d ∶ A → Q is a superderivation and h ∶ A → C + Cω is a linear mapping.

Corollary 3.7. Let A = A0 ⊕ A1 be a prime superalgebra with maximal right ring of quotients Q and extended
centroid C. Suppose that α ∶ A → Q is a Lie superderivation. If deg(A1) ≥ 9, then α = d + h, where d ∶ A → Q is
a superderivation and h ∶ A → C + Cω is a linear mapping.
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Theorem 3.8. Let Q = Q0 ⊕ Q1 be a unital superalgebra with center C = C0 ⊕ C1. Let A = A0 ⊕ A1 be a
superalgebra and a subalgebra of Q. Suppose that β ∶ A → Q is a Lie triple superderivation. If A is a 5-superfree
subset of Q, then β = d + h, where d ∶ A → Q is a superderivation and h ∶ A → C + Cω is a linear mapping.

Corollary 3.9. Let A = A0 ⊕ A1 be a prime superalgebra with maximal right ring of quotients Q and extended
centroid C. Suppose that β ∶ A → Q is a Lie triple superderivation. If deg(A1) ≥ 11, then β = d + h, where
d ∶ A → Q is a superderivation and h ∶ A → C + Cω is a linear mapping.

4 Generalized Lie n superderivations of superalgebras
In the section, we describe the structure of generalized Lie n superderivations on a superalgebra.

De�nition 4.1. Let A be a superalgebra. For m ∈ {0, 1}, a Φ-linear mapping ηm ∶ A → A is called a generalized
Lie superderivation of degree m if ηm(Aj) ⊆ Am+j, j ∈ Z2, and

ηm([x, y]s) = ηm(x)y − (−1)∣x∣∣y∣ηm(y)x + (−1)m∣x∣xαm(y) − (−1)m∣y∣+∣x∣∣y∣yαm(x),

for all x, y ∈ A0 ∪ A1, where αm is a Lie superderivation of degree m on A. If η = η0 + η1, then η is called a
generalized Lie superderivation on A.

De�nition 4.2. Let A be a superalgebra. For m ∈ {0, 1}, aΦ-linear mapping θm ∶ A → A is called a generalized
Lie triple superderivation of degree m if θm(Aj) ⊆ Am+j, j ∈ Z2, and

θm([[x, y]s , z]s)=θm(x)yz − (−1)∣x∣∣y∣θm(y)xz − (−1)∣x∣∣z∣+∣y∣∣z∣θm(z)xy

+ (−1)∣x∣∣y∣+∣x∣∣z∣+∣y∣∣z∣θm(z)yx + (−1)m∣x∣xβm(y)z − (−1)m∣y∣+∣x∣∣y∣yβm(x)z

− (−1)m∣z∣+∣x∣∣z∣+∣y∣∣z∣zβm(x)y + (−1)m∣z∣+∣x∣∣y∣+∣y∣∣z∣+∣x∣∣z∣zβm(y)x

+ (−1)m∣x∣+m∣y∣xyβm(z) − (−1)m∣x∣+m∣y∣+∣x∣∣y∣yxβm(z)

− (−1)m∣x∣+m∣z∣+∣x∣∣z∣+∣y∣∣z∣zxβm(y) + (−1)m∣y∣+m∣z∣+∣x∣∣y∣+∣x∣∣z∣+∣y∣∣z∣zyβm(x),

for all x, y, z ∈ A0 ∪ A1, where βm is a Lie triple superderivation of degree m on A. If θ = θ0 + θ1, then θ is called
a generalized Lie triple superderivation on A.

According to the de�nition of Lie n superderivations, we give the de�nition of generalized Lie n superderiva-
tions.

De�nition 4.3. Let n ⩾ 2 be an integer. Let A be a superalgebra. For m ∈ {0, 1}, aΦ-linearmappingϑm ∶ A → A
is called a generalized Lie n superderivation of degree m if ϑm(Aj) ⊆ Am+j, j ∈ Z2, and

ϑm(pn(x1, x2, . . . , xn)) =
2n−1

∑
r=1

n
∑
l=1

Arτlρr(x1, x2, . . . , xn),

for all x1, x2, . . . , xn ∈ A0 ∪ A1, where
A1 = 1, A2i−2+1 = −(−1)∣xi ∣(∣x1∣+...+∣xi−1∣), i ∈ {2, 3, . . . , n},
A2i−2+j = A2i−2+1Aj, 2 ⩽ j ⩽ 2i−2,
ρ1(xk1 , xk2 , . . . , xkn) = (xk1 , xk2 , . . . , xkn),
ρ2i−2+1(xk1 , xk2 , . . . , xkn) = (xki , xk1 , . . . , xki−1, xki+1, . . . , xkn), i ∈ {2, 3, . . . , n},
ρ2i−2+j(xk1 , xk2 , . . . , xkn) = ρ2i−2+1ρj(xk1 , xk2 , . . . , xkn), 2 ⩽ j ⩽ 2i−2,
τ1(xt1 , xt2 , . . . , xtn) = ϑm(xt1)xt2 . . . xtn ,
τ2(xt1 , xt2 , . . . , xtn) = (−1)m∣xt1 ∣xt1γm(xt2) . . . xtn ,
τ3(xt1 , xt2 , . . . , xtn) = (−1)m(∣xt1 ∣+∣xt2 ∣)xt1xt2γm(xt3) . . . xtn ,
⋯
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τn(xt1 , xt2 , . . . , xtn) = (−1)m(∣xt1 ∣+...+∣xtn−1 ∣)xt1xt2 . . . γm(xtn),
γm is a Lie n superderivation of degree m on A.

That is, Ar = 1 or Ar = −1, and ρr is a permutable. If ϑ = ϑ0 + ϑ1, then ϑ is called a generalized Lie n
superderivation on A.

The expression of generalized Lie n superderivations is too complicated, so we will study the structure of
generalized Lie triple superderivations �rstly. In the samemanner we can get the structure of generalized Lie
n superderivations.

Theorem 4.4. Let Q = Q0 ⊕ Q1 be a unital superalgebra with center C = C0 ⊕ C1. Let A = A0 ⊕ A1 be a
superalgebra and a subalgebra of Q. Suppose that θ ∶ A → Q is a generalized Lie triple superderivation. If A is
a 5-superfree subset of Q, then θ = g + l, where g ∶ A → Q is a generalized superderivation and l ∶ A → C + Cω is
a linear mapping.

Proof. By the de�nition of generalized Lie triple superderivations, we assume that θm is a generalized Lie
triple superderivation of degree m and βm is a Lie triple superderivation of degree m, m ∈ {0, 1}. According
to (5) we have

[[aibj , ck]s , dl]s = [[ai , bjck]s , dl]s + (−1)ij+ik[[bj , ckai]s , dl]s , (12)

for all ai , bj , ck , dl ∈ A0 ∪ A1. Applying θm to (12), we get

0 =θm(aibj)ckdl − (−1)ik+jkθm(ck)aibjdl − (−1)il+jl+klθm(dl)aibjck
+ (−1)ik+jk+il+jl+klθm(dl)ckaibj + (−1)mi+mjaibjβm(ck)dl − (−1)mk+ik+jkckβm(aibj)dl
− (−1)ml+il+jl+kldlβm(aibj)ck + (−1)ml+ik+jk+il+jl+kldlβm(ck)aibj
+ (−1)mi+mj+mkaibjckβm(dl) − (−1)mi+mj+mk+ik+jkckaibjβm(dl)

−(−1)mi+mj+ml+il+jl+kldlaibjβm(ck)+(−1)mk+ml+ik+jk+il+jl+kldlckβm(aibj)−θm(ai)bjckdl
+ (−1)ij+ikθm(bjck)aidl + (−1)il+jl+klθm(dl)aibjck − (−1)ij+ik+il+jl+klθm(dl)bjckai
− (−1)miaiβm(bjck)dl + (−1)mj+mk+ij+ikbjckβm(ai)dl + (−1)ml+il+jl+kldlβm(ai)bjck
− (−1)ml+ij+ik+il+jl+kldlβm(bjck)ai − (−1)mi+mj+mkaibjckβm(dl)

+ (−1)mi+mj+mk+ij+ikbjckaiβm(dl) + (−1)mi+ml+il+jl+kldlaiβm(bjck)

−(−1)mj+mk+ml+ij+ik+il+jl+kldlbjckβm(ai)−(−1)ij+ik(θm(bj)ckaidl−(−1)jk+jiθm(ckai)bjdl
−(−1)il+jl+klθm(dl)bjckai+(−1)jk+ji+il+jl+klθm(dl)ckaibj−(−1)mk+mi+jk+jickaiβm(bj)dl
+(−1)mjbjβm(ckai)dl−(−1)ml+il+jl+kldlβm(bj)ckai+(−1)ml+jk+ji+il+jl+kldlβm(ckai)bj
+ (−1)mi+mj+mkbjckaiβm(dl) − (−1)mi+mj+mk+jk+jickaibjβm(dl)

− (−1)mj+ml+il+jl+kldlbjβm(ckai) + (−1)mi+mk+ml+jk+ji+il+jl+kldlckaiβm(bj)),
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for all ai , bj , ck , dl ∈ A0 ∪ A1. An easy computation shows that

0 =θm(aibj)ckdl − θm(ai)bjckdl − (−1)ik+jkθm(ck)aibjdl + (−1)ij+ik+jk+jiθm(ckai)bjdl
+ (−1)ij+ikθm(bjck)aidl − (−1)ij+ikθm(bj)ckaidl + (−1)mi+mjaibjβm(ck)dl
− (−1)miaiβm(bjck)dl + (−1)mj+mk+ij+ikbjckβm(ai)dl − (−1)mj+ij+ikbjβm(ckai)dl
−(−1)mk+ik+jkckβm(aibj)dl+(−1)mi+mk+ik+jkckaiβm(bj)dl−(−1)ml+il+jl+kldlβm(aibj)ck
+ (−1)ml+il+jl+kldlβm(ai)bjck − (−1)mi+mj+il+jl+ml+kldlaibjβm(ck)

+ (−1)mi+ml+il+jl+kldlaiβm(bjck) + (−1)ml+ik+jk+il+jl+kldlβm(ck)aibj
− (−1)ml+ik+jk+il+jl+kldlβm(ckai)bj + (−1)mk+ml+ik+jk+il+jl+kldlckβm(aibj)

− (−1)mi+mk+ml+ik+jk+kl+jl+ildlckaiβm(bj) − (−1)ml+ij+ik+il+jl+kldlβm(bjck)ai
+ (−1)ml+ij+ik+jl+kl+ikdlβm(bj)ckai − (−1)mj+mk+ml+ij+ik+jl+kl+ildlbjckβm(ai)

+ (−1)mj+ml+jl+kl+il+ij+ikdlbjβm(ckai),

(13)

for all ai , bj , ck , dl ∈ A0∪A1. By Theorem 3.8, we have βm(x) = dm(x)+hm(x), where dm is a superderivation
of degree m and hm ∶ A → C + Cω is a linear mapping. De�ne B ∶ A × A → Q by

B(x, y) = θm(xy) − θm(x)y − (−1)m∣x∣xdm(y),

for all x, y ∈ A0 ∪ A1. We can rewrite (13) as

B(ai , bj)ckdl + (−1)ij+ikB(bj , ck)aidl + (−1)ik+jkB(ck , ai)bjdl +∑λ
L
LL = 0,

where∑λLLL is a superquasi-polynomial. By A is a 5-superfree subset of Q, [16, Theorem 3.8] implies

B(x0, y0) = λ1x0y0 + λ′1y0x0 + µ1(x0)y0 + µ′1(y0)x0 + ν1(x0, y0);
B(x0, y1) = λ2x0y1 + λ′2y1x0 + µ2(x0)y1 + µ′2(y1)x0 + ν2(x0, y1);
B(x1, y0) = λ3x1y0 + λ′3y0x1 + µ3(x1)y0 + µ′3(y0)x1 + ν3(x1, y0);
B(x1, y1) = λ4x1y1 + λ′4y1x1 + µ4(x1)y1 + µ′4(y1)x1 + ν4(x1, y1),

(14)

where λk , λ′k ∈ Cm + Cmω, µk , µ′k ∶ Ai → Cm+i + Cm+iω, νk ∶ Ai × Aj → C + Cω, k ∈ {1, 2, 3, 4}, i, j ∈ {0, 1}.
By computing θm(xyz) in two di�erent ways, we have

B(xy, z) + B(x, y)z − B(x, yz) = 0, (15)

for all x, y, z ∈ A0 ∪ A1.
By substituting (14) into (15), we get

0 =λ1xyz + λ′1zxy + µ1(xy)z + µ′1(z)xy + ν1(xy, z)
+ λ1xyz + λ′1yxz + µ1(x)yz + µ′1(y)xz + ν1(x, y)z
− λ1xyz − λ′1yzx − µ1(x)yz − µ′1(yz)x − ν1(x, yz),

for all x, y, z ∈ A0;

0 =λ3xyz + λ′3zxy + µ3(xy)z + µ′3(z)xy + ν3(xy, z)
+ λ2xyz + λ′2yxz + µ2(x)yz + µ′2(y)xz + ν2(x, y)z
− λ2xyz − λ′2yzx − µ2(x)yz − µ′2(yz)x − ν2(x, yz),

for all x, z ∈ A0, y ∈ A1;

0 =λ4xyz + λ′4zxy + µ4(xy)z + µ′4(z)xy + ν4(xy, z)
+ λ2xyz + λ′2yxz + µ2(x)yz + µ′2(y)xz + ν2(x, y)z
− λ1xyz − λ′1yzx − µ1(x)yz − µ′1(yz)x − ν1(x, yz),
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for all x ∈ A0, y, z ∈ A1;

0 =λ4xyz + λ′4zxy + µ4(xy)z + µ′4(z)xy + ν4(xy, z)
+ λ3xyz + λ′3yxz + µ3(x)yz + µ′3(y)xz + ν3(x, y)z
− λ4xyz − λ′4yzx − µ4(x)yz − µ′4(yz)x − ν4(x, yz),

for all y ∈ A0, x, z ∈ A1;

0 =λ1xyz + λ′1zxy + µ1(xy)z + µ′1(z)xy + ν1(xy, z)
+ λ4xyz + λ′4yxz + µ4(x)yz + µ′4(y)xz + ν4(x, y)z
− λ4xyz − λ′4yzx − µ4(x)yz − µ′4(yz)x − ν4(x, yz),

for all z ∈ A0, x, y ∈ A1. By [16, Theorem 3.7], we have

λ1 = λ′1 = µ′1 = 0, µ1(x0y0) = −ν1(x0, y0);
λ3 = λ′3 = λ′2 = µ′3 = µ′2 = 0, µ3(x0y1) = −ν2(x0, y1);

λ4 = −λ2, λ′4 = µ′4 = 0, µ1(x0) = µ2(x0);
µ3(x1) = µ4(x1), µ4(x1y0) = −ν3(x1, y0);

µ1(x1y1) = −ν4(x1, y1).

By the de�nition of B, we have

B([[x0,w0], y0], z1) − B(z1, [[x0,w0], y0])
=θm([[[x0,w0], y0], z1]) − θm([[x0,w0], y0])z1 − [[x0,w0], y0]dm(z1)
+ θm(z1)[[x0,w0], y0] + (−1)mz1dm([[x0,w0], y0])

=θm([x0,w0])y0z1 − θm(y0)[x0,w0]z1 − θm(z1)[x0,w0]y0

+ θm(z1)y0[x0,w0] + [x0,w0]βm(y0)z1 − y0βm([x0,w0])z1

− (−1)mz1βm([x0,w0])y0 + (−1)mz1βm(y0)[x0,w0] + [x0,w0]y0βm(z1)
− y0[x0,w0]βm(z1) − (−1)mz1[x0,w0]βm(y0) + (−1)mz1y0βm([x0,w0])
− B([x0,w0], y0)z1 + B(y0, [x0,w0])z1 − θm([x0,w0])y0z1

− [x0,w0]dm(y0)z1 + θm(y0)[x0,w0]z1 + y0dm([x0,w0])z1

− [[x0,w0], y0]dm(z1) + θm(z1)[[x0,w0], y0] + (−1)mz1dm([[x0,w0], y0]),

for all x0, y0,w0 ∈ A0, z1 ∈ A1. Since the coe�cient of x0w0y0z1 is λ2, it follows from [16, Theorem 3.7] that
λ2 = 0 and λ4 = 0. Therefore,

B(x0, y0) = µ1(x0)y0 − µ1(x0y0);
B(x0, y1) = µ1(x0)y1 − µ4(x0y1);
B(x1, y0) = µ4(x1)y0 − µ4(x1y0);
B(x1, y1) = µ4(x1)y1 − µ1(x1y1).

(16)

Set

µm(x) =
⎧⎪⎪⎨⎪⎪⎩

µ1(x) x ∈ A0,
µ4(x) x ∈ A1.

It follows from (16) that θm(xy) + µm(xy) = θm(x)y + (−1)m∣x∣xdm(y) + µm(x)y, for all x, y ∈ A0 ∪ A1.
Let θm + µm = gm and l = −µ0 − µ1, then θ = g + l, where g = g0 + g1 is a generalized superderivation and

l ∶ A → C + Cω is a linear mapping.

By Lemma 2.2 and the above result, we have
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Corollary 4.5. Let A = A0 ⊕ A1 be a prime superalgebra with maximal right ring of quotients Q and extended
centroid C. Suppose that β ∶ A → Q is a generalized Lie triple superderivation. If deg(A1) ≥ 11, then β = g + l,
where g ∶ A → Q is a generalized superderivation and l ∶ A → C + Cω is a linear mapping.

According to the proof of Theorem 3.4 and Theorem 4.4, we have

Theorem 4.6. Let Q = Q0 ⊕ Q1 be a unital superalgebra with center C = C0 ⊕ C1. Let A = A0 ⊕ A1 be a
superalgebra and a subalgebra of Q. Suppose that ϑ ∶ A → Q is a generalized Lie n superderivation, n ≥ 2. If
A is an (n + 2)-superfree subset of Q, then ϑ = g + l, where g ∶ A → Q is a generalized superderivation and
l ∶ A → C + Cω is a linear mapping.

By Lemma 2.2 and the above result, we have

Corollary 4.7. Let A = A0 ⊕ A1 be a prime superalgebra with maximal right ring of quotients Q and extended
centroid C. Suppose that ϑ ∶ A → Q is a generalized Lie n superderivation, n ≥ 2. If deg(A1) ≥ 2n + 5, then
ϑ = g + l, where g ∶ A → Q is a generalized superderivation and l ∶ A → C + Cω is a linear mapping.

In particular, we have

Theorem 4.8. Let Q = Q0 ⊕ Q1 be a unital superalgebra with center C = C0 ⊕ C1. Let A = A0 ⊕ A1 be a
superalgebra and a subalgebra of Q. Suppose that η ∶ A → Q is a generalized Lie superderivation. If A is a
4-superfree subset of Q, then η = g + l, where g ∶ A → Q is a generalized superderivation and l ∶ A → C + Cω is
a linear mapping.

Corollary 4.9. Let A = A0 ⊕ A1 be a prime superalgebra with maximal right ring of quotients Q and extended
centroid C. Suppose that η ∶ A → Q is a generalized Lie superderivation. If deg(A1) ≥ 9, then η = g + l, where
g ∶ A → Q is a generalized superderivation and l ∶ A → C + Cω is a linear mapping.
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