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Abstract: We investigate the group irregularity strength (sg(G)) of graphs, i.e. the smallest value of s such that
taking any Abelian group G of order s, there exists a function f : E(G) — G such that the sums of edge labels
at every vertex are distinct. So far it was not known if s¢(G) is finite for disconnected graphs. In the paper
we present some upper bound for all graphs. Moreover we give the exact values and bounds on sg(G) for
disconnected graphs without a star as a component.
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1 Introduction

It is a well known fact that in any simple graph G there are at least two vertices of the same degree. The
situation changes if we consider an edge labeling f : E(G) — {1,...,s} and calculate weighted degree (or
weight) of each vertex x as the sum of labels of all the edges incident to x. The labeling f is called irregular if
the weighted degrees of all the vertices are distinct. The smallest value of s that allows some irregular labeling
is called irregularity strength of G and denoted by s(G).

The problem of finding s(G) was introduced by Chartrand et al. in [5] and investigated by numerous
authors [1, 2, 7, 14, 16]. Best published general result due to Kalkowski et al. (see [12]) is s(G) < 6n/s. It
was recently improved by Majerski and Przybyto ([15]) for dense graphs of sufficiently large order (s(G) <
(4+0(1))n/é + 4 in this case).

Fujie-Okamoto, Jones, Kolasinski and Zhang combined the concepts of graceful labeling and modular
edge coloring into labeling called a modular edge-graceful labeling ([8, 10, 11]). They defined the modular
edge-gracefulness of graphs as the smallest integer k(G) = k > n for which there exists an edge labeling
f: E(G) - Z such that the induced vertex labeling f’ : V(G) — Z; defined by

f'(uy="> f(uv) mod k

veN(u)

is one-to-one.

Assume G is an Abelian group of order m > n with the operation denoted by + and identity element 0.
For convenience we will write ka to denote a + a + ... + a (where element a appears k times), —a to denote
the inverse of a and we will use a - b instead of a + (—b). Moreover, the notation ¥, s a will be used as a
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short form for a; + a, + as +.. ., where a1, az, as, ... are all the elements of the set S. Recall that any group
element . € G of order 2 (i.e., ¢ # 0 such that 2. = 0) is called involution.

The order of an element a + 0 is the smallest r such that ra = 0. It is well-known by Lagrange Theorem
that r divides |G| [9]. Therefore every group of odd order has no involution.

We consider edge labeling f : E(G) — G leading us to the weighted degrees defined as the sums (in G):

w(v)= > f(uv)
veN(u)

The concept of G-irregular labeling is a generalization of modular edge-graceful labeling. In both cases the
labeling f is called G-irregular if all the weighted degrees are distinct. However, the group irregularity strength
of G, denoted sg(G), is the smallest integer s such that for every Abelian group G of order s there exists G-
irregular labeling f of G. Thus the following observation is true.

Observation 1.1 ([3]). For every graph G with no component of order less than 3, k(G) < s¢(G).

The following theorem, determining the value of sg(G) for every connected graph G of order n > 3, was
proved by Anholcer, Cichacz and Milanic [4].

Theorem 1.2 ([4]). Let G be an arbitrary connected graph of order n > 3. Then

n+2, ifG=K;3q_, forsomeintegerq>1,
Sg(G)=in+1, ifn=2mod4 A G # K 3241, for any integer g > 1,
n, otherwise.

In [10] it was proved in turn that for every connected graph G of order n > 3

n, if n # 2mod 4,
n+1, if n = 2mod 4.

k() {

In order to distinguish n vertices in arbitrary (not necessarily connected) graph we need at least n distinct
elements of G. However, n elements are not always enough, as the following lemma shows.

Lemma 1.3 ([3]). Let G be a graph of order n. If n = 2 mod 4, then there is no G-irregular labeling of G for any
Abelian group G of order n.

Anholcer and Cichacz considered the group irregularity strength of disconnected graphs in [3].

Theorem 1.4 ([3]). Let G be a graph of order n with no component of order less than 3 and with all the bipartite
components having both color classes of even order. Let s = n + 1 if n = 2mod 4 and s = n otherwise. Then:

sg(G) =n, ifn=1mod2,
sg(G) =n+1, if n=2mod4,
sg(G) <n+1,if n=0mod4.

Moreover, for every integer t > s there exists a G-irregular labeling of G for every Abelian group G of order t with
at most one involution ..

Theorem 1.5 ([3]). Let G be a graph of order n having neither component of order less than 3 nor a K1,2y+1
component for any integer u > 1. Then:

k(G) =n, if n=1mod?2,
k(G)=n+1,ifn=2mod4,
k(G)<n+1,ifn=0mod4.

Moreover, for every odd integer t > k(G) there exists a Z-irregular labeling of G.
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In this paper we give an upper bound for group irregularity strength of all graphs. Moreover, we give the exact
values and bounds on s, (G) for disconnected graphs with no star components.

2 Main results

The first natural question is whether the group irregularity strength is finite for arbitrary graph with no
components of order less than 3.

Theorem 2.1. Let G be a graph of order n having m components, none of which has order less than 3 and let p
be the smallest number greater than 2" that has all distinct primes in its factorization. Then s¢(G) < p.

Proof. Note that n < p. Since p has all distinct primes in its factorization, there exists only one (up to
isomorphism) Abelian group G of order p, namely G = Z,. If all the components of G have order 3 then we are
done by Theorem 1.5. Therefore, G has at least one component H such that |V (H)| > 4. Let F be a spanning
forest of G. Thus F has n — m edges eo, €1, .. . , en-m-1. Assume without loss of generality that eo € E(H). Let
f:E(G) — Zp be defined as follows

fe))=2"1 fori=1,2,...n-m-1,
f(e)=0, foree{eo} UE(G) E(F).

We have Zﬁ‘;ol 20 =2k 1 < 2k for any integer k. Therefore, the maximum weighted degree is smaller than
2"™=1 Moreover, the unique (additive) decomposition of any natural number into powers of 2 implies that
f is G-irregular. O

Awalkin a graph G = (V, E) is asequence X1, €1, X2, ..., Xj_1, €j_1, Vj, where v; € V, e; € E and e; = v;v;;1 for
all i. We call the number of vertices of a walk its length. Given any two vertices x; and x, that belong to the
same connected component of G, there exist walks from x; to x,. Some of them may consist of even number of
vertices (some of them being repetitions). We are going to call them even walks. The walks with odd number
of vertices will be called odd walks. We will always choose the shortest even or the shortest odd walk from x;
to x».

We start with 0 on all the edges of G. Then, in every step we will choose x; and x, and add some labels
to all the edges of chosen walk from x; to x,. To be more specific, we will add some element a of the group
to the labels of all the edges having odd position on the walk (starting from x;) and —a to the labels of all the
edges having even position. It is possible that some labels will be modified more than once, as the walk does
not need to be a path. We will denote such situation with ¢.(x1, x2) = a if we label the shortest even walk
and ¢, (x1, x2) = a if we label the shortest odd walk. Observe that putting ¢.(x1, x2) = a results in adding a
to the weighted degrees of both x; and x,, while ¢, (x1, x2) = a means adding a to the weighted degree of x;
and —a to the weighted degree of x,. In both cases the operation does not change the weighted degree of any
other vertex of the walk. Note that if some component G; of G is not bipartite, then for any vertices x1, x2 € G1
there exist both even and odd walks.

We are going to use the following theorem, proved in [17].

Theorem 2.2 ([17]). Lets = r1+1,+...+1q be apartition of the positive integer s, wherer; > 2 fori=1,2,...,q.
Let G be an Abelian group of order s + 1. Then the set G ~ {0} can be partitioned into pairwise disjoint subsets
A1, Ay, ..., Aq such that for every 1 < i < q, |Aj| = r; with 3,4, a = 0 if and only if |G| is odd or G contains
exactly three involutions.

From the above Theorem 2.2 we easily obtain the following observation:

Observation 2.3. Let s = r1 + 12 + ... + rq be a partition of the positive odd integer s, where r; > 2 fori =
2,3,...,q.Let G be an Abelian group of order s. Then the set G can be partitioned into pairwise disjoint subsets
A1,As,...,Aqsuch that forevery 1 <i < q,|A;| = r; with Y agea, a=0. O
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Using similar method as in the proof of Theorem 1.5 (see Lemma 2.5 from [3], using the result on zero sum
partition of cyclic groups from [13]), we can obtain the following lemma.

Lemma 2.4. Let G be a graph of order n having no K1,, components for any integer u > 0. Then for every odd
integer t > n and for every Abelian group G such that |G| = t, there exists a G-irregular labeling.

Proof. We are going to divide the vertices of G into triples and pairs. Let p; be the number of bipartite
components of G with both color classes odd, p, with both classes even and p; with one class odd and
one even. Let p, be the number of remaining components of odd order and ps - the number of remaining
components of even order. The number of triples equals to 2p; + p3 + p4. The remaining vertices form the
pairs.

By Observation 2.3, the elements of G can be partitioned into 21 + 1 triples B1, Bz, ..., By;.1 and m pairs
C1,C2,...,Cm, wherel = [(2p1 +p3+p4)/2|and m = (t-61-3)/2,such that ¥,z x =0fori=1,...,21+1
andzxecl_x:oforj: 1,...,m.Observethat >0, m>0and 21+ 1 > 2p; + p3 + ps.

Let B; = {aj, bi, c;} fori=1,2,...,2l+1andlet C; = {d;, -d;} forj = 1, ..., m. Itis easy to observe that
for a given element g € G not belonging to any triple, we have (g, -g) = C; for some j.

Let us start the labeling. For both vertices and labels, we are numbering the pairs and triples consecu-
tively, in the same order as they appear in the labeling algorithm described below, every time using the lowest
index that has not been used so far (independently for the lists of couples and triples).

Given any bipartite component G with both color classes even, we divide the vertices of every color class
into pairs (x}, x; ), putting

¢0(X]'1’X]'2) = dj

for every such pair. We proceed in similar way in the case of all the non-bipartite components of even order,
coupling the vertices of every such component in any way.

If both color classes of a bipartite component are of odd order, then they both have at least 3 vertices. We
choose three of them, denoted with x;, y; and z;, in one class and another three, xj,1, yj1 and zj.1, in another
one and we put

¢e(Xj, Zj+l) = aj,
®e(¥j» zj+1) = bj,
de(2j, Zj+1) = Cj,
Pe(Xjr1,2)) = @js1,
be(Vj+152j) = bjs1,
Pe(Zj+1, Zj) = Cjsa-
We proceed with the remaining vertices of these components as in the case when both color classes are even.
In the case of non-bipartite components of odd order we choose three vertices. We put

be(X;, 2j) = aj,
de(¥)» 2j) = by,
e(2)> 2j) = ¢j-

Finally, for bipartite components of odd order we choose four vertices x;, y;, zj and v (v belongs to the even
color class and three other vertices to the odd one). We put

de(Xj,v) = aj,
be(yj»v) = by,
be(zj, V) = ¢j.

The labeling defined above is G-irregular. Indeed, in the j triple of vertices the weights are equal to w(x;) =
aj, w(y;) = bjand w(z;) = ¢; and in the j pair we have w(x; ) = d; and w(x}) = -d;. Eventually, at least one
of the triples of labels remains unused. O

The following theorem easily follows from the above Lemmas 1.3 and 2.4.
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Theorem 2.5. Let G be a graph of order n having no K1,, components for any integer u > 0. Then:

sg(G) =n, if n=1mod 2,
sg(G)=n+1, if n=2mod4,
Sg(G) <n+1,ifn=0mod4.

We will consider now some families of disconnected graphs of order n = 0 mod 4 for which sg(G) = n.

Proposition 2.6. Let G be a graph of order n = 4 mod 8 with no component of order less than 3 and with all
the bipartite components having both color classes of even order. Then sg(G) = n.

Proof. Let G be an Abelian group of order n. Since the order of G is even there is at least one involution in G. If
there is exactly one involution, then we are done by Theorem 1.4. Thus we can assume that G has more than
one involution. Observe that n = 2%(2a + 1) for some integer o, therefore by fundamental theorem of finite
Abelian groups we obtain that G has exactly three involutions ¢1, ¢2, t3.

Let p1 be the number of components of odd order, p, be the number of components of even order.

Assume first p, > 0. Then there exists a component H of even order |H| > 4. Note that there exist vertices
u,v,x,y € V(H) such that there is an odd walk from u to x, an even walk from u to v and an even walk from u
to y (if H is bipartite, we take u and x from one color class and v and y from another, what is always possible,
since in this case H both color classes have even order). By Theorem 2.2, the set of the elements of G \ {0}
has partition into p; + 1 triples B1, Ba, ..., Bp,+1 and m pairs C1, C2, ..., Cm wherem = (n-3p1 - 4)/2 >0
such that 3, p x =0fori=1,...,p1 +1and erc,»x =0forj=1,...,m.Let By, 11 = {ap,+1, bp,+1, Cp,+1}>
without loss of generality we can assume that ap, +1 = ¢1. Put

$o(U, X) = Ap,+1,
de(U, V) = bp, 41,
¢e(U,¥) = Cpy+1-

Note that we obtain now w(u) = 0, w(x) = —u1 = t1, w(V) = bp,+1 and w(y) = cp,+1. We proceed with the
remaining vertices in the same way as in the proof of Lemma 2.4 (we divide V(G) \ {x,y, u, v} into triples
and pairs).

If p, = 0 then by Theorem 2.2, the set of the elements of G \ {0} has partition into triples B1, B,, ..., Bp,-1
and m pairs Cy, C2,...,Cn where m = (n-3p; +2)/2 > Osuch that ;. x = 0fori=1,...,p1 - 1and
Yxec;Xx = Oforanyj = 1,...,m. We set B, = C U {0} and proceed in the same way as in the proof of
Lemma 2.4. O

For n = Omod 8 we have the following result, unfortunately with a stronger assumption on non-bipartite
components:

Theorem 2.7. Let G be a disconnected graph of order n with all components of order divisible by 4 and all the
bipartite components having both color classes of even order. Then sg(G) = n.

Proof. Let G be an Abelian group of order n. Note that n = Omod 4. Since the order of G is even there is
at least one involution in G, thus by Theorem 1.4 we can assume that G has the set of involutions I* =
{Ll, L2yenny LZP—l} for somep > 2.

Obviously, I = I* u {0} is a subgroup of G. Note that I" = {0, t1, t2, ¢t1 + t2} is a subgroup of I as well as
a subgroup of G. If p = 2 then we define B1 = I'. If p > 3, then there exists a coset decomposition of I into
ar+Iyay+T,...,aps +forajel,j=1,2,...,2° 2. SetBj = aj + I'forj = 1,2,...,2>. Obviously,
Y beB; b = 0 and, moreover, forany b € Bjwehave-b=bforj=1,2,..., 2P73,

Note that the remaining elements of G i.e. the elements of G \ I can be divided into quadruples of four
distinct elements B; = {g},-g},g7, g/} forj = 2" + 1,27 + 2,...,(G|/4, none of which being an
involution.
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Let B; = {b},b},b;,b}} and b} ¢ {b},-b}} forj = 1,2,...,|G|/4. Let us start the labeling. Given any
bipartlte component G with both color classes even, we divide the vertices of the component into quadruples
(x x x x“) such that, x x are in the same color class, and x x are in the same color class (possibly
the same as x] ,x but not necessarlly) We proceed in a sumlar way in the case of all the non-bipartite
components. We are numbering the quadruplets consecutively, starting with 1.

If there is an involution in B; then set
¢o(X}, %) = b;,
de(x},X;) = bj,
¢e(xj1,x;‘) = bf.
Observe that in that case w(xj) = bf + b} + b} = -b} = b}, w(x}) = -bj = b}, w(x}) = b and w(x}) = b}. If
there is no involution in B; then let

¢0( » Xj 7) = b )
‘1’0( j? 14) b13'
Note that we obtain now w(x}) = -w(x}) = bj, w(x}) = -w(x}) = b;. O

The lexicographic product or graph composition G o H of graphs G and H is a graph such that the vertex set
of G o H is the Cartesian product V(G) x V(H) and any two vertices (u, v) and (x, y) are adjacent in G o H if
and only if either u is adjacent with x in G or u = x and v is adjacent with y in H. Note that Go H and H o G
are not isomorphic in general. One can imagine obtaining G o H by blowing up each vertex of G into a copy
of H. For instance IK2;,2r = IK> 0 Koy,

One can easily see that if H has no isolated vertices and F is a graph of order divisible by 4, then sg(HoF) =
|H|- |F| by the above Theorem 2.7. Observe also that if H has all components of even order then for G = Ho K,
we have s¢(G) = 2r|H| for any r > 1. One could ask if we need the assumption on the order of components of
H. Before we proceed we will need the following result:

Theorem 2.8 ([6]). Let s = qr, where r > 3 and G be an Abelian group of order s such that the number of
involutions in G is not one. Then the set G can be partitioned into pairwise disjoint subsets A1, As, ..., Aq such
that for every 1 <i< g, |Ai| = r with ¥ 4.4, a = 0.

Observation 2.9. Let H be a graph of order n with no isolated vertices. If G =~ H o K,, for some positive integer
r>2,thensg(G) = 2rn forrn even and sg(G) = 2rn + 1 otherwise.

Proof. Obviously, G is a graph of order 2nr with no component of order less than 3 and with all the bipartite
components having both color classes of even order. If nr is odd, then 2nr = 2mod 4, hence s¢(G) = 2rn + 1
by Theorem 1.4. Therefore, we can assume that 2nr = 0 mod 4. Let G be an Abelian group of order 2nr. Since
the order of G is even there is at least one involution in G, therefore we can assume that G has more than one
involution by Theorem 1.4. The set of the elements of G has a partition into sets A1, A2, ..., A, of order 2r
such that 3,4, x = 0 by Theorem 2.8.

LetA; = {a},a?,...,a?"} fori=1,2, ..., n. Denote the vertices of G corresponding to a vertex x; ¢ V(H)
by xi,x?,...,x?. Lety € Ny(x;), then y* ¢ N(x’l:) forj=1,2,...,2r Set ¢e(x§,y1) = al': forj=1,2,...,2r.
One can check that the weighted degrees of all the vertices are distinct. O

Using the same method as in the proof of Observation 2.9 we have the following result.

Observation 2.10. Let H be a graph of order n with no isolated vertices and with all the bipartite components
having both color classes of even order. If G = H o Ky,.1 for some positive integer r > 2 , then sg(G) = (2r+ 1)n
forn#2mod 4 and sg(G) = (2r + 1)n + 1 otherwise. O

We will finish this section by posting the following conjecture.

Conjecture 2.11. Let G be a graph of order n having no K1,, components for any integer u > 0. Then sg(G) = n
ifn#2 (mod 4) and sg(G) = n + 1 otherwise.
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