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Abstract: In this paper, we attempt to cope with states in a universal algebraic setting, that is, introduce a
notion of generalized state map from a pseudo equality algebra X to an arbitrary pseudo equality algebra Y.
We give two types of special generalized state maps, namely, generalized states and generalized internal
states. Also, we study two types of states, namely, Bosbach states and Rie¢an states. Finally, we discuss the
relations among generalized state maps, states and internal states (or state operators) on pseudo equality
algebras. We verify the results that generalized internal states are the generalization of internal states, and
generalized states are the generalization of state-morphisms on pseudo equality algebras. Furthermore, we
obtain that generalized states are the generalization of Bosbach states and Rie¢an states on linearly ordered
and involutive pseudo equality algebras, respectively. Hence we can come to the conclusion that, in a sense,
generalized state maps can be viewed as a possible united framework of the states and the internal states,
the state-morphisms and the internal state-morphisms on pseudo equality algebras.
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1 Introduction

Logical algebras are the corresponding algebraic semantics with all sorts of propositional calculus, which are
the algebraic foundations of reasoning mechanism of many fields such as computer sciences, information
sciences, cybernetics, artificial intelligence and so on. EQ-algebra is a new class of logical algebra which was
proposed by Novak in [1], which generalizes the residuated lattice. One of the motivations is to introduce
a special algebra as the correspondence of truth values for high-order fuzzy type theory (FTT). Another
motivation is from the equational style of proof in logic. It has three connectives: meet A, product ® and
fuzzy equality ~. The product in EQ-algebras is quite loose which can be replaced by any other smaller
binary operation, but still obtains an EQ-algebra. Based on the above reasons, Jenei [2] introduced equality
algebras in 2012 similar to EQ-algebras but without a product, and the author proved the term equivalence
of equivalential equality algebras to BCK-meet-semilattice. Then in 2014, Jenei introduced pseudo equality
algebras in [3] in order to find a connection with pseudo BCK-algebras. About BCK/pseudo-BCK algebras and
their application, one can see [4-7]. Recently, Dvurecenskij found the fact that every pseudo equality algebra
in the Jenei’s version is an equality algebra and so presents the new revision of pseudo equality algebras in
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[8]. It generalizes equality algebras and seems to be more reasonable as a candidate for a possible algebraic
semantics of fuzzy type theory than the Jenei’s version.

The notion of states on MV-algebras was introduced by Mundici [9] in 1995 with the intent of capturing the
notion of average degree of truth of a proposition in Eukasiewicz logic, and so the states have been used as a
semantical interpretation of the probability of fuzzy events a. That is, if s is a state and a is a fuzzy event, then
s(a) is presented as the average of the appearance of the event a. Different approaches to the generalization
mainly gave rise to two different notions, namely, Bosbach states and Rie¢an states. Hence it is meaningful
to extend the notion of states to other algebraic structures and their noncommutative cases [4,10-14]. For
example, Liu Lianzhen studied the existence of Bosbach states and Riecan states on finite monoidal t-norm
based algebras (MTL-algebra for short) in [11]. Some examples show that there exist MTL-algebras having
no Bosbach states and Riecan states. It is well known that in many cases the evaluation of truth degree of
sentences is made in an abstract structure, and not in the standard algebra [0, 1] (see [15]). For this reason it
is interesting to define a probability with values in an abstract algebra. In this case, Flaminio and Montagna
[16] were the first to present a unified approach to states and probabilistic many-valued logic in a logical and
algebraic setting. They added a unary operation, called internal state (or state operator) to the language of
MV-algebras which preserves the usual properties of states. Correspondingly, the pair (M, o) is called a state
MV-algebra. From the viewpoint of probability, if a is a fuzzy event, then the internal state Pr(a) is presented
as truth value of appearing a. A more powerful type of logic can be given by algebraic structures with internal
states, and they also constitute the varieties of universal algebras. Consequently, the internal states have been
extended and intensively studied in other algebraic structures [17-19], etc. Recently, the notions of internal
states have been applied to algebraic structures of higher order fuzzy logic, for example, equality algebras [20]
and pseudo equality algebra [21] where one of the main results is about the relevance with the corresponding
state BCK/pseudo-BCK meet-semilatices. Also we observe that there exist some interesting fields of states on
pseudo equality algebras, which can be investigated including state-morphisms and Rie¢an states, etc. Based
on the above research results, indeed, it is meaningful using internal states to extend the concepts of states of
algebraic structures, instead of the real unit interval [0, 1], to a more universal algebraic setting. This is our
motivation to introduce and study generalized state maps and revelent states on pseudo equality algebras in
this paper.

This paper is organized as follows: In Section 2, we recalls some basic notions and results which will
be used later in the paper. In Section 3, we introduce the notion of generalized state maps (or simply, GS-
map) including two special classes, namely, G-states and GI-states on pseudo equality algebras. Moreover,
we give some examples and investigate basic properties of them. In Section 4, we mainly study the Bosbach
states, Riecan states and state-morphisms on pseudo equality algebras and discuss relations between them.
In Section 5, we emphasis on the relevances between generalized state maps, states and internal states on
pseudo equality algebras and get some important results.

2 Preliminaries

In this section, we recollect some definitions and results which will be used in the following.

Definition 2.1 ([2]). An equality algebra is an algebra (E;~, A, 1) of type (2, 2, 0) such that forall x,y, z € X:
(E1) (E, A, 1) is a meet-semilattice with top element 1;

(E2)x~y=y~x;

(E3)x~x=1;

(E4)x ~1=x;

(E5)x<y<zimpliesx~z<y~zandx ~z<Xx~Yy;

(E6)x~y<(xnz)~(yAz);

(E7N)x~y<(x~2z)~(y~2).
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In any equality algebra (E; ~, A, 1), defines the operation — by x - y := (x Ay) ~xforall x,y € E.

Definition 2.2 ([20]). Let (X;~, A, 1) be an equality algebra. A subset D containing 1 of X is called a deductive
systemof X if forall x,y € X:

() xeDand x <yimplyy € D;

(2)xeDandy ~x e Dimply y € D.

Definition 2.3 ([8]). A pseudo equality algebra is an algebra (X; ~, -, A, 1) of type (2, 2, 2, 0) such that for all
xX,¥,z,te X:

(X1) (X; A, 1) is a meet-semilattice with top element 1;

X2)x~x=1=x+x;

X3)x~1=x=1-x;

X4)x<y<zimpliesx ~z<y~z,X~Z<X~Yy,ZwX<zwyandz -x<y«x;

X)) x~y<(xnz)~(ynz)andx -~y < (xrnz)-(YyArz);
X6)x~y<(z~x)w(z~y)andx -y < (x ~2z) ~ (¥ ~2z);

X7)x~y<(x~2z)~(y~z)andx -y <(z-x)«(z+~Y).

In any pseudo equality algebra (X;~, -, A, 1), define two derived binary operations — and ~ by x — y :=
(xAy) ~xand x ~ y:=x - (xay) forall x, y € X, respectively. Note that when ~=- a pseudo equality algebra
is an equality algebra.

Proposition 2.4 ([8]). In any pseudo equality algebra (X;~,-, A, 1), the following properties hold for all
X,y,z€X:

(Dz<ximpliesx »y<z-yandx ~y<z~y;
@x<((y~x)=y)r(y~(x-y));
B)x<yiffx->y=1iffx~y=1;
WDx~1=x~x=x—-x=x—-1=1,1~x=xand1 - x = x;
GC)x<(y=x) Ay ~x);
B)x<((x=>y)~y)r((x~y)—>y);
NDx—-y<(y—-2z)~x-z)andx ~y<(y~2z) - (x ~2z);
(&)X > (y~2) =y ~ (x> 2);
9)x—>y=x—-(xry)andx ~y=x~ (XAY);

(10)x <yimpliesy > x=x~yandy ~ x=y - X.

Lemma 2.5 ([21]). Let (X;~,, A, 1) be a pseudo equality algebra. Then the following hold for all x, y, z € X:
@y~ (((xAy)~x)~y=xAy~x;
2)(y~(xXAY))~y=X-XA)Y.

A pseudo equality algebra (X; ~, -, A, 1) is called bounded if it has bottom element 0. In this case, we define
two negations ~ and ~ by x” := x - Oand x~ := x ~» O for all x € X. Clearly, x” =0 ~ xand x~ = x - 0.

Proposition 2.6 ([21]). In any bounded pseudo equality algebra (X; ~, -, A, 0, 1), the following properties hold
forallx,y, z e X:

11" =0=1"and0” =1=07;

217 =1=1"and0"=1=0"";

B)x<x " andx <x"7;

AW x " =xandx"" =Xx";

(5) x <yimpliesy” <x™ andy” < x~;
B)x—y =y~x andx~y =y - Xx";
X" >y "=y ~x"7;

B)x—->y "=y ~x andx~y "=y > x";
O)x->y =y~ ~x andx~y =y " —>Xx".
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Definition 2.7 ([8]). Let (X;~, -, A, 1) be a pseudo equality algebra. A subset D containing 1 of X is called a
(=, ~) deductive system of X if forall x,y € X, xe Dand x - y € Dimply y € D.

Note that in any pseudo equality algebra (X;~, -, A, 1), (~, ) deductive systems and (—, ~) deductive
systems are equivalent, so we call them deductive systems.

Remark 2.8. Assume that ([0,1],®,”,0) is a standard MV-algebra. Then ([0, 1], g, 0, 1) is a bounded
commutative BCK-algebra, where —, is the Eukasiewicz implication defined by x »r y = x~ @y = min{1,1 -
x+y}. Furthermore, ([0, 1], —>&, AR, 0, 1) is a BCK-meet-semilattice. According to Theorem 2.3 of [2], ([0, 1]; ~r
, AR, 1) is an equality algebra, where x ~g y = (X >r Y) AR (¥ »r X) = 1-|x -y |.

The following are some notions and results about pseudo-hoops.

Definition 2.9 ([22]). A pseudo-hoop is an algebra (H; ®, -, ~, 1) of type (2,2, 2,0) such that forall x,y, z €
H:

HD)xeol=x=1060x;

H2)x ->x=1=x~Xx;

(H3) (xoy) »z=x->(y—>2);

(H4) (x@y) ~z=x~ (y ~ 2);

(H5) (x> y)ox=(y>x)0y=x0(x~y)=yo(y~x).

Lemma 2.10 ([22]). Let (H; ®, -, ~», 1) be a pseudo-hoop. Then for all x,y,z € H:
(1) (X; <) is a meet-semilattice withx Ny = (x > y) ©X =X © (X ~ ¥);
Q)x<y->xandx <y ~ x;

B)x—-yrz=x->yY)A(x—>2z)andx ~yrz=(x~Yy)A (X~ z);

(4) x <yimplies (x > y) ~y=yand (x ~y) >y =Y.

Lemma 2.11. Let (H; ®, -, ~, 1) be a pseudo-hoop. Then forall x,y e H,x > yAX=X >yand X ~ Yy AX =
X ~Yy.

Proof. By replacing z by x in Lemma 2.10 (3). O

Definition 2.12 ([22]). A state pseudo-hoop is a structure (H, o) = (H; ~, -, A, 0,0, 1), where (H; ~, -, A, 0,1)
is a bounded pseudo-hoop and o : H — H is a unary operator on H, called state operator (or internal state),
satisfying the following conditions for all x,y € H:

(SHO) 5(0) = 0;

(SH) o(x > y) =0(x) > a(xAny)ando(x ~ y) = o(x) ~ ac(x A Y);

(SH2) s(x0y)=c(x) @a(x ~x0Yy)=0c(y >x0y)0ao(y);

(SH3)o(o(x) @ a(y)) = o(x) @ a(y);

(SH4) o(p(x) — o(y)) = 0(x) = o(y) and o(o(x) ~ o(y)) = o(x) ~ o (y).

Note that it follows that x < y implies o(x) < o(y) for all x, y € H in any state pseudo-hoop (H, o).

3 Generalized state maps on pseudo equality algebras

In this section, we introduce a new notion of generalized state map by extending the domain X of a state
operator to a more universal setting Y. Moreover, according to the structure of Y, we give two special types of
generalized state maps, that is, generalized states and generalized internal states.

Definition 3.1. Let (X;~1, ~1, A1, 11) and (Y; ~2, 2, A2, 12) be two pseudo equality algebras. Amap - X - Y
is called a generalized state map from X to Y (or briefly, GS-map) if it satisfies the following conditions for all
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X,y eX:

(GSX1) p1(x) <2 u(y), whenever x <1 y;

(GSX2) p((x A1 y) ~1 x) = p(y) ~2 p(((x Ary) ~1 X) w1 y) and pu(x 1 (X A1Y)) = p(y ~1 (X 1 (X A1Y))) -2
n(y);

(GSX3) p(x) ~2 p(y) € p(X) and u(x) =2 p(y) € p(X);

(GSX4) p(x) ny u(y) € p(X).

Moreover, we give two special types of generalized state maps from X to Y.

(DIfY = ([0, 1];~r, «r, Ar, 1), then 11 is called a generalized state (or briefly, G-state) from X to [0, 1];

Q) If Y = X, then p is called a generalized internal state (or briefly, GI-state) from X to X.

Example 3.2. Let (X;~1,~1,A1,11) and (Y;~2, -2, A2,12) be two pseudo equality algebras. Define a map
w:X—>Ybyu(x)=1;forall x € X, then p is a GS-map from X to Y, in this case, p is called trivial.

Example 3.3. Let X = {01, a1, b1,¢1,11} and Y = {02, az, b, 15} in which the order of elements in X and Y
are as the following Hasse diagrams, respectively:

SN LN,
NG AN

And the operations ~1, -1 on X and ~,, -, on Y may be given as follows, respectively.

~ |0 a b g 14 1|0 ai b1 e 1
0; (13 by 01 by 0 0; |13 1 1 1 1
a |1, 1; ¢ b1 a a |[¢ 11 1 1 1
by |13, 1; 1; by b by a1 a1 1 ¢ 1;
a1 13 aa 1 ¢ |0 b1 by 1, 1
L, |11 1, 1, 1, 1, 1, |04 a1 by ¢ 1
~ |0 a by 1 “2 |02 a by 1
0 |1, by a 0 0 |1, by 1 b
a | b 1 by a; a | b 1 by a
b | aa by 1 by b | b b 1, b;
1, (13 as bz 1, 1, 0, ar bz 1,

Then (X;~1, -1, A1, 11) and (Y;~2, -2, A2, 12) are two pseudo equality algebras. Let the map 11 : X — Y be a
GS-map from X to Y. Taking x = a,y = 0in (GSX2), we get that ;u(b1) = n(01) ~2 p(b1) and u(b1) = 1,. This
shows that there doesn’t exists any nontrivial GS-map from X to Y.

Example 3.4. Let X = {01, a1,b1,11} with01 < a1 < b1 < 11 and Y = {03, az, b2, 1, } be given by Example
3.3. Define the operations ~1, -1 on X as follows:
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~1 |0 a b1 1, 1|01 a1 by 1
01 11 ay a 01 01 14 11 11 1,
a |11 11 a a ap ([ by 1, 1, 1
by | 1 1 1; b by |0 a 1, 1;
L |1 1, 1, 1 1; |00 a1 b1 14

Then (X;~1,-1,A1,11) is a pseudo equality algebra. We define a map pn : X - Y by u(01) = p(ar) =
az, p(b1) = u(11) = 1,. One can check that 1 is a GS-map from X to Y.

Example3.5. Let X = {Ol,al,bl, Ci, 11} with 01 <ap < b1 <Cc1 <1 and Y = {02, ar, bz, 12} begiven by
Example 3.3. Define the operations ~1, -1 as follows:

~ |0 a b1 a1 1[0 a b1 a1,
0; |1, 0 0, 01 O0g 0, | L, 1, 1, 1, 14
a |1, 1; by b1 a a |0 1, 1, 1; 1
b |1, 1, 1, by b by |00 ¢ 1 1; 1
a |l I, 1 1, a €1 |0 a b 1, 1,
L | 1L 1, 1, 1, 1 1; |0 a by o 1

Then (X; ~1, -1, A1, 11) is a pseudo equality algebra. One can check that the map . : X — Y defined by 11(01) =
02, pu(ar) = pu(b1) = p(c1) = pu(l1) =1y isa GS-map fromX to Y.

Example 3.6. Let (X;~1, -1, A1, 11) be a pseudo equality given in Example 3.4. Define a map u : X — [0,1]
by 11(01) = 0, u(ai) = p(b1) = 0.5, u(11) = 1. Then one can check that . is a G-state from (X; ~1, ~1, A1, 11)
to ([O, 1]; ~R,s AR, 1).

Example 3.7. Let X = {0, a, b, 1} in which the Hasse diagram and the operations ~, - on X are as follows:

Then (X; ~, ~, A, 1) is a pseudo equality algebra. Defineamap 11 : X - X by u(0) = p(a) = b, u(b) = u(1) = 1.
One can check that y. is a GI-state from X to X.

Proposition 3.8. Let (X;~1,+1, A1, 11) and (Y;~2,+2, A2, 12) be two pseudo equality algebras, and . be a
GS-map from X to Y. Then for all x, y € X, the following axioms hold:

(G1) u(11) = 125

(G2) p(x) =2 u(y) € p(X) and p(x) ~2 p(y) € p(X);

(G3) u(X) is a subalgebra of Y;
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(G4) p(x A1 y) <2 p(x) A2 u(Y);

(G5)y <1 ximplies p(y) ~2 pu(x) = pu(x) =2 pu(y), p(x) =2 p(y) = p(x) ~2 p(y);

(G6) y <1 x implies pu(y ~1 X) <z p(y) ~2 p(x) and pu(x ~1y) <2 p(x) =2 u(y);

(G7) x, y comparable implies u(x —1y) <2 p(x) =2 p(y) and pu(x ~1y) <2 p(x) ~2 p(¥);
(G8) Ker(p) := {x € X : u(x) = 1,} is a deductive system of X.

Proof. (G1) By taking x = y = 1; in (GSX2).

(G2)(G3) Evident by (GSX3) and (GSX4).

(G4) By (GSX1) and x A1 y <1 X, Y.

(G5) Let y <1 x. Then u(y) <2 u(x). Hence by Proposition 2.4, we have u(y) ~2 p(x) = p(x) -2 u(y) and
1(x) w2 p(y) = p(x) ~2 u(y).

(G6) Let y < x. Then by (GSX2), we have p(y ~1 x) = pu(y) ~2 u((y ~1 x) ~1 y) and pu(x -1 y) = u(y ~1
(x ~1y)) ~2 p(y). On the other hand, according to 2.4 (2), we gety <1 X <1 (Y ~1 X) ~1yandy <1 X <1 ¥ ~1
(x ~1y). Hence pu(y) <2 pu(x) <2 p((y ~1 x) ~1y) and u(y) <2 pu(x) <2 p(y ~¢ x ~1y)). It follows from (X4)
that yu(y) ~2 p((y ~1 X) »1y) <2 u(y) ~2 p(x) and p(y ~1 (X =1 y)) ~2 u(y) <2 p(x) -2 p(y). Therefore
1y ~1 x) <2 p(y) ~2 p(x) and p(x ~1y) <2 p(x) =2 p(y).

