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Abstract: This paper is devoted to study the existence and regularity of mild solutions in some interpolation
spaces for a class of functional partial di�erential equations with nonlocal initial conditions. The linear part
is assumed to be a sectorial operator in Banach space X. The fractional power theory and α-norm are used
to discuss the problem so that the obtained results can be applied to equations with terms involving spatial
derivatives. Moreover, we present an example to illustrate the application of main results.
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1 Introduction
Let X be a Banach space with norm ∣ ⋅ ∣

∗ and α be a constant such that 0 < α < 1. We denote by C(J, D(Aα
))

the Banach space of all the continuous functions from J to D(Aα
) provided with the uniform norm topology

and D(Aα
) the domain of the linear operator Aα to be de�ned later.

In this paper, by using fractional power of operators and Schauder’s �xed point theorem, we study the
existence and regularity ofmild solutions in some interpolation to the following functional partial di�erential
equations with nonlocal initial conditions

u′(t) + Au(t) = f(t, u(t), u(a1(t)), u(a2(t)),⋯, u(am(t))), t ∈ (0, a], (1)

u(0) =
p
∑
i=1

ciu(ti), (2)

where u(⋅) takes values in a subspace spaces of Banach space X, A ∶ D(A) ⊂ X → X is a sectorial operator,
m is a positive integer number, J = [0, a], a > 0 is a constant, aj ∶ J → J are continuous functions such that
0 ≤ aj(t) ≤ t for j = 1, 2,⋯,m, f ∶ J × (D(Aα

))
m+1

→ X is Carathéodory continuous nonlinear function,
0 < t1 < t2 < ⋯ < tp < a, ci are real numbers, ci ≠ 0, i = 1, 2,⋯, p.
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Nonlocal initial conditions can be applied in physics with better e�ect than the classical initial condition
u(0) = u0. For example, in [1] Deng used the nonlocal condition (2) to describe the di�usion phenomenon
of a small amount of gas in a transparent tube. In this case, condition (2) allows additional measurements
at ti, i = 1, 2,⋯, p, which is more precise than the measurement just at t = 0. In [2], Byszewski pointed out
that if ci ≠ 0, i = 1, 2,⋯, p, then the results can be applied to kinematics to determine the location evolution
t → u(t) of a physical object for which we do not know the positions u(0), u(t1),⋯, u(tp), but we know
that the nonlocal condition (2) holds. Consequently, to describe some physical phenomena, the nonlocal
condition can be more useful than the standard initial condition u(0) = u0. The importance of nonlocal
conditions have also been discussed in [3-6].

In [7], Fu and Ezzinbi studied the following neutral functional evolution equation with nonlocal condi-
tions

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d
dt [x(t) + F(t, x(t)), x(b1(t)),⋯, x(bm(t)))] + Ax(t)

= G(t, x(t), x(a1(t)),⋯, x(an(t))), 0 ≤ t ≤ a,

x(0) + g(x) = x0 ∈ X,

(3)

where the operator −A ∶ D(A) ⊂ X → X generates an analytic compact semigroup T(t) (t ≥ 0) of uniformly
bounded linear operators on a Banach space X, F ∶ [0, a] × Xm+1

→ X, G ∶ [0, a] × Xn+1
→ X, ai, bj, i =

1, 2,⋯, n, j = 1, 2,⋯,m and g are given functions satisfying some assumptions. The authors have proved
the existence and regularity of mild solutions. In the subsequent years, various similar results have been
established by many authors, see for example [8,9].

Recently, Chang and Liu [10] studied the existence of mild and strong solutions in some interpolation
spaces between X and the domain of the linear part for the following semilinear evolution problem with
nonlocal initial conditions:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u′(t) = Au(t) + f(t, u(t)), t ∈ [0, T],

u(0) + g(u) = u0 ∈ X,
(4)

where T > 0, the linear part A is a sectorial operator in X, f and g are given X-valued functions.
The aim of this paper is to establish some existence results of (1) and (2) without assuming Lipschitz

condition on the nonlinear term and complete continuity on the nonlocal condition. The result obtained is a
partial continuation of some results reported in [2,7,10-12]. It is worth mentioning that the theory of fractional
power andα-norm are used to discuss the problems so that the results obtained in this chapter can be applied
to the systems in which the nonlinear terms involve derivatives of spatial variables, and therefore, they have
broader applicability.

The rest of this paper is organized as follows: We introduce some basic de�nitions and preliminary facts
which will be used throughout this paper in section 2. The existence results of mild solutions are discussed in
Section 3 by applying �xed point theorem. In Section 4, we provide some su�cient conditions to guarantee
the regularity of solutions, that is,weobtain the existenceof strong solutions. Finally, an example is presented
in Section 5 to show the applications of the abstract results obtained.

2 Preliminaries
Assume A ∶ D(A) ⊂ X → X be a sectorial operator and −A generates an analytic compact semigroup T(t)
(t ≥ 0) on X. It is easy to see that T(t) (t ≥ 0) is exponentially stable, i.e. there exist constants M ≥ 1 and
δ < 0 such that

∣T(t)∣∗ ≤ Meδt , for each t ≥ 0, (5)

the in�mum of δ
v0 = inf {δ < 0 ∶ ∃M ≥ 1, ∣T(t)∣∗ ≤ Meδt , ∀t ≥ 0}
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is called a growth index of semigroup T(t) (t ≥ 0), and at this point v0 < 0. For each v ∈ (0, ∣v0∣), by the
de�nition of v0, there exists a constant M ≥ 1, such that

∣T(t)∣∗ ≤ Me−vt , for each t ≥ 0. (6)

De�ne an equivalent norm in X by
∥x∥ = sup

t≥0
∣evtT(t)x∣∗, (7)

then ∣x∣∗ ≤ ∥x∥ ≤ M∣x∣∗. We denoted by ∥T(t)∥ the norm of the operator T(t) in space (X, ∥ ⋅ ∥). By (6), we
have

∥T(t)∥ ≤ e−vt ≤ 1, for each t ≥ 0. (8)

and
∥T(ti)∥ ≤ e−vti ≤ e−vt1 < 1, i = 1, 2,⋯, p. (9)

It is well known [13, Chapter 4, Theorem 2.9] that for any u0 ∈ D(A) and h ∈ C1(J, X), the initial value problem
of linear evolution equation (LIVP)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

u′(t) + Au(t) = h(t), t ∈ J,

u(0) = u0,
(10)

has a unique classical solution u ∈ C1((0, a], X) ∩ C(J, D(A)) expressed by

u(t) = T(t)u0 +
t

∫

0

T(t − s)h(s)ds. (11)

If u0 ∈ X and h ∈ L1(J, X), the function u given by (11) belongs to C(J, X), which is known as a mild solution
of the LIVP (10). If a mild solution u of the LIVP (10) belongs to W1,1

(J, X) ∩ L1(J, D(A)) and satis�es the
equation for a.e. t ∈ J, we call it a strong solution.

Throughout this paper, we assume that:
(P0)

p
∑
i=1

∣ci ∣ < 1.

Applying (9) and assumption (P0), we get ∥
∞
∑
i=1

ciT(ti)∥ ≤
p
∑
i=1

∣ci ∣e−vt1 < 1. Combining this with the operator

spectrum theorem, we know that

B ∶= (I −
p
∑
i=1

ciT(ti))
−1

(12)

exists and it is bounded. Furthermore, by Neumann expression, B can be expressed by

B =
∞
∑
n=0

(

p
∑
i=1

ciT(ti))
n
. (13)

Therefore,

∥B∥ ≤
∞
∑
n=0

∥

p
∑
i=1

ciT(ti)∥
n
=

1

1 − ∥
p
∑
i=1

ciT(ti)∥
≤

1

1 −
p
∑
i=1

∣ci ∣
. (14)

To prove our main results, for any h ∈ C(J, X), we consider the linear evolution equation nonlocal problem
(LNP)

u′(t) + Au(t) = h(t), t ∈ J, (15)

u(0) =
p
∑
i=1

ciu(ti). (16)
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Lemma 2.1. If the condition (P0) holds, then the LNP (15)-(16) has a unique mild solution u ∈ C(J, X) given by

u(t) =
p
∑
i=1

ciT(t)B
ti

∫

0

T(ti − s)h(s)ds +
t

∫

0

T(t − s)h(s)ds, t ∈ J. (17)

Proof. By (10) and (11), we know that Eq. (15) has a unique mild solution u ∈ C(J, X)which can be expressed
by

u(t) = T(t)u(0) +
t

∫

0

T(t − s)h(s)ds. (18)

It follows from (18) that

u(ti) = T(ti)u(0) +
ti

∫

0

T(ti − s)h(s)ds, i = 1, 2,⋯, p. (19)

Combining (16) with (19), we have

u(0) =
p
∑
i=1

ciT(ti)u(0) +
p
∑
i=1

ci
ti

∫

0

T(ti − s)h(s)ds. (20)

Since I −
p
∑
i=1

ciT(ti) has a bounded inverse operator B,

u(0) =
p
∑
i=1

ciB
ti

∫

0

T(ti − s)h(s)ds. (21)

By (18) and (21), we know that u satis�es (17).
Inversely, we can verify directly that the function u ∈ C(J, X) given by (17) is a mild solution of the LNP

(15)-(16). This completes the proof.

We recall some concepts and conclusions on the fractional powers of A. Because A ∶ D(A) ⊂ X → X is a
sectorial operator, it is possible to de�ne the fractional powers Aα for 0 < α ≤ 1. Now we de�ne (see [13]) the
operator A−α by

A−αx = 1
Γ(α)

+∞

∫

0

tα−1T(t)xdt, x ∈ X,

where Γ denotes the gamma function. The operator A−α is bijective and the operator Aα is de�ned by

Aα
= (A−α)−1.

We denote by D(Aα
) the domain of the operator Aα.

Furthermore, we have the following properties which appeared in [13].

Lemma 2.2. Let 0 < α < 1. Then:
(i) T(t) ∶ X → D(Aα

) for each t > 0.
(ii) AαT(t)x = T(t)Aαx, for each x ∈ D(Aα

) and t ≥ 0.
(iii) For every t > 0, the linear operator AαT(t) is bounded on X and there exist Mα such that

∥AαