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Abstract: In this paper, we attempt to cope with states in a universal algebraic setting, that is, introduce a
notion of generalized state map from a pseudo equality algebra X to an arbitrary pseudo equality algebra Y.
We give two types of special generalized state maps, namely, generalized states and generalized internal
states. Also, we study two types of states, namely, Bosbach states and Riečan states. Finally, we discuss the
relations among generalized state maps, states and internal states (or state operators) on pseudo equality
algebras. We verify the results that generalized internal states are the generalization of internal states, and
generalized states are the generalization of state-morphisms on pseudo equality algebras. Furthermore, we
obtain that generalized states are the generalization of Bosbach states and Riečan states on linearly ordered
and involutive pseudo equality algebras, respectively. Hence we can come to the conclusion that, in a sense,
generalized state maps can be viewed as a possible united framework of the states and the internal states,
the state-morphisms and the internal state-morphisms on pseudo equality algebras.
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1 Introduction
Logical algebras are the corresponding algebraic semantics with all sorts of propositional calculus, which are
the algebraic foundations of reasoning mechanism of many �elds such as computer sciences, information
sciences, cybernetics, arti�cial intelligence and so on. EQ-algebra is a new class of logical algebra which was
proposed by Novák in [1], which generalizes the residuated lattice. One of the motivations is to introduce
a special algebra as the correspondence of truth values for high-order fuzzy type theory (FTT). Another
motivation is from the equational style of proof in logic. It has three connectives: meet ∧, product ⊗ and
fuzzy equality ∼. The product in EQ-algebras is quite loose which can be replaced by any other smaller
binary operation, but still obtains an EQ-algebra. Based on the above reasons, Jenei [2] introduced equality
algebras in 2012 similar to EQ-algebras but without a product, and the author proved the term equivalence
of equivalential equality algebras to BCK-meet-semilattice. Then in 2014, Jenei introduced pseudo equality
algebras in [3] in order to �nd a connection with pseudo BCK-algebras. About BCK/pseudo-BCK algebras and
their application, one can see [4-7]. Recently, Dvurečenskij found the fact that every pseudo equality algebra
in the Jenei’s version is an equality algebra and so presents the new revision of pseudo equality algebras in
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[8]. It generalizes equality algebras and seems to be more reasonable as a candidate for a possible algebraic
semantics of fuzzy type theory than the Jenei’s version.

The notion of states onMV-algebraswas introduced byMundici [9] in 1995with the intent of capturing the
notion of average degree of truth of a proposition in Łukasiewicz logic, and so the states have been used as a
semantical interpretation of the probability of fuzzy events a. That is, if s is a state and a is a fuzzy event, then
s(a) is presented as the average of the appearance of the event a. Di�erent approaches to the generalization
mainly gave rise to two di�erent notions, namely, Bosbach states and Riečan states. Hence it is meaningful
to extend the notion of states to other algebraic structures and their noncommutative cases [4,10-14]. For
example, Liu Lianzhen studied the existence of Bosbach states and Riečan states on �nite monoidal t-norm
based algebras (MTL-algebra for short) in [11]. Some examples show that there exist MTL-algebras having
no Bosbach states and Riečan states. It is well known that in many cases the evaluation of truth degree of
sentences is made in an abstract structure, and not in the standard algebra [0, 1] (see [15]). For this reason it
is interesting to de�ne a probability with values in an abstract algebra. In this case, Flaminio and Montagna
[16] were the �rst to present a uni�ed approach to states and probabilistic many-valued logic in a logical and
algebraic setting. They added a unary operation, called internal state (or state operator) to the language of
MV-algebras which preserves the usual properties of states. Correspondingly, the pair (M, σ) is called a state
MV-algebra. From the viewpoint of probability, if a is a fuzzy event, then the internal state Pr(a) is presented
as truth value of appearing a. Amore powerful type of logic can be given by algebraic structures with internal
states, and they also constitute the varieties of universal algebras. Consequently, the internal states have been
extended and intensively studied in other algebraic structures [17-19], etc. Recently, the notions of internal
states have been applied to algebraic structures of higher order fuzzy logic, for example, equality algebras [20]
and pseudo equality algebra [21] where one of the main results is about the relevance with the corresponding
state BCK/pseudo-BCK meet-semilatices. Also we observe that there exist some interesting �elds of states on
pseudo equality algebras, which can be investigated including state-morphisms andRiečan states, etc. Based
on the above research results, indeed, it is meaningful using internal states to extend the concepts of states of
algebraic structures, instead of the real unit interval [0, 1], to a more universal algebraic setting. This is our
motivation to introduce and study generalized state maps and revelent states on pseudo equality algebras in
this paper.

This paper is organized as follows: In Section 2, we recalls some basic notions and results which will
be used later in the paper. In Section 3, we introduce the notion of generalized state maps (or simply, GS-
map) including two special classes, namely, G-states and GI-states on pseudo equality algebras. Moreover,
we give some examples and investigate basic properties of them. In Section 4, we mainly study the Bosbach
states, Riečan states and state-morphisms on pseudo equality algebras and discuss relations between them.
In Section 5, we emphasis on the relevances between generalized state maps, states and internal states on
pseudo equality algebras and get some important results.

2 Preliminaries
In this section, we recollect some de�nitions and results which will be used in the following.

De�nition 2.1 ([2]). An equality algebra is an algebra (E;∼,∧, 1) of type (2, 2, 0) such that for all x, y, z ∈ X:
(E1) (E,∧, 1) is a meet-semilattice with top element 1;
(E2) x ∼ y = y ∼ x;
(E3) x ∼ x = 1;
(E4) x ∼ 1 = x;
(E5) x ≤ y ≤ z implies x ∼ z ≤ y ∼ z and x ∼ z ≤ x ∼ y;
(E6) x ∼ y ≤ (x ∧ z) ∼ (y ∧ z);
(E7) x ∼ y ≤ (x ∼ z) ∼ (y ∼ z).
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In any equality algebra (E;∼,∧, 1), de�nes the operation→ by x → y ∶= (x ∧ y) ∼ x for all x, y ∈ E.

De�nition 2.2 ([20]). Let (X;∼,∧, 1) be an equality algebra. A subset D containing 1 of X is called a deductive
system of X if for all x, y ∈ X:
(1) x ∈ D and x ≤ y imply y ∈ D;
(2) x ∈ D and y ∼ x ∈ D imply y ∈ D.

De�nition 2.3 ([8]). A pseudo equality algebra is an algebra (X;∼, ∽,∧, 1) of type (2, 2, 2, 0) such that for all
x, y, z, t ∈ X:
(X1) (X;∧, 1) is a meet-semilattice with top element 1;
(X2) x ∼ x = 1 = x ∽ x;
(X3) x ∼ 1 = x = 1 ∽ x;
(X4) x ≤ y ≤ z implies x ∼ z ≤ y ∼ z, x ∼ z ≤ x ∼ y, z ∽ x ≤ z ∽ y and z ∽ x ≤ y ∽ x;
(X5) x ∼ y ≤ (x ∧ z) ∼ (y ∧ z) and x ∽ y ≤ (x ∧ z) ∽ (y ∧ z);
(X6) x ∼ y ≤ (z ∼ x) ∽ (z ∼ y) and x ∽ y ≤ (x ∽ z) ∼ (y ∽ z);
(X7) x ∼ y ≤ (x ∼ z) ∼ (y ∼ z) and x ∽ y ≤ (z ∽ x) ∽ (z ∽ y).

In any pseudo equality algebra (X;∼, ∽,∧, 1), de�ne two derived binary operations → and ↝ by x → y ∶=
(x∧ y) ∼ x and x ↝ y ∶= x ∽ (x∧ y) for all x, y ∈ X, respectively. Note that when ∼=∽ a pseudo equality algebra
is an equality algebra.

Proposition 2.4 ([8]). In any pseudo equality algebra (X;∼, ∽,∧, 1), the following properties hold for all
x, y, z ∈ X:
(1) z ≤ x implies x → y ≤ z → y and x ↝ y ≤ z ↝ y;
(2) x ≤ ((y ∼ x) ∽ y) ∧ (y ∼ (x ∽ y));
(3) x ≤ y i� x → y = 1 i� x ↝ y = 1;
(4) x ↝ 1 = x ↝ x = x → x = x → 1 = 1, 1↝ x = x and 1→ x = x;
(5) x ≤ (y → x) ∧ (y ↝ x);
(6) x ≤ ((x → y) ↝ y) ∧ ((x ↝ y) → y);
(7) x → y ≤ (y → z) ↝ (x → z) and x ↝ y ≤ (y ↝ z) → (x ↝ z);
(8) x → (y ↝ z) = y ↝ (x → z);
(9) x → y = x → (x ∧ y) and x ↝ y = x ↝ (x ∧ y);
(10) x ≤ y implies y → x = x ∼ y and y ↝ x = y ∽ x.

Lemma 2.5 ([21]). Let (X;∼, ∽,∧, 1) be a pseudo equality algebra. Then the following hold for all x, y, z ∈ X:
(1) y ∼ (((x ∧ y) ∼ x) ∽ y = x ∧ y ∼ x;
(2) (y ∼ (x ∽ x ∧ y)) ∽ y = x ∽ x ∧ y.

A pseudo equality algebra (X;∼, ∽,∧, 1) is called bounded if it has bottom element 0. In this case, we de�ne
two negations − and ∼ by x− ∶= x → 0 and x∼ ∶= x ↝ 0 for all x ∈ X. Clearly, x− = 0 ∼ x and x∼ = x ∽ 0.

Proposition 2.6 ([21]). In any bounded pseudo equality algebra (X;∼, ∽,∧, 0, 1), the following properties hold
for all x, y, z ∈ X:
(1) 1− = 0 = 1∼ and 0− = 1 = 0∼;
(2) 1−∼ = 1 = 1∼− and 0−∼ = 1 = 0∼−;
(3) x ≤ x−∼ and x ≤ x∼−;
(4) x−∼− = x− and x∼−∼ = x∼;
(5) x ≤ y implies y− ≤ x− and y∼ ≤ x∼;
(6) x → y∼ = y ↝ x− and x ↝ y− = y → x∼;
(7) x∼ → y−∼ = y− ↝ x∼−;
(8) x → y−∼ = y− ↝ x− and x ↝ y∼− = y∼ → x∼;
(9) x → y∼ = y∼− ↝ x− and x ↝ y− = y−∼ → x∼.
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De�nition 2.7 ([8]). Let (X;∼, ∽,∧, 1) be a pseudo equality algebra. A subset D containing 1 of X is called a
(→,↝) deductive system of X if for all x, y ∈ X, x ∈ D and x → y ∈ D imply y ∈ D.

Note that in any pseudo equality algebra (X;∼, ∽,∧, 1), (∼, ∽) deductive systems and (→,↝) deductive
systems are equivalent, so we call them deductive systems.

Remark 2.8. Assume that ([0, 1],⊕,− , 0) is a standard MV-algebra. Then ([0, 1],→R , 0, 1) is a bounded
commutative BCK-algebra, where→R is the Łukasiewicz implication de�ned by x →R y = x− ⊕ y = min{1, 1 −
x+y}. Furthermore, ([0, 1],→R ,∧R , 0, 1) is a BCK-meet-semilattice. According to Theorem 2.3 of [2], ([0, 1];∼R
,∧R , 1) is an equality algebra, where x ∼R y = (x →R y) ∧R (y →R x) = 1− ∣ x − y ∣.

The following are some notions and results about pseudo-hoops.

De�nition 2.9 ([22]). A pseudo-hoop is an algebra (H;⊙,→,↝, 1) of type (2, 2, 2, 0) such that for all x, y, z ∈
H:
(H1) x ⊙ 1 = x = 1⊙ x;
(H2) x → x = 1 = x ↝ x;
(H3) (x ⊙ y) → z = x → (y → z);
(H4) (x ⊙ y) ↝ z = x ↝ (y ↝ z);
(H5) (x → y) ⊙ x = (y → x) ⊙ y = x ⊙ (x ↝ y) = y ⊙ (y ↝ x).

Lemma 2.10 ([22]). Let (H;⊙,→,↝, 1) be a pseudo-hoop. Then for all x, y, z ∈ H:
(1) (X;≤) is a meet-semilattice with x ∧ y = (x → y) ⊙ x = x ⊙ (x ↝ y);
(2) x ≤ y → x and x ≤ y ↝ x;
(3) x → y ∧ z = (x → y) ∧ (x → z) and x ↝ y ∧ z = (x ↝ y) ∧ (x ↝ z);
(4) x ≤ y implies (x → y) ↝ y = y and (x ↝ y) → y = y.

Lemma 2.11. Let (H;⊙,→,↝, 1) be a pseudo-hoop. Then for all x, y ∈ H, x → y ∧ x = x → y and x ↝ y ∧ x =
x ↝ y.

Proof. By replacing z by x in Lemma 2.10 (3).

De�nition 2.12 ([22]). A state pseudo-hoop is a structure (H, σ) = (H;∼, ∽,∧, σ, 0, 1), where (H;∼, ∽,∧, 0, 1)
is a bounded pseudo-hoop and σ ∶ H → H is a unary operator on H, called state operator (or internal state),
satisfying the following conditions for all x, y ∈ H:
(SH0) σ(0) = 0;
(SH1) σ(x → y) = σ(x) → σ(x ∧ y) and σ(x ↝ y) = σ(x) ↝ σ(x ∧ y);
(SH2) σ(x ⊙ y) = σ(x) ⊙ σ(x ↝ x ⊙ y) = σ(y → x ⊙ y) ⊙ σ(y);
(SH3) σ(σ(x) ⊙ σ(y)) = σ(x) ⊙ σ(y);
(SH4) σ(µ(x) → σ(y)) = σ(x) → σ(y) and σ(σ(x) ↝ σ(y)) = σ(x) ↝ σ(y).

Note that it follows that x ≤ y implies σ(x) ≤ σ(y) for all x, y ∈ H in any state pseudo-hoop (H, σ).

3 Generalized state maps on pseudo equality algebras
In this section, we introduce a new notion of generalized state map by extending the domain X of a state
operator to a more universal setting Y. Moreover, according to the structure of Y, we give two special types of
generalized state maps, that is, generalized states and generalized internal states.

De�nition 3.1. Let (X;∼1, ∽1,∧1, 11)and (Y;∼2, ∽2,∧2, 12)be twopseudo equality algebras. Amapµ ∶ X → Y
is called a generalized state map from X to Y (or brie�y, GS-map) if it satis�es the following conditions for all
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x, y ∈ X:
(GSX1) µ(x) ≤2 µ(y), whenever x ≤1 y;
(GSX2) µ((x ∧1 y) ∼1 x) = µ(y) ∼2 µ(((x ∧1 y) ∼1 x) ∽1 y) and µ(x ∽1 (x ∧1 y)) = µ(y ∼1 (x ∽1 (x ∧1 y))) ∽2

µ(y);
(GSX3) µ(x) ∼2 µ(y) ∈ µ(X) and µ(x) ∽2 µ(y) ∈ µ(X);
(GSX4) µ(x) ∧2 µ(y) ∈ µ(X).
Moreover, we give two special types of generalized state maps from X to Y.
(1) If Y = ([0, 1];∼R , ∽R ,∧R , 1), then µ is called a generalized state (or brie�y, G-state) from X to [0, 1];
(2) If Y = X, then µ is called a generalized internal state (or brie�y, GI-state) from X to X.

Example 3.2. Let (X;∼1, ∽1,∧1, 11) and (Y;∼2, ∽2,∧2, 12) be two pseudo equality algebras. De�ne a map
µ ∶ X → Y by µ(x) = 12 for all x ∈ X, then µ is a GS-map from X to Y, in this case, µ is called trivial.

Example 3.3. Let X = {01, a1, b1, c1, 11} and Y = {02, a2, b2, 12} in which the order of elements in X and Y
are as the following Hasse diagrams, respectively:
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�
�

02

a2 b2

12

And the operations ∼1, ∽1 on X and ∼2, ∽2 on Y may be given as follows, respectively.

∼1 01 a1 b1 c1 11
01 11 b1 01 b1 01
a1 11 11 c1 b1 a1
b1 11 11 11 b1 b1
c1 11 11 c1 11 c1
11 11 11 11 11 11

∽1 01 a1 b1 c1 11
01 11 11 11 11 11
a1 c1 11 11 11 11
b1 c1 c1 11 c1 11
c1 01 b1 b1 11 11
11 01 a1 b1 c1 11

∼2 02 a2 b2 12
02 12 b2 a2 02
a2 b2 12 b2 a2
b2 a2 b2 12 b2
12 02 a2 b2 12

∽2 02 a2 b2 12
02 12 b2 12 b2
a2 b2 12 b2 a2
b2 b2 b2 12 b2
12 02 a2 b2 12

Then (X;∼1, ∽1,∧1, 11) and (Y;∼2, ∽2,∧2, 12) are two pseudo equality algebras. Let the map µ ∶ X → Y be a
GS-map from X to Y. Taking x = a, y = 0 in (GSX2), we get that µ(b1) = µ(01) ∼2 µ(b1) and µ(b1) = 12. This
shows that there doesn’t exists any nontrivial GS-map from X to Y.

Example 3.4. Let X = {01, a1, b1, 11} with 01 < a1 < b1 < 11 and Y = {02, a2, b2, 12} be given by Example
3.3. De�ne the operations ∼1, ∽1 on X as follows:
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∼1 01 a1 b1 11
01 11 a1 a1 01
a1 11 11 a1 a1
b1 11 11 11 b1
11 11 11 11 11

∽1 01 a1 b1 11
01 11 11 11 11
a1 b1 11 11 11
b1 01 a1 11 11
11 01 a1 b1 11

Then (X;∼1, ∽1,∧1, 11) is a pseudo equality algebra. We de�ne a map µ ∶ X → Y by µ(01) = µ(a1) =

a2, µ(b1) = µ(11) = 12. One can check that µ is a GS-map from X to Y.

Example 3.5. Let X = {01, a1, b1, c1, 11} with 01 < a1 < b1 < c1 < 11 and Y = {02, a2, b2, 12} be given by
Example 3.3. De�ne the operations ∼1, ∽1 as follows:

∼1 01 a1 b1 c1 11
01 11 01 01 01 01
a1 11 11 b1 b1 a1
b1 11 11 11 b1 b1
c1 11 11 11 11 c1
11 11 11 11 11 11

∽1 01 a1 b1 c1 11
01 11 11 11 11 11
a1 01 11 11 11 11
b1 01 c1 11 11 11
c1 01 a1 b1 11 11
11 01 a1 b1 c1 11

Then (X;∼1, ∽1,∧1, 11) is a pseudo equality algebra. One can check that the map µ ∶ X → Y de�ned by µ(01) =

02, µ(a1) = µ(b1) = µ(c1) = µ(11) = 12 is a GS-map from X to Y.

Example 3.6. Let (X;∼1, ∽1,∧1, 11) be a pseudo equality given in Example 3.4. De�ne a map µ ∶ X → [0, 1]
by µ(01) = 0, µ(a1) = µ(b1) = 0.5, µ(11) = 1. Then one can check that µ is a G-state from (X;∼1, ∽1,∧1, 11)

to ([0, 1];∼R ,∧R , 1).

Example 3.7. Let X = {0, a, b, 1} in which the Hasse diagram and the operations ∼, ∽ on X are as follows:
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�

0

a b

1

∼ 0 a b 1
0 1 b a 0
a 1 1 a a
b 1 b 1 b
1 1 1 1 1

∽ 0 a b 1
0 1 1 1 1
a b 1 a 1
b a a 1 1
1 0 a b 1

Then (X;∼, ∽,∧, 1) is a pseudo equality algebra. De�ne a map µ ∶ X → X by µ(0) = µ(a) = b, µ(b) = µ(1) = 1.
One can check that µ is a GI-state from X to X.

Proposition 3.8. Let (X;∼1, ∽1,∧1, 11) and (Y;∼2, ∽2,∧2, 12) be two pseudo equality algebras, and µ be a
GS-map from X to Y. Then for all x, y ∈ X, the following axioms hold:
(G1) µ(11) = 12;
(G2) µ(x) →2 µ(y) ∈ µ(X) and µ(x) ↝2 µ(y) ∈ µ(X);
(G3) µ(X) is a subalgebra of Y;
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(G4) µ(x ∧1 y) ≤2 µ(x) ∧2 µ(y);
(G5) y ≤1 x implies µ(y) ∼2 µ(x) = µ(x) →2 µ(y), µ(x) ∽2 µ(y) = µ(x) ↝2 µ(y);
(G6) y ≤1 x implies µ(y ∼1 x) ≤2 µ(y) ∼2 µ(x) and µ(x ∽1 y) ≤2 µ(x) ∽2 µ(y);
(G7) x, y comparable implies µ(x →1 y) ≤2 µ(x) →2 µ(y) and µ(x ↝1 y) ≤2 µ(x) ↝2 µ(y);
(G8) Ker(µ) ∶= {x ∈ X ∶ µ(x) = 12} is a deductive system of X.

Proof. (G1) By taking x = y = 11 in (GSX2).
(G2)(G3) Evident by (GSX3) and (GSX4).
(G4) By (GSX1) and x ∧1 y ≤1 x, y.
(G5) Let y ≤1 x. Then µ(y) ≤2 µ(x). Hence by Proposition 2.4, we have µ(y) ∼2 µ(x) = µ(x) →2 µ(y) and
µ(x) ∽2 µ(y) = µ(x) ↝2 µ(y).

(G6) Let y ≤ x. Then by (GSX2), we have µ(y ∼1 x) = µ(y) ∼2 µ((y ∼1 x) ∽1 y) and µ(x ∽1 y) = µ(y ∼1

(x ∽1 y)) ∽2 µ(y). On the other hand, according to 2.4 (2), we get y ≤1 x ≤1 (y ∼1 x) ∽1 y and y ≤1 x ≤1 y ∼1

(x ∽1 y). Hence µ(y) ≤2 µ(x) ≤2 µ((y ∼1 x) ∽1 y) and µ(y) ≤2 µ(x) ≤2 µ(y ∼( x ∽1 y)). It follows from (X4)
that µ(y) ∼2 µ((y ∼1 x) ∽1 y) ≤2 µ(y) ∼2 µ(x) and µ(y ∼1 (x ∽1 y)) ∽2 µ(y) ≤2 µ(x) ∽2 µ(y). Therefore
µ(y ∼1 x) ≤2 µ(y) ∼2 µ(x) and µ(x ∽1 y) ≤2 µ(x) ∽2 µ(y).

(G7) Let y ≤ x. Then by Proposition 2.4 and (G5), (G6), we get that µ(x →1 y) = µ(y ∼1 x) ≤2 µ(y) ∼2

µ(x) = µ(x) →2 µ(y) and µ(x ↝1 y) = µ(x ∽1 y) ≤2 µ(x) ∽2 µ(y) ≤2 µ(x) ↝2 µ(y).
(G8) Clearly, 11 ∈ Ker(µ) by (G1). Let x, y ∈ X such that x, x →1 y ∈ Ker(µ). Then µ(x) = µ(x →1 y) = 12.

Since y ≤1 x →1 y and x ≤1 (x →1 y) ↝1 y, it follows from (G7) that 1 = µ(x) ≤2 µ((x →1 y) ↝1 y) ≤2 µ(x →1

y) ↝1 µ(y) = 1 ↝2 µ(y) = µ(y). Hence µ(y) = 12 and so y ∈ Ker(µ). Therefore Ker(µ) is a deductive system
of X.

4 States on pseudo equality algebras
In this section, we introduce the notions of Riečan states and state-morphisms on pseudo equality alge-
bras. We mainly study some of their properties and investigate the relations between Riečan states, state-
morphisms and Bosbach states.

De�nition 4.1 ([21]). Let (X;∼, ∽,∧, 0, 1) be a bounded pseudo equality algebra. A function s ∶ X → [0, 1] is
said to be a Bosbach state on X, if the following hold:
(BS1) s(0) = 0 and s(1) = 1;
(BS2) s(x) + s(x → y) = s(y) + s(y → x);
(BS3) s(x) + s(x ↝ y) = s(y) + s(y ↝ x),
for all x, y ∈ X.

Example 4.2. Let (Y;∼2, ∽2,∧2, 02, 12) be a bounded pseudo equality algebra given by Example 3.3. De�ne a
function s ∶ Y → [0, 1] by s(02) = 0, s(a2) = s(b2) = 0.5, s(12) = 1. Then one can check that s is a unique
Bosbach state on Y.

Example 4.3. Let (X;∼1, ∽1,∧1, 01, 11) be a pseudo equality algebra de�ned by Example 3.5. Then one can
check that the function s ∶ X → [0, 1] de�ned by s(01) = 0, s(a1) = s(b1) = s(c1) = s(11) = 1 is a unique
Bosbach state on X.

The following example shows that not every pseudo equality algebra has a Bosbach state.

Example 4.4. Let (X;∼1, ∽1,∧1, 01, 11) be a bounded pseudo equality algebra given by Example 3.3, and the
function s ∶ X → [0, 1] de�ned by s(01) = 0, s(a1) = α, s(b1) = β, s(c1) = γ, s(11) = 1, be a Bosbach state on
X. In (BS2), (BS3), taking x = 01, y = b1, we obtain β = 1 and β + γ = 1, respectively. Hence γ = 0. On the other
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hand, taking x = 01, y = a1, we get α+β = 1 and α+γ = 1, respectively. According to β = 1, it implies α = 0 and
so γ = 1, which is a contraction. This shows that X admits no Bosbach state.

Proposition 4.5 ([21]). Let (X;∼, ∽,∧, 0, 1) be a bounded pseudo equality algebra and s be a Bosbach state
on X. Then for all x, y ∈ X, the following hold:
(1) If x ≤ y, then s(x) ≤ s(y);
(2) If x ≤ y, then s(y → x) = 1 − s(y) + s(x) = s(y ↝ x);
(3) s(x → y) = 1 − s(x) + s(x ∧ y) = s(x ↝ y);
(4) s(x−) = 1 − s(x) = s(x∼);
(5) s(x−∼) = s(x) = s(x∼−).

Proposition 4.6. Let (X;∼, ∽,∧, 0, 1) be a bounded pseudo equality algebra and s ∶ X → [0, 1] be a function
such that s(0) = 0. Then the following conditions are equivalent:
(1) s is a Bosbach state;
(2) If x ≤ y, then s(y → x) = 1 + s(x) − s(y) = s(y ↝ x);
(3) s(x → y) = 1 − s(x) + s(x ∧ y) = s(x ↝ y).

Proof. (1) ⇒ (2) By Proposition 4.5 (2).
(2) ⇒ (3) By this proof of Proposition 4.5 (3).
(3) ⇒ (1) Assume (3) holds and x, y ∈ X. Then s(1) = s(x → 1) = 1 − s(x) + s(x ∧ 1) = 1 − s(x) + s(x) = 1.
Also, s(x)+ s(x → y) = s(x)+1− s(x)+ s(x∧ y) = 1+ s(x∧ y) = s(y)+1− s(y)+ s(x∧ y) = s(y)+ s(y → x).
Similarly, we can prove (BS3). Thus s is a Bosbach state on X.

Let (X;∼,∧, 0, 1) be a bounded pseudo equality algebra and s ∶ X → [0, 1] be a Bosbach state on X, we
de�ne the kernel of s by Ker(s) ∶= {x ∈ X ∶ s(x) = 1}.

Proposition 4.7. Let (X;∼, ∽,∧, 0, 1) be a bounded pseudo equality algebra and s be a Bosbach state on X.
Then Ker(s) is a deductive system of X.

Proof. Assume that s is a Bosbach state on X. Then for any x, y ∈ X, it follows from s(1) = 1 that 1 ∈ Ker(s).
Let x, x → y ∈ Ker(s). Then s(x) = s(x → y) = 1. Since x ≤ y → x, then 1 = s(x) ≤ s(y → x). This implies that
s(y → x) = 1. Again applying (BS2), we obtain s(y) = 1 and thus y ∈ Ker(s). Therefore, Ker(s) is a deductive
system of X.

Let (X;∼,∧, 0, 1) be a bounded equality algebra and s be a Bosbach state on X. Then by Proposition
4.7 and [20] Proposition 3.9, the relation θ ∶ xθy i� x ∼ y ∈ Ker(s) is a congruence relation on X. In this
case, we denote the quotient algebra X/θ by X/Ker(s) and the congruence class of x ∈ X by x/Ker(s), where
x/Ker(s) ∧ y/Ker(s) = (x ∧ y)/Ker(s), x/Ker(s) ∼ y/Ker(s) = (x ∼ y)/Ker(s), x/Ker(s) ≤ y/Ker(s) i�
x/Ker(s) ∧ y/Ker(s) = x/Ker(s).

De�nition 4.8. A pseudo equality algebra (X;∼, ∽,∧, 1) is said to be
● good provided that x−∼ = x∼− for all x ∈ X;
● involutive provided that x−∼ = x = x∼− for all x ∈ X.

Example 4.9. (1) In Example 3.5 it is evident that (X;∼1, ∽1,∧1, 11) is an involutive pseudo equality algebra.
(2) Let X = {0, a, b, c, 1} with 0 < a < b < c < 1 and the operations ∼, ∽ be given as follows:

∼ 0 a b c 1
0 1 b b 0 0
a 1 1 c a a
b 1 1 1 b b
c 1 1 1 1 c
1 1 1 1 1 1

∽ 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b b b 1 1 1
c 0 b b 1 1
1 0 a b c 1
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One can check that (X;∼, ∽,∧, 1) is a good pseudo equality algebra, but it is not involutive, since a−∼ = a∼− =
b ≠ a.

Theorem 4.10. Let (X;∼,∧, 0, 1) be a bounded equality algebra and s be a Bosbach state on X. Then
(X/Ker(s);∼,∧, 0/Ker(s), 1/Ker(s)) is an involutive equality algebra.

Proof. Assume s is a Bosbach state on X. First, it follows that (X/Ker(s);∼,∧, 0/Ker(s), 1/Ker(s)) is a
bounded equality algebra. In the following,weprove that X/Ker(s) is involutive. By (S2),wehave s(x)+s(x →
x−−) = s(x−−) + s(x−− → x). Since s(x) = s(x−−) by Proposition 4.5 (5), then s(x → x−−) = s(x−− → x).
Again, x ≤ x−− by Proposition 2.6 (3), we get s(x → x−−) = s(1) = 1. This implies s(x−− → x) = 1 and so
x−− → x ∈ Ker(s). Notice that x ≤ x−−, we obtain x−− ∼ x = x−− → x ∈ Ker(s). Hence x−−θx. This shows
x−−/Ker(s) = x/Ker(s). Therefore, (x/Ker(s))−− = x−−/Ker(s) = x/Ker(s) and this proof is complete.

De�nition 4.11. Let (X;∼, ∽,∧, 0, 1) be a bounded pseudo equality algebra. A state-morphism on X is a
function m ∶ X → [0, 1] such that
(M1) m(0) = 0;
(M2) m(x → y) = m(x) →R m(y) = m(x ↝ y) for all x, y ∈ X.

Proposition 4.12. A state-morphism m is a Bosbach state on a bounded pseudo equality algebra X.

Proof. Let m be a state-morphism on X. For any x, y ∈ X, m(1) = m(x → x) = min{1, 1 −m(x) +m(x)} = 1,
and m(x) +m(x → y) = m(x) +min{1, 1 −m(x) +m(y)} = min{1 +m(x), 1 +m(y)} = m(y) +min{1, 1 −
m(y) +m(x)} = m(y) +m(y → x). Similarly, we can prove (BS3). This shows m is a Bosbach state on X.

Proposition 4.13. Let (X;∼, ∽,∧, 0, 1) be a bounded pseudo equality algebra and s be a Bosbach state on X.
Then s is a state-morphism on X if and only if s(x ∧ y) = min{s(x), s(y)} for all x, y ∈ X.

Proof. Let s be a state-morphism on X. Then by Proposition 4.6, s(x ∧ y) = s(x) + s(x → y) − 1 = s(x) +
min{1, 1 − s(x) + s(y)} − 1 = min{s(x), s(y)} for all x, y ∈ X. Conversely, let s(x ∧ y) = min{s(x), s(y)}
for all x, y ∈ X. Taking x = y = 0, then s(0) = 0. Again by Proposition 4.6, we obtain s(x → y) = s(x ↝ y) =
1 − s(x) + s(x ∧ y) = 1 − m(x) + min{s(x), s(y)} = min{1, 1 − m(x) + m(y)} = m(x) →R m(y). Thus s is a
state-morphism on X.

Example 4.14. Let (Y;∼2, ∽2,∧2, 02, 12) be a bounded pseudo equality algebra given by Example 3.3. De�ne
a function s ∶ Y → [0, 1] by s(02) = 0, s(a2) = s(b2) = 0.5, s(12) = 1. Then one can check that s is a Bosbach
state on Y, but it is not a state-morphism on Y since s(a2 ∧ b2) = s(02) = 0 ≠ 0.5 = min{s(a2), s(b2)}.

Example 4.15. Let X = {0, a, b, 1} in which the Hasse diagram and the operation ∼ on X is below:
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� @

@
@
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�
�

0

a b
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∼ 0 a b 1
0 1 b a 0
a b 1 0 a
b a 0 1 b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Then (X;∼,∧, 1) is an equality algebra [20], where the derived operation→ as the above. The function s ∶ X →
[0, 1] is given by s(0) = s(a) = 0, s(b) = s(1) = 1. Then s is a Bosbach state on X. Furthermore, s is a
state-morphism on X, since s(a ∧ b) = s(0) = 0 = min{s(a), s(b)}.

Corollary 4.16. In any linearly ordered bounded pseudo equality algebra (X;∼, ∽,∧, 0, 1), the Bosbach states
coincide with the state-morphisms.

Proposition 4.17. Let (X;∼, ∽,∧, 0, 1) be a bounded involutive pseudo equality algebra and s be a Bosbach
state on X. Then the following are equivalent:
(1) s is a state-morphism on X;
(2) s(x∼ → y−∼) = min{1, s(x) + s(y)};
(3) s(y− ↝ x∼−) = min{1, s(x) + s(y)},
for all x, y ∈ X.

Proof. (1) ⇒ (2) Let s be a state-morphism on X. Then by (M2) and Proposition 4.5, we get s(x∼ → y−∼) =
min{1, 1 − s(x∼) + s(y−∼)} = min{1, 1 − 1 + s(x) + s(y)} = min{1, s(x) + s(y)}, for all x, y ∈ X.

(2) ⇒ (3) Assume that (2) holds. By Proposition 2.6 (7), x∼ → y−∼ = y− ↝ x∼−. Hence s(y− ↝ x∼−) =

s(x∼ → y−∼) = min{1, s(x) + s(y)}.
(3) ⇒ (1) Assume that (3) holds. Since X is involutive, then s(x ↝ y) = s(x∼− ↝ y∼−) = min{1, s(y) +

s(x∼)} = min{1, 1 − s(x) + s(y)}. Again since s is a Bosbach state, we have s(0) = 0. Hence s is a state-
morphism on X.

De�nition 4.18. Let (X;∼, ∽,∧, 0, 1) be a bounded pseudo equality algebra. Two elements x, y ∈ X are said
to be orthogonal, if x−∼ ≤ y∼, we write by x�y. If x, y ∈ X are orthogonal, we de�ne a binary operation + on X by
x + y ∶= y∼ → x−∼.

Proposition 4.19. In any bounded pseudo equality algebra (X;∼, ∽,∧, 0, 1), the following properties hold for
all x, y ∈ X:
(1) x�y i� y∼− ≤ x−;
(2) x�y i� x ≤ y∼ and x�y i� y ≤ x−;
(3) x�y implies x + y = x− ↝ y∼−;
(4) x�x− and x + x− = 1;
(5) x∼�x and x∼ + x = 1;
(6) 0�x and 0 + x = x∼−;
(7) x�0 and x + 0 = x−∼;
(8) x ≤ y implies x�y− and x + y− = y−∼ → x−∼;
(9) x ≤ y implies y∼�x and y∼ + x = y ↝ x∼−.

Proof. (1) Let x�y, x, y ∈ X. Then x−∼ ≤ y∼. By Proposition 2.6 (3) and (4), y∼− ≤ x−∼− = x−. Conversely, let
y∼− ≤ x−. Using Proposition 2.6 (3) and (4) again, we get x−∼ ≤ y∼−∼ = y∼.
(2) Let x�y. Then by (2) and Proposition 2.6 (3), x ≤ x−∼ ≤ y∼ and y ≤ y∼− ≤ x−.
(3) Let x�y. Since x− ↝ y∼− = ∼ → x−∼ by Proposition 2.6 (7), we have x + y = x− ↝ y∼−.
(4) Since x−∼ ≤ x−∼, then x�x− and x + x− = x−∼ → x−∼ = 1.
(5) Since x∼− ≤ x∼−, then x∼�x and x∼ + x = x∼− → x∼− = 1.
(6) By Proposition 2.6 (2), 0−∼ = 0 ≤ x∼. Hence 0�x, and 0 + x = x∼ → 0−∼ = x∼ → 0 = x∼−.
(7) By Proposition 2.6 (1), x−∼ ≤ 1 = 0∼. Hence x�0. Again by Proposition 2.4 (10), we get that x + 0 = 0∼ →
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x−∼ = 1→ x−∼ = x−∼.
(8) Let x ≤ y. Then by Proposition 2.6 (5), x−∼ ≤ y−∼. Hence x�y− and x + y− = y−∼ → x−∼.
(9) Let x ≤ y. Then by Proposition 2.6 (4) and (5), we have y∼ ≤ x∼ and so y∼−∼ = y∼ ≤ x∼. Hence y∼�x and
y∼ + x = x∼ → y∼−∼ = x∼ → y∼ = y ↝ x∼− by Proposition 2.6 (8).

De�nition 4.20. Let (X;∼, ∽,∧, 0, 1) be a good bounded pseudo equality algebra. A Riečan state on X is a
function s ∶ X → [0, 1] such that
(RS1) s(1) = 1;
(RS2) s(x + y) = s(x) + s(y) whenever x ⊥ y for all x, y ∈ X.

Example 4.21. Consider the good bounded pseudo equality algebra (X;∼, ∽,∧, 0, 1) given by Example 3.7.
De�ne the function s ∶ X → [0, 1] by s(0) = 0, s(a) = s(b) = 0.5, s(1) = 1, then one can check that s is a
Riečan state on X.

Proposition 4.22. Let s be a Riečan state on a good bounded pseudo equality algebra (X;∼, ∽,∧, 0, 1). Then
for all x, y ∈ X, the following hold:
(1) s(x−) = 1 − s(x) = s(x∼);
(2) s(0) = 0;
(3) s(x−∼) = s(x) = s(x∼−);
(4) x ≤ y implies s(x) ≤ s(y) and s(y−∼ → x−∼) = 1 + s(x) − s(y) = s(y ↝ x∼−);
(5) s(x−∼ → (x ∧ y)−∼) = 1 − s(x) + s(x ∧ y) = s(x ↝ (x ∧ y)∼−).

Proof. (1) By Proposition 4.19 (4), we have s(x + x−) = s(x) + s(x−) = s(1) = 1. Hence s(x−) = 1 − s(x).
Similarly, by Proposition 4.19 (5), s(x∼) = 1 − s(x).

(2) By (1) and Proposition 2.6 (1), s(0) = s(1−) = 1 − s(1) = 1 − 1 = 0.
(3) By (2) and Proposition 4.19 (6), s(x∼−) = s(0 + x) = s(0) + s(x) = 0 + s(x) = s(x). Similarly, by

Proposition 4.19 (7), s(x−∼) = s(x).
(4) Let x ≤ y. Then by Proposition 4.19 (9), y∼�x and y∼ + x = y ↝ x∼−. Hence s(y ↝ x∼−) = s(y∼ + x) =

1 + s(x) − s(y), and so s(x) − s(y) = s(y∼ + x) − 1 ≤ 0. Hence s(x) ≤ s(y). It is similar that s(y−∼ → x−∼) =
1 + s(x) − s(y) by Proposition 4.19 (8).

(5) It follows from x ∧ y ≤ x and (4).

Theorem 4.23. In any good bounded pseudo equality algebra (X;∼, ∽,∧, 0, 1), each Bosbach state on X is a
Riečan state.

Proof. Assume that s is a Bosbach state on X. Then s(1) = 1. Let x�y for x, y ∈ X. Then x−∼ ≤ y∼. By (2),(4) and
(5) of Proposition 4.5 , we have s(x+y) = s(y∼ → x−∼) = 1−s(y∼)+s(x−∼) = 1−(1−s(y))+s(x) = s(x)+s(y).
Therefore s is a Riečan state on X.

Note that the converse of the above theorem is not true in general. Let us see the following example.

Example 4.24. Let (X;∼, ∽,∧, 0, 1) be the good pseudo equality algebra given by 4.9 (2). De�ne amap s ∶ X →
[0, 1] by s(0) = 0, s(a) = s(b) = s(c) = 0.5, s(1) = 1. Then s is a Riečan state on X, but s is not a Bosbach
state on X. Taking x = a, y = b in (BS2), we can obtain that 0.5 + 1 = 0.5 + s(c) and so s(c) = 1, which is a
contradiction.

Theorem 4.25. In any bounded involutive pseudo equality algebra (X;∼, ∽,∧, 0, 1), the Bosbach states and
the Riečan states coincide on X.

Proof. Assume that s is a Riečan state on X. Then s(1) = 1 and s(0) = 0 by Proposition 4.22 (2). Let x ≤ y,
then by Proposition 4.22 (4), s(y−∼ → x−∼) = 1 − s(x) + s(y) = s(y ↝ x∼−). Since X is involutive, we obtain
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s(y → x) = s(y−∼ → x−∼) = 1− s(x)+ s(y) = s(y ↝ x∼−) = s(y ↝ x). Hence by Proposition 4.6, it follows that
s is a Bosbach state on X.

5 The relations between generalized state maps, states and
internal states on pseudo equality algebras

In this section, we focus on discussing the relations between generalized state maps, states and internal
states on pseudo equality algebras. First, we recall some related notions and results of internal states on
pseudo equality algebras based on [20,21].

De�nition 5.1 ([21]). A state pseudo equality algebra is a structure (X, µ) = (X;∼, ∽,
∧, µ, 1), where (X;∼, ∽,∧, 1) be a pseudo equality algebra and µ ∶ X → X is a unary operator on X, called an
internal state (or state operator), satisfying the following conditions for all x, y ∈ X:
(SX1) µ(x) ≤ µ(y), whenever x ≤ y;
(SX2) µ((x ∧ y) ∼ x) = µ(y) ∼ µ(((x ∧ y) ∼ x) ∽ y), µ(x ∽ (x ∧ y)) = µ(y ∼ (x ∽ (x ∧ y))) ∽ µ(y);
(SX3) µ(µ(x) ∼ µ(y)) = µ(x) ∼ µ(y), µ(µ(x) ∽ µ(y)) = µ(x) ∽ µ(y);
(SX4) µ(µ(x) ∧ µ(y)) = µ(x) ∧ µ(y).

It is clear that a state equality algebra (see [20]) is a state pseudo equality algebra, a pseudo equality algebra
can be seen as a state pseudo equality algebra.

Proposition 5.2. Let (X, µ) be a state pseudo equality algebra. Then for all x, y ∈ X, we have:
(1) µ(µ(x)) = µ(x);
(2) µ(µ(x) → µ(y)) = µ(x) → µ(y) and µ(µ(x) ↝ µ(y)) = µ(x) ↝ µ(y).

Proof. (2) is evident and (1) is similar to the proof of Proposition 5.6 in [20].

De�nition 5.3. Let (X;∼, ∽,∧, 1) be a pseudo equality algebra. A strong internal state µ on X is an internal
state on X satisfying:
(SX5) µ(x → y) = µ(x) → µ(x ∧ y), µ(x ↝ y) = µ(x) ↝ µ(x ∧ y) for all x, y ∈ X.
Accordingly, the pair (X, µ) is said to a strong state pseudo equality algebra.

Example 5.4. Let (X;∼, ∽,∧, 1) be a pseudo equality algebra given in Example 4.9. De�ne a map µ ∶ X → X
by µ(0) = 0, µ(a) = µ(b) = b, µ(c) = µ(1) = 1. Then we can calculate that (X, µ) is a strong state pseudo
equality algebra.

Proposition 5.5. Let (H, σ) be a state pseudo-hoop. Then (H, σ) is a strong state pseudo equality algebra,
where x ∧ y = x ⊙ (x ↝ y), x ∼ y = y → x and x ∽ y = x ↝ y.

Proof. Let (H, σ) be a state pseudo-hoop. Then according to Example 2.6 of [3], (H;∼, ∽,∧, 0, 1) is a bounded
pseudo equality algebra. In the following, we will show that σ is a strong internal state on H. Clearly,
(SX0),(SX1) and (SX5) hold. (SX3) and (SX4) follow from (SH3) and (SH4). Next we prove (SX2). By Lemma 2.11
and (SH2), we have σ(x ∧ y ∼ x) = σ(x → x ∧ y) = σ(x → y), and σ(y) ∼ σ((x ∧ y ∼ x) ∽ y) = σ((x → x ∧ y) ↝
y) → σ(y) = σ((x → y) ↝ y) → σ(y) = σ(x → y) ↝ ((x → y) ∧ y)) → σ(y) = (σ(x → y) ↝ σ(y)) → σ(y).
Since y ≤ x → y by Lemma 2.10 (2), then σ(y) ≤ σ(x → y). Hence by Lemma 2.10 (4), we obtain that
σ(x → y) = (σ(x → y) ↝ σ(y)) → σ(y). This shows that σ(x ∧ y ∼ x) = σ(y) ∼ σ((x ∧ y ∼ x) ∽ y). In
a similar way, we can prove σ(x ∽ x ∧ y) = σ(y ∼ (x ∽ x ∧ y)) ∽ σ(y).
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Remark 5.6. (1) In any pseudo equality algebra, a strong internal state is an internal state, but the converse is
not true in general. For example, let X = {0, a, b, c, 1} with 0 < a < b < c < 1 and the operations ∼, ∽ be given
as follows:

∼ 0 a b c 1
0 1 b b b 0
a 1 1 b b a
b 1 1 1 b b
c 1 1 1 1 c
1 1 1 1 1 1

∽ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b c c 1 1 1
c 0 a b 1 1
1 0 a b c 1

Then one can check that µ is an internal state on X, but µ is not a strong internal state, because µ(b → a) =
µ(b ∧ a ∼ b) = µ(b) = 0 ≠ 1 = µ(b) → µ(a).
(2) In any bounded pseudo equality algebra, a strong internal state µ does not necessarily satisfy the condition
µ(0) = 0. For example, let (Y;∼2, ∽2,∧2, 12) be a pseudo equality algebra given by Example 3.3. De�ne a map
µ ∶ Y → Y by µ(02) = µ(b2) = b2, µ(a2) = µ(12) = 12. Then one can check that (Y , µ) is a strong state pseudo
equality algebra.

Proposition 5.7. Let (X, µ) be a strong state bounded pseudo equality algebra with µ(0) = 0. Then for all
x, y ∈ X:
(1) µ(x−) = µ(x)− and µ(x∼) = µ(x)∼;
(2) x�y implies µ(x)�µ(y) and µ(x + y) = µ(x) + µ(y), µ(µ(x) + µ(y)) = µ(x) + µ(y);
(3) µ(x → y) ≤ µ(x) → µ(y) and µ(x ↝ y) ≤ µ(x) ↝ µ(y). If x, y are comparable, we have µ(x → y) = µ(x) →
µ(y) and µ(x ↝ y) = µ(x) ↝ µ(y).

Proof. (1) By (SX0) and (SX5), µ(x−) = µ(x → 0) = µ(x) → µ(0) = µ(x) → 0 = µ(x)−. In a similar way, we can
get that µ(x∼) = µ(x)∼.

(2) Let x�y. Then x−∼ ≤ y∼. By (SX1) and (1), we have µ(x)−∼ ≤ µ(y)∼ and µ(x + y) = µ(y∼ → x−∼) =

µ(y∼) → µ(x−∼) = µ(y)∼ → µ(x)−∼ = µ(x) + µ(y). By Proposition 5.2 (2), µ(µ(x) + µ(y)) = µ(µ(x)∼ →
µ(y)−∼) = µ(x)∼ → µ(y)−∼ = µ(x) + µ(y).

(3) Since x∧y ≤ y, thenµ(x∧y) ≤ µ(y). Henceby (SX2) andProposition 2.4 (3),wehaveµ(x → y) = µ(x) →
µ(x∧y) ≤ µ(x) → µ(y). Similarly,µ(x ↝ y) ≤ µ(x) ↝ µ(y). If x ≤ y, thenµ(x → y) = µ(1) = 1 ≤ µ(x) → µ(y).
Hence µ(x ↝ y) = µ(x) ↝ µ(y). If y ≤ x, then by (SX2), we have µ(x → y) = µ(x) → µ(x ∧ y) = µ(x) → µ(y).
The other part is similar.

De�nition 5.8. ([21]) Let (X;∼, ∽,∧, 1) be a pseudo equality algebra. A homomorphism µ ∶ X → X is called
an internal state-morphism (or state-morphism operator) if µ2

= µ, that is µ(µ(x)) = µ(x) for all x ∈ X, and the
pair (X, µ) is called a state-morphism pseudo equality algebra.

According to the de�nition of an internal state-morphism µ on a pseudo equality algebra, it follows that µ is
isotone and µ preserves the operations→ and↝. Note that in any pseudo equality algebra (X;∼, ∽,∧, 1), the
identity map IdX on X is an internal state-morphism.

By Lemma 2.5 we can get the following theorem.

Theorem 5.9. Let (X;∼, ∽,∧, 1) be a pseudo equality algebra, and µ ∶ X → X be an internal state-morphism
on X. Then µ is a strong internal state on X. Of course, µ is also an internal state on X.

Note that the converse of Theorem 5.9 is not true in general.

Example 5.10. In Example 5.4, themapµ is a strong internal state on X, but it is not an internal state-morphism
on X, because µ(b ∽ a) = µ(b) = b ≠ 1 = b ∽ b = µ(b) ∽ µ(a).
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In the following, we discuss the relations between generalized state maps, states and internal states on
pseudo equality algebras. First, we give the relations between states and (strong) internal states on pseudo
equality algebras.

Theorem 5.11. Assume that (X;∼, ∽,∧, 0, 1) is a good bounded pseudo equality algebra, and µ is a strong
internal state with µ(0) = 0 on X. If s is a Riečan state on µ(X), then the function sµ ∶ X → [0, 1] de�ned by
sµ(x) = s(µ(x)) is a Riečan state on X.

Proof. Clearly, sµ(1) = s(µ(1)) = s(1) = 1. Let x, y ∈ X such that x�y. Then by Proposition 5.7 (2), µ(x)�µ(y)
andµ(x+y) = µ(x)+µ(y). Hence sµ(x+y) = s(µ(x+y)) = s(µ(x)+µ(y)) = s(µ(x))+s(µ(y)) = sµ(x)+sµ(y).
This implies that sµ is a Riečan state on X.

Example 5.12. Let (X;∼, ∽,∧, 0, 1) be a good bounded pseudo equality algebra given in 3.7. De�ne a map
µ ∶ X → X by µ(0) = µ(a) = 0, µ(b) = µ(1) = 1. Then one can check that µ is a strong internal state on X,
where µ(X) = {0, 1}. Moreover, the function s ∶ µ(X) → [0, 1] on µ(X) de�ned by s(0) = 0, s(1) = 1 is a
Riečan state on µ(X). It can be calculated that the function sµ ∶ X → [0, 1] de�ned by

sµ(x) = s(µ(x)) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if x = 0, a
1 if x = b, 1

is a Riečan state on X.

Theorem 5.13. Assume (X, µ) is a state bounded pseudo equality algebra with µ(0) = 0. If s is a Bosbach state
on µ(X) and µ preserves→ and↝, then the function sµ ∶ X → [0, 1] de�ned by sµ(x) = s(µ(x)) is a Bosbach
state on X.

Proof. Clearly, sµ(0) = s(µ(0)) = s(0) = 0 and sµ(1) = s(µ(1)) = s(1) = 1. If µ preserves→, then sµ(x) +
sµ(x → y) = s(µ(x)) + s(µ(x → y)) = s(µ(x)) + s(µ(x) → µ(y)) = s(µ(y)) + s(µ(y) → µ(x)) = s(µ(y)) +
s(µ(y → x)) = sµ(y) + sµ(y → x). This shows that sµ is a Bosbach state on X. In a similar way, since µ

preserves ↝, we can show that sµ(x) + sµ(x ↝ y) = sµ(y) + sµ(y ↝ x). It follows that sµ(x) is a Bosbach
state on X.

Example 5.14. Let (X;∼, ∽,∧, 0, 1) be a bounded pseudo equality algebra given in Example 3.7. De�ne a map
µ ∶ X → X by µ(0) = µ(b) = 0, µ(a) = µ(1) = 1. Then one can check that µ is an internal state on X and
µ preserves → and ↝, where µ(X) = {0, 1}. Moreover, the function s ∶ µ(X) → [0, 1] on µ(X) de�ned by
s(0) = 0, s(1) = 1 is a Bosbach state on µ(X). It can be calculated that the function sµ ∶ X → [0, 1] de�ned by

sµ(x) = s(µ(x)) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if x = 0, b
1 if x = a, 1

is a Bosbach state on X.

Corollary 5.15. Let (X, µ) be a state-morphism bounded pseudo equality algebra and s be a Bosbach state on
µ(X). Then the function sµ ∶ X → [0, 1] de�ned by sµ(x) = s(µ(x)) is a Bosbach state on X.

By Proposition 5.7 (3) and the above corollary, we can get the following corollary immediately.

Corollary 5.16. Let (X, µ) be a strong state linearly ordered bounded pseudo equality algebra and s be a
Bosbach state on µ(X). Then the function sµ ∶ X → [0, 1] de�ned by sµ(x) = s(µ(x)) is a Bosbach state
on X.

The above results indicate that by using (strong) internal state (or internal state-morphism) µ, one can extend
any state of the image space µ(X) into the state of the entire space X.
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Next, we discuss the relationship between the generalized states (namely, G-states) and the states on
pseudo equality algebras.

Theorem 5.17. Assume that (X;∼, ∽,∧, 0, 1) is a bounded pseudo equality algebra, and m ∶ X → [0, 1] is a
state-morphism on X. Then m is a G-state from (X;∼, ∽,∧, 0, 1) to ([0, 1];∼R ,∧R , 1).

Proof. Suppose m is a state-morphism on X. (GSX1) holds as m is a Bosbach state by Proposition 4.12. Let
x, y ∈ X. Then m(x) ∧R m(y) = min{m(x),m(y)} ∈ m(X). Let m(x) ≤ m(y). Then m(x) ∼R m(y) = m(y) →R

m(x) = m(y → x) ∈ m(X). Hence (GSX3) and (GSX4) hold. Next, we prove (GSX2). It is obvious that Lemma
2.5 results in (GSX2) and therefore the proof is �nished.

The following example indicates that the converse of Theorem 5.17 is not true in general.

Example 5.18. In Example 3.6, the map µ ∶ X → [0, 1] is a G-state, but µ is not a state-morphism on X since
µ(b → a) = µ(a) = 0.5 ≠ 1 = µ(b) →R µ(a).

According to Theorem 5.17, Corollary 4.16 and Theorem 4.25, we can obtain the following corollary.

Corollary 5.19. Assume (X;∼, ∽,∧, 0, 1) is a bounded pseudo equality algebra and s ∶ X → [0, 1] is a function
from X to [0, 1].
(1) If X is linearly ordered and s is a Bosbach state on X, then s is a G-state from (X;∼, ∽,∧, 0, 1) to ([0, 1];∼R
,∧R , 1);
(2) If X is involutive and s is a Riečan state, then s is a G-state from (X;∼, ∽,∧, 0, 1) to ([0, 1];∼R ,∧R , 1).

Finally we discuss the relations between generalized internal states (namely, GI-states) and internal states,
internal state-morphisms on pseudo equality algebras.

Theorem 5.20. Let (X;∼, ∽,∧, 1) be a pseudo equality algebra. Then
(1) an internal state µ on X is a GI-state from X to X;
(2) a GI-state µ from X to X is an internal state on X if and only if µ2

= µ.

Proof. (1) From Proposition 5.2 (2) µ(X) is a subalgebra of X, which implies (GSX3) and (GSX4) hold. Thus µ
is a GI-state from X to X.

(2) Assume thatµ is an internal state on X. Thenµ2
= µ by Proposition 5.2 (1). Conversely, letµ be a G-state

from X to X and µ2
= µ. Then it follows from (GSX4) that there exists a ∈ X such that µ(x) ∧ µ(y) = µ(a) for

any x, y ∈ X. Hence we have µ(µ(x) ∧ µ(y)) = µ(µ(a)) = µ(a) = µ(x) ∧ µ(y) and so (SX4) holds. Similarly,
we can prove (SX3).

Example 5.21. In Example 3.7, µ is a GI-state from X to X, but µ is not an internal state on X since µ(µ(a)) =
µ(b) = 1 ≠ b = µ(a).

Theorem 5.22. Let (X;∼, ∽,∧, 1) be a pseudo equality algebra and µ be an internal state-morphism on X.
Then µ is a GI-state from X to X.

Proof. Similar to the proof of Theorem 5.17.

Note that the converse of the above theorem is not true in general according to the following example.

Example 5.23. In Example 3.7, µ is a GI-state from X to X, but µ is not an internal state-morphism on X since
µ(µ(a)) = µ(b) = 1 ≠ b = µ(a).
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6 Conclusions
In this paper, we introduce a new notion of generalized state map (or simply, GS-map) by extending the
domain X of a state operator to a more universal setting Y. Moreover, we de�ne two types of special
generalized state maps, namely, generalized states from X to ([0, 1];∼R , ∽R ,∧R , 1) (or simply, G-states), and
generalized internal states from X to X (or simply, GI-states). Alsowe introduce and investigate Bosbach states
and Riečan states. We give the relations between generalized state map, states and internal states. We come
to the conclusions that one can extend any state of the image space µ(X) into the state of the entire space X
by using an internal state µ (or an internal state-morphism µ). In addition, another important result is that, in
a sense, generalized state maps can be viewed as a possible united framework of the states and the internal
states, the state-morphisms and the internal state-morphisms on pseudo equality algebras.
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[17] Borzooei R.A., Dvurečenskij A., Zahiri O., State BCK-algebras and State-morphism BCK-algebras, Fuzzy Sets Syst., 2014,

24, 86-105.
[18] He P.F., Xin X.L., Yang Y.W., On state residuated lattices, Soft Comput., 2015, 19, 2083-2094.
[19] Xin X.L., Davvaz B., State operators and state-morphism operators on hyper BCK-algebras, J. Intell. Fuzzy Systems, 2015,

29, 1869-1880.
[20] Ciungu L.C., Internal states on equality algebras, Soft Comput., 2015, 19, 939-953.
[21] Ciungu L.C., State pseudo equality algebras, arXiv:1602.07828v1 [math.LO]25 Feb 2016, page: 1-25.
[22] Ciungu L.C., Bounded pseudo-hoops with internal states, Math Slovaca., 2013, 63, 903-934.


	Generalized state maps and states on pseudo equality algebras
	1 Introduction
	2 Preliminaries
	3 Generalized state maps on pseudo equality algebras
	4 States on pseudo equality algebras
	5 The relations between generalized state maps, states and internal states on pseudo equality algebras
	6 Conclusions