(G7) Let y < x. Then by Proposition 2.4 and (G5), (G6), we get that pu(x =1 y) = pu(y ~1 x) <2 u(y) ~2
p(x) = p(x) =2 p(y) and p(x ~1y) = p(x ~1y) <2 pu(x) =2 p(y) <2 p(x) ~2 p(y)-

(G8) Clearly, 11 € Ker(u) by (G1). Let x, y € X such that x, x -1 y € Ker(u). Then p(x) = p(x -1 y) = 15.
Sincey <1 x -1 yand x <1 (x =1 y) ~1 Y, it follows from (G7) that 1 = pu(x) <2 u((x >1¥) ~1¥) <2 p(x =1
y) ~1 u(y) =1 ~2 pu(y) = u(y). Hence u(y) = 1, and so y € Ker(p). Therefore Ker(y) is a deductive system
of X. O

4 States on pseudo equality algebras

In this section, we introduce the notions of Rie¢an states and state-morphisms on pseudo equality alge-
bras. We mainly study some of their properties and investigate the relations between Riecan states, state-
morphisms and Bosbach states.

Definition 4.1 ([21]). Let (X;~, -, A, 0, 1) be a bounded pseudo equality algebra. A function's : X — [0, 1] is
said to be a Bosbach state on X, if the following hold:

(BS1) s(0) =0ands(1) =1;

(BS2)s(x) +s(x = y) =s(y) +s(y = x);

(BS3)s(x) +s(x ~y) =s(y) +s(y ~ x),

forallx,y € X.

Example 4.2. Let (Y;~2, 2, A2, 02, 12) be a bounded pseudo equality algebra given by Example 3.3. Define a
functions : Y — [0,1] by s(02) = 0,s(az) = s(b2) = 0.5,s(12) = 1. Then one can check that s is a unique
Bosbach stateon Y.

Example 4.3. Let (X;~1, 1, A1, 01, 11) be a pseudo equality algebra defined by Example 3.5. Then one can
check that the function s : X — [0, 1] defined by s(01) = 0,s(a1) = s(b1) = s(c1) = s(11) = 1is a unique
Bosbach state on X.

The following example shows that not every pseudo equality algebra has a Bosbach state.
Example 4.4. Let (X;~1,-1, A1, 01, 11) be a bounded pseudo equality algebra given by Example 3.3, and the

functions : X — [0, 1] defined by s(01) = 0,s(a1) = o, s(b1) = 3,s(c1) =~,s(11) = 1, be a Bosbach state on
X. In (BS2), (BS3), taking x = 01,y = b1, we obtain 3 = 1 and 3 + v = 1, respectively. Hence - = 0. On the other
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hand, taking x = 01,y = a1, weget a+ 3 = 1 and o+~ = 1, respectively. According to 3 = 1, it implies o = 0 and
so v = 1, which is a contraction. This shows that X admits no Bosbach state.

Proposition 4.5 ([21]). Let (X;~, -, A, 0, 1) be a bounded pseudo equality algebra and s be a Bosbach state
on X. Then for all x, y € X, the following hold:

(DIfx <y, thens(x) <s(y);

) Ifx<y, thens(y —» x) =1-5s(y) +s(x) =s(y ~ x);

B)s(x—y)=1-s(x)+s(xry)=s(x~y);

(4)s(x")=1-s(x) =s(x");

(B)s(x™™) =s(x) =s(x"7).

Proposition 4.6. Let (X;~,«, A, 0, 1) be a bounded pseudo equality algebra and s : X — [0, 1] be a function
such that s(0) = 0. Then the following conditions are equivalent:

(1) s is a Bosbach state;

@ Ifx<y, thens(y - x)=1+s(x)-s(y) =s(y ~ x);

B)s(x—y)=1-s(x)+s(xAy)=s(x~Y).

Proof. (1) = (2) By Proposition 4.5 (2).
(2) = (3) By this proof of Proposition 4.5 (3).
(3) = (1) Assume (3) holds and x,y € X. Thens(1) =s(x > 1) =1-s(x) +s(x A1) =1-s(x) +s(x) = 1.
Also,s(x)+s(x > y) =s(x)+1-s(x)+s(xAy) =1+s(xay)=s(y)+1-s(y) +s(xry) =s(y) +s(y = x).
Similarly, we can prove (BS3). Thus s is a Bosbach state on X.

Let (X;~, A, 0, 1) be a bounded pseudo equality algebra and s : X — [0, 1] be a Bosbach state on X, we
define the kernel of s by Ker(s) := {x e X : s(x) = 1}. O

Proposition 4.7. Let (X;~, -, A, 0, 1) be a bounded pseudo equality algebra and s be a Bosbach state on X.
Then Ker(s) is a deductive system of X.

Proof. Assume that s is a Bosbach state on X. Then for any x, y € X, it follows from s(1) = 1 that 1 € Ker(s).
Letx,x — y € Ker(s). Then s(x) = s(x - y) = 1. Since x < y — x, then 1 = s(x) < s(y — x). This implies that
s(y - x) = 1. Again applying (BS2), we obtain s(y) = 1 and thus y € Ker(s). Therefore, Ker(s) is a deductive
system of X.

Let (X;~, A, 0, 1) be a bounded equality algebra and s be a Bosbach state on X. Then by Proposition
4.7 and [20] Proposition 3.9, the relation 6 : x0y iff x ~ y € Ker(s) is a congruence relation on X. In this
case, we denote the quotient algebra X/6 by X/Ker(s) and the congruence class of x € X by x/Ker(s), where
x/Ker(s) ny/Ker(s) = (x ny)/Ker(s), x/Ker(s) ~ y/Ker(s) = (x ~y)/Ker(s), x/Ker(s) < y/Ker(s) iff
x/Ker(s) ny/Ker(s) = x/Ker(s). O

Definition 4.8. A pseudo equality algebra (X; ~, ~, A, 1) is said to be
e good provided that x™~ = x~~ for all x € X;
e involutive provided that x™~ = x = x~~ forall x € X.

Example 4.9. (1) In Example 3.5 it is evident that (X; ~1, -1, A1, 11) is an involutive pseudo equality algebra.
(2)Let X ={0,a,b,c,1} withO < a < b < ¢ < 1 and the operations ~, - be given as follows:

m oA O Q O
MR R R RO
N R R RS
L N N T -
N R OnNn
m A O Q Ol
m A O Q O
QO - T N O
Q OO R RnQ
[~ < N O O -
A RN R R RN
N R R R R
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One can check that (X; ~, ~, A, 1) is a good pseudo equality algebra, but it is not involutive, sincea™™ = a”~ =
b +a.

Theorem 4.10. Let (X;~,A,0,1) be a bounded equality algebra and s be a Boshach state on X. Then
(X/Ker(s);~, n,0/Ker(s), 1/Ker(s)) is an involutive equality algebra.

Proof. Assume s is a Bosbach state on X. First, it follows that (X/Ker(s);~, A,0/Ker(s),1/Ker(s)) is a
bounded equality algebra. In the following, we prove that X/Ker(s) is involutive. By (S2), we have s(x)+s(x —
X7) =s(x7)+s(x~ — x).Since s(x) = s(x” ") by Proposition 4.5 (5), then s(x - x™7) = s(x™~ - x).
Again, x < x~~ by Proposition 2.6 (3), we get s(x - x™~) = s(1) = 1. This implies s(x™~ — x) = 1 and so
X~ — x € Ker(s). Notice that x < x™, we obtain x™~ ~ x = x_~ — x € Ker(s). Hence x™~0x. This shows
x~"/Ker(s) = x/Ker(s). Therefore, (x/Ker(s))™™ = x"~/Ker(s) = x/Ker(s) and this proof is complete. ~ [J

Definition 4.11. Let (X;~,-,A,0,1) be a bounded pseudo equality algebra. A state-morphism on X is a
functionm : X — [0, 1] such that

(M1) m(0) = 0;

M2) m(x - y)=m(x) =g m(y) =m(x ~y) forallx,y € X.

Proposition 4.12. A state-morphism m is a Bosbach state on a bounded pseudo equality algebra X.

Proof. Let m be a state-morphism on X. Forany x, y € X, m(1) = m(x - x) = min{1,1 - m(x) + m(x)} = 1,
and m(x) + m(x - y) = m(x) + min{1,1 - m(x) + m(y)} = min{1 + m(x), 1 + m(y)} = m(y) + min{1,1 -
m(y) + m(x)} = m(y) + m(y — x). Similarly, we can prove (BS3). This shows m is a Bosbach state on X. [

Proposition 4.13. Let (X;~, -, A, 0, 1) be a bounded pseudo equality algebra and s be a Bosbach state on X.
Then s is a state-morphism on X if and only if s(x A'y) = min{s(x), s(y)} forall x,y € X.

Proof. Let s be a state-morphism on X. Then by Proposition 4.6, s(x Ay) = s(x) +s(x - y) -1 = s(x) +
min{1,1-s(x) +s(y)} - 1 = min{s(x),s(y)} for all x,y € X. Conversely, let s(x A y) = min{s(x),s(y)}
forall x,y € X. Taking x = y = O, then s(0) = 0. Again by Proposition 4.6, we obtain s(x - y) = s(x ~ y) =
1-s(x)+s(xAy)=1-m(x)+min{s(x),s(y)} = min{1,1-m(x) + m(y)} = m(x) -g m(y). Thus sisa
state-morphism on X. O

Example 4.14. Let (Y;~2, -2, A2, 02, 1) be a bounded pseudo equality algebra given by Example 3.3. Define
afunctions: Y - [0,1] by s(02) =0, s(az) = s(b2) =0.5,s(12) = 1. Then one can check that s is a Boshach

state on Y, but it is not a state-morphism on Y since s(ax A by) = s(02) =0 + 0.5 = min{s(az), s(b2)}.

Example 4.15. Let X = {0, a, b, 1} in which the Hasse diagram and the operation ~ on X is below:

N\
%



142 — X.Y.Chengetal. DE GRUYTER

= S ol
o QT =m|O
Q==
S ==
= =

Then (X; ~, A, 1) is an equality algebra [20], where the derived operation — as the above. The function s : X —
[0, 1] is given by s(0) = s(a) = 0,s(b) = s(1) = 1. Then s is a Bosbach state on X. Furthermore, s is a
state-morphism on X, since s(a A b) = s(0) = 0 = min{s(a),s(b)}.

Corollary 4.16. In any linearly ordered bounded pseudo equality algebra (X; ~, -, A, 0, 1), the Bosbach states
coincide with the state-morphisms.

Proposition 4.17. Let (X;~, , A, 0, 1) be a bounded involutive pseudo equality algebra and s be a Bosbach
state on X. Then the following are equivalent:

(1) s is a state-morphism on X;

2)s(x” - y)=min{l,s(x) +s(y)};

B)s(y” ~x"7) =min{1,s(x) +s(y)},

forallx,y ¢ X.

Proof. (1) = (2) Let s be a state-morphism on X. Then by (M2) and Proposition 4.5, we get s(x™ - y™~) =
min{1,1-s(x")+s(y ")} =min{1,1-1+s(x) +s(y)} = min{1,s(x) +s(y)}, forall x, y € X.

(2) = (3) Assume that (2) holds. By Proposition 2.6 (7), x” -y~ =y~ ~ x" . Hence s(y~ ~ x"7) =
s(x” = y™7) =min{1,s(x) +s(y)}.

(3) = (1) Assume that (3) holds. Since X is involutive, then s(x ~ y) = s(x™™ ~ y™7) = min{1,s(y) +
s(x”)} = min{1,1 - s(x) + s(y)}. Again since s is a Bosbach state, we have s(0) = 0. Hence s is a state-
morphism on X. O

Definition 4.18. Let (X;~,+, A,0, 1) be a bounded pseudo equality algebra. Two elements x,y € X are said
to be orthogonal, if x™~ < y~, we write by x1y. If x, y € X are orthogonal, we define a binary operation + on X by
X+y=y —->x".

Proposition 4.19. In any bounded pseudo equality algebra (X; ~, -, A, 0, 1), the following properties hold for
all x,y € X:

@ x1yiffy™ <x7;

@) x1yiffx <y andxiyiffy <x~;
B)xlyimpliesx +y=x" ~y~~;

(4)xix" andx+x" =1;

G)x"1xand x” +x=1;
(6)01xand0+x=x"";

(7)x10andx+0 =x"";

(8) x <yimpliesxly andx+y =y~ = Xx";
(9)x <yimpliesy”1xandy” +x=y ~ x"".

Proof. (1) Let x1y, x,y € X. Then x_~ < y~. By Proposition 2.6 (3) and (4), y™~ < x™~~ = x. Conversely, let
y~~ < x™. Using Proposition 2.6 (3) and (4) again, we get x "~ <y~ ™~ =y".

(2) Let xLy. Then by (2) and Proposition 2.6 (3), x < x™~ <y~ andy <y~ <x™.

(3) Let xLy. Since x~ ~ y~~ = ~ — x~~ by Proposition 2.6 (7), we have x + y = x~ ~ y™~.

(4)Sincex™™ <x ",thenxix andx+x =x"—-x " =1.

(5)Sincex™™ <x",thenx"1xand x” +x=x"" - x"" = 1.

(6) By Proposition 2.6 (2),07" =0 < x”.Hence O1x,and 0 +x=x" - 0" =x"->0=x"".

(7) By Proposition 2.6 (1), x™~ < 1 = 0~. Hence x10. Again by Proposition 2.4 (10), we get that x + 0 = 0~ —



DE GRUYTER Generalized state maps and states on pseudo equality algebras =— 143

X "T=1->x"=x".
(8) Let x < y. Then by Proposition 2.6 (5), x ~ <y ~.Hencexly andx+y =y~ —x .
(9) Let x < y. Then by Proposition 2.6 (4) and (5), we have y~ < x” and so y™~~ = y~ < x”. Hence y~ 1x and

Yy +x=x" -y " =x" >y~ =y~ X" by Proposition 2.6 (8). O

Definition 4.20. Let (X;~, -, A, 0, 1) be a good bounded pseudo equality algebra. A Rietan state on X is a
functions : X — [0, 1] such that

(RS1)s(1) =1;

(RS2) s(x+y) =s(x) +s(y) wheneverx Ly forallx,y ¢ X.

Example 4.21. Consider the good bounded pseudo equality algebra (X;~, -, A, 0, 1) given by Example 3.7.
Define the functions : X - [0,1] by s(0) = 0,s(a) = s(b) = 0.5,s(1) = 1, then one can check that s is a
Riecan state on X.

Proposition 4.22. Let s be a Rie¢an state on a good bounded pseudo equality algebra (X; ~,~, A, 0, 1). Then
forall x, y € X, the following hold:

(D)s(x)=1-s(x)=s(x");

(2)s(0) =0;

B)s(x™™) =s(x)=s(x"7);

(4) x <yimpliess(x) <s(y)ands(y™™ - x ") =1+s(x) -s(y) =s(y ~x"7);

G)s(x™™ = (xAy) ) =1-s(x)+s(xAy)=s(x~ (xry)"7).

Proof. (1) By Proposition 4.19 (4), we have s(x + x~) = s(x) + s(x™) = s(1) = 1. Hence s(x™) = 1 - s(x).
Similarly, by Proposition 4.19 (5), s(x™) = 1 - s(x).

(2) By (1) and Proposition 2.6 (1), s(0) =s(17)=1-s(1)=1-1=0.

(3) By (2) and Proposition 4.19 (6), s(x™) = s(0 + x) = s(0) + s(x) = 0 + s(x) = s(x). Similarly, by
Proposition 4.19 (7), s(x™") = s(x).

(4) Let x < y. Then by Proposition 4.19 (9), y"1xand y~ +x =y ~ x™ . Hence s(y ~ x"7) = s(y” +x) =
1+s(x)-s(y),andsos(x)-s(y) =s(y” +x)—-1<0.Hence s(x) < s(y).Itis similar that s(y™ - x7) =
1+ s(x) - s(y) by Proposition 4.19 (8).

(5) It follows from x A y < x and (4). O

Theorem 4.23. In any good bounded pseudo equality algebra (X; ~, -, A, 0, 1), each Bosbach state on X is a
Riecan state.

Proof. Assume that s is a Bosbach state on X. Thens(1) = 1. Letx1y for x,y € X. Thenx™~ < y~. By (2),(4) and
(5) of Proposition 4.5, wehave s(x+y) =s(y” > x 7)) = 1-s(y")+s(x™") = 1-(1-s(y)) +s(x) = s(x) +s(y).
Therefore s is a Rie¢an state on X. O

Note that the converse of the above theorem is not true in general. Let us see the following example.

Example 4.24. Let (X;~, -, A, 0, 1) be the good pseudo equality algebra given by 4.9 (2). Defineamap s : X —
[0,1] by s(0) = 0,s(a) = s(b) =s(c) =0.5,s(1) = 1. Then s is a RieCan state on X, but s is not a Bosbach
state on X. Taking x = a,y = b in (BS2), we can obtain that 0.5 + 1 = 0.5 + s(c) and so s(c) = 1, which is a
contradiction.

Theorem 4.25. In any bounded involutive pseudo equality algebra (X;~, -, A, 0, 1), the Bosbach states and
the Riecan states coincide on X.

Proof. Assume that s is a Rie¢an state on X. Then s(1) = 1 and s(0) = 0 by Proposition 4.22 (2). Let x < y,
then by Proposition 4.22 (4), s(y ™™ - x™~) = 1 - s(x) + s(y) = s(y ~ x™7). Since X is involutive, we obtain
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s(y-x)=s(y " ->x")=1-s(x)+s(y) =s(y ~ x"7) =s(y ~ x). Hence by Proposition 4.6, it follows that
s is a Bosbach state on X. O

5 The relations between generalized state maps, states and
internal states on pseudo equality algebras

In this section, we focus on discussing the relations between generalized state maps, states and internal
states on pseudo equality algebras. First, we recall some related notions and results of internal states on
pseudo equality algebras based on [20,21].

Definition 5.1 ([21]). A state pseudo equality algebra is a structure (X, ) = (X; ~, -,

A, ps 1), where (X; ~, -, A, 1) be a pseudo equality algebra and 1 : X — X is a unary operator on X, called an
internal state (or state operator), satisfying the following conditions for all x, y € X:

(8X1) u(x) < u(y), whenever x < y;

(SX2) p((x ny) ~x) = u(y) ~ u(((x AY) ~X) = y), (X~ (x AY)) = p(y ~ (X~ (X AY))) ~ pu(y);

(8X3) pu(pu(x) ~ p(y)) = p(x) ~ p(¥), p(u(x) = p(y)) = p(x) « p(y);

(5X4) p(pu(x) A p(y)) = p(x) A p(y).

It is clear that a state equality algebra (see [20]) is a state pseudo equality algebra, a pseudo equality algebra
can be seen as a state pseudo equality algebra.

Proposition 5.2. Let (X, 1) be a state pseudo equality algebra. Then for all x, y € X, we have:
@ p(p(x)) = p(x);
) p(p(x) = p(y)) = u(x) = p(y) and p(u(x) ~ p(y)) = p(x) ~ w(y).

Proof. (2) is evident and (1) is similar to the proof of Proposition 5.6 in [20]. O

Definition 5.3. Let (X;~, -, A, 1) be a pseudo equality algebra. A strong internal state p on X is an internal
state on X satisfying:

(8X5) p(x = y) = u(x) = p(x Ay), p(Xx ~ y) = p(x) ~ p(x ny) forallx, y € X.
Accordingly, the pair (X, ) is said to a strong state pseudo equality algebra.

Example 5.4. Let (X;~, -, A, 1) be a pseudo equality algebra given in Example 4.9. Defineamap p : X - X
by u(0) = 0, u(a) = u(b) = b, u(c) = p(1) = 1. Then we can calculate that (X, ) is a strong state pseudo
equality algebra.

Proposition 5.5. Let (H, o) be a state pseudo-hoop. Then (H, o) is a strong state pseudo equality algebra,
wherex Ay =x0 (X ~y),x~y=y—>xandx~y=x~y.

Proof. Let (H, o) be a state pseudo-hoop. Then according to Example 2.6 of 3], (H; ~, -, A, 0, 1) is a bounded
pseudo equality algebra. In the following, we will show that o is a strong internal state on H. Clearly,
(§X0),(SX1) and (SX5) hold. (SX3) and (SX4) follow from (SH3) and (SH4). Next we prove (SX2). By Lemma 2.11
and (SH2), wehave o(x Ay ~x) =o(x > xAYy) =c(x > y),and a(y) ~a((x Ay ~x) «y) =o((Xx > XAY) ~
y) > o(y)=o((x>y)~y) > o(y)=c(x>y)~ ((x >y)ry)) = oy) = (c(x > y) ~a(y)) > o(y).
Since y < x — y by Lemma 2.10 (2), then o(y) < o(x — y). Hence by Lemma 2.10 (4), we obtain that
o(x > y) = (c(x > y) ~oa(y)) > o(y). This shows that c(x Ay ~ x) = a(y) ~ o((x Ay ~ x) ~ y).In
a similar way, we can prove o(x « X AY) =a(y ~ (X« x AY)) « a(y)- O
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Remark 5.6. (1) In any pseudo equality algebra, a strong internal state is an internal state, but the converse is
not true in general. For example, let X = {0, a, b, c,1} with0 < a < b < ¢ < 1 and the operations ~, -~ be given
as follows:

N A S a O
[ O Sy N K~
N R R R OIS
LN N O
[N~ I~ R~
N A T Q Ok
m A S Q QS
QO NN KO
Q Q9 A R RS
S o R R RC
A RNk RN
[ SO Oy O Y

Then one can check that . is an internal state on X, but 1 is not a strong internal state, because u(b — a) =
p(brna~b)=pu(b)=0%1=pu(b)—> u(a).

(2) In any bounded pseudo equality algebra, a strong internal state ;1 does not necessarily satisfy the condition
u(0) = 0. For example, let (Y;~2, -2, A2, 12) be a pseudo equality algebra given by Example 3.3. Define a map
w:Y = Ybyu(02) = u(b2) = bz, p(az) = u(12) = 1,. Then one can check that (Y, 1) is a strong state pseudo
equality algebra.

Proposition 5.7. Let (X, 1) be a strong state bounded pseudo equality algebra with 1,(0) = 0. Then for all
X,y eX:

@D p(x7) = p(x)” and u(x”) = p(x)";

(2) x1y implies p(x) Lu(y) and p(x +y) = pp(x) + p(y), p(p(x) + p(y)) = p(x) + p(y);

B) u(x = y) < p(x) = p(y) and pu(x ~ y) < pu(x) ~ p(y). If x, y are comparable, we have ji(x — y) = u(x) —
u(y) and ji(x ~y) = p(x) ~ u(y).

Proof. (1) By (SX0) and (SX5), u(x™) = u(x — 0) = pu(x) — p(0) = u(x) — 0 = u(x)~. In a similar way, we can
get that u(x™) = u(x)".

(2) Let x1y. Then x™~ < y~. By (SX1) and (1), we have pu(x)™ < p(y)” and pu(x +y) = p(y™ - x77) =
p(y™) = p(x77) = p(y)” - w(x)™" = p(x) + u(y). By Proposition 5.2 (2), p(u(x) + u(y)) = p(p(x)” -
n(y)™") = p(x)” = pu(y)™" = p(x) + u(y).

(3) Since xAy <y, then u(xAy) < u(y). Hence by (SX2) and Proposition 2.4 (3), we have u(x — y) = u(x) —
p(xny) < p(x) - p(y). Similarly, u(x ~ y) < p(x) ~ p(y). Ifx <y, then u(x - y) = p(1) = 1 < p(x) - p(y).
Hence pu(x ~ y) = p(x) ~ p(y).If y < x, then by (SX2), we have pu(x — y) = u(x) = u(x Ay) = p(x) - p(y)-
The other part is similar. O

Definition 5.8. ([21]) Let (X;~, -, A, 1) be a pseudo equality algebra. A homomorphism . : X — X is called
an internal state-morphism (or state-morphism operator) if > = p, that is pu(;u(x)) = pu(x) for all x € X, and the
pair (X, p) is called a state-morphism pseudo equality algebra.

According to the definition of an internal state-morphism 4 on a pseudo equality algebra, it follows that x is
isotone and p preserves the operations — and ~». Note that in any pseudo equality algebra (X; ~, -, A, 1), the
identity map Idx on X is an internal state-morphism.

By Lemma 2.5 we can get the following theorem.

Theorem 5.9. Let (X;~, -, A, 1) be a pseudo equality algebra, and . : X — X be an internal state-morphism
on X. Then . is a strong internal state on X. Of course, p is also an internal state on X.

Note that the converse of Theorem 5.9 is not true in general.

Example 5.10. In Example 5.4, the map p.is a strong internal state on X, but it is not an internal state-morphism
onX, because (b~ a)=pu(b)=b+1=b-b=pu(b)-ula).
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In the following, we discuss the relations between generalized state maps, states and internal states on
pseudo equality algebras. First, we give the relations between states and (strong) internal states on pseudo
equality algebras.

Theorem 5.11. Assume that (X;~,, A,0, 1) is a good bounded pseudo equality algebra, and . is a strong
internal state with (0) = 0 on X. If s is a RieCan state on u(X), then the function s,, : X — [0, 1] defined by
su(x) = s(p(x)) is a Rie¢an state on X.

Proof. Clearly, s, (1) =s(u(1)) =s(1) = 1. Letx, y € X such that x1y. Then by Proposition 5.7 (2), p(x) Lu(y)

and p(x+y) = p(x)+pu(y). Hences, (x+y) = s(u(x+y)) = s(u(x)+p(y)) = s(n(x))+s(1(y)) = 8 (x) +5,.(¥)-
This implies that s, is a Rie¢an state on X. O

Example 5.12. Let (X;~,-,A,0,1) be a good bounded pseudo equality algebra given in 3.7. Define a map
w:X — Xbyu(0) = pu(a) =0,u(b) = u(1) = 1. Then one can check that 1. is a strong internal state on X,
where u(X) = {0, 1}. Moreover, the function s : u(X) — [0, 1] on u(X) defined by s(0) = 0,s(1) = lisa
Riecan state on u(X). It can be calculated that the function s,, : X — [0, 1] defined by

0 ifx=0,a

SH(X)ZS(N(X)):{l b

is a Riecan state on X.

Theorem 5.13. Assume (X, 1) is a state bounded pseudo equality algebra with 11(0) = 0. If s is a Bosbach state
on u(X) and p preserves — and ~, then the function s,, : X — [0, 1] defined by s,,(x) = s(u(x)) is a Boshach
state on X.

Proof. Clearly, s,,(0) = s(u(0)) =s(0) =0and s, (1) = s(u(1)) = s(1) = 1. If u preserves —, then s, (x) +
Su(x = y) = s(u(x)) +s(u(x = y)) = s(u(x)) +s(u(x) = u(y)) = s(u(y)) +s(u(y) > n(x)) = s(u(y)) +
s(u(y = x)) = 5,(y) + su(y — x). This shows that s,, is a Bosbach state on X. In a similar way, since p
preserves ~», we can show that s, (x) + s, (x ~ y) = s,(y) + su(y ~ x). It follows that s,,(x) is a Bosbach
state on X. O

Example 5.14. Let (X;~, «, A, 0, 1) be a bounded pseudo equality algebra given in Example 3.7. Define a map
w:X —> Xbyu(0) = u(b) = 0,u(a) = u(1) = 1. Then one can check that . is an internal state on X and
w preserves — and ~, where p(X) = {0, 1}. Moreover, the function s : u(X) — [0, 1] on u(X) defined by
s(0) = 0,s(1) = 1is a Bosbach state on p(X). It can be calculated that the function s,, : X — [0, 1] defined by

0 ifx=0,b

Su(X)ZS(M(X)):{l ot

is a Bosbach state on X.

Corollary 5.15. Let (X, u) be a state-morphism bounded pseudo equality algebra and s be a Bosbach state on
w(X). Then the function s,, : X — [0, 1] defined by s,.(x) = s(u(x)) is a Boshach state on X.

By Proposition 5.7 (3) and the above corollary, we can get the following corollary immediately.

Corollary 5.16. Let (X, ;1) be a strong state linearly ordered bounded pseudo equality algebra and s be a
Bosbach state on u(X). Then the function s, : X — [0, 1] defined by s, (x) = s(u(x)) is a Bosbach state
on X.

The above results indicate that by using (strong) internal state (or internal state-morphism) x, one can extend
any state of the image space p(X) into the state of the entire space X.
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Next, we discuss the relationship between the generalized states (namely, G-states) and the states on
pseudo equality algebras.

Theorem 5.17. Assume that (X;~, -, A, 0, 1) is a bounded pseudo equality algebra, and m : X — [0,1]is a
state-morphism on X. Then m is a G-state from (X; ~, -, A, 0,1) to ([0, 1]; ~g, AR, 1).

Proof. Suppose m is a state-morphism on X. (GSX1) holds as m is a Bosbach state by Proposition 4.12. Let
x,y € X. Then m(x) ng m(y) = min{m(x), m(y)} e m(X). Let m(x) < m(y). Then m(x) ~g m(y) = m(y) —g
m(x) = m(y — x) € m(X). Hence (GSX3) and (GSX4) hold. Next, we prove (GSX2). It is obvious that Lemma
2.5 results in (GSX2) and therefore the proof is finished. O

The following example indicates that the converse of Theorem 5.17 is not true in general.

Example 5.18. In Example 3.6, the map 1. : X — [0, 1] is a G-state, but . is not a state-morphism on X since
u(b —a)=p(a)=0.5#1=pu(b) >r pu(a).

According to Theorem 5.17, Corollary 4.16 and Theorem 4.25, we can obtain the following corollary.

Corollary 5.19. Assume (X;~,~, A, 0, 1) is a bounded pseudo equality algebra and s : X — [0, 1] is a function
fromX to [0, 1].

(1) If X is linearly ordered and s is a Bosbach state on X, then s is a G-state from (X;~, -, A, 0, 1) to ([0, 1]; ~r
» AR> 1);

(2) If X is involutive and s is a Riecan state, then s is a G-state from (X; ~, -, A, 0,1) to ([0, 1]; ~g, Ag, 1).

Finally we discuss the relations between generalized internal states (namely, GI-states) and internal states,
internal state-morphisms on pseudo equality algebras.

Theorem 5.20. Let (X;~, -, A, 1) be a pseudo equality algebra. Then
(1) an internal state ;. on X is a GI-state from X to X;
(2) a Gl-state ;. from X to X is an internal state on X if and only if 1 = pu.

Proof. (1) From Proposition 5.2 (2) 1(X) is a subalgebra of X, which implies (GSX3) and (GSX4) hold. Thus p
is a GI-state from X to X.

(2) Assume that . is an internal state on X. Then ;% = ;2 by Proposition 5.2 (1). Conversely, let ;. be a G-state
from X to X and p? = . Then it follows from (GSX4) that there exists a € X such that z(x) A u(y) = u(a) for
any x, y € X. Hence we have u(u(x) A u(y)) = u(p(a)) = p(a) = u(x) A p(y) and so (SX4) holds. Similarly,
we can prove (SX3). O

Example 5.21. In Example 3.7, p is a GI-state from X to X, but . is not an internal state on X since p(u(a)) =
n(b) =1#b = p(a).

Theorem 5.22. Let (X;~, -, A, 1) be a pseudo equality algebra and p be an internal state-morphism on X.
Then . is a GI-state from X to X.

Proof. Similar to the proof of Theorem 5.17. O

Note that the converse of the above theorem is not true in general according to the following example.

Example 5.23. In Example 3.7, p is a GI-state from X to X, but p is not an internal state-morphism on X since
p(p(a)) = u(b) =1+ b = p(a).
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6 Conclusions

In this paper, we introduce a new notion of generalized state map (or simply, GS-map) by extending the
domain X of a state operator to a more universal setting Y. Moreover, we define two types of special
generalized state maps, namely, generalized states from X to ([0, 1]; ~r, -r, Ar, 1) (or simply, G-states), and
generalized internal states from X to X (or simply, GI-states). Also we introduce and investigate Bosbach states
and Riecan states. We give the relations between generalized state map, states and internal states. We come
to the conclusions that one can extend any state of the image space 1(X) into the state of the entire space X
by using an internal state x (or an internal state-morphism ). In addition, another important result is that, in
a sense, generalized state maps can be viewed as a possible united framework of the states and the internal
states, the state-morphisms and the internal state-morphisms on pseudo equality algebras.
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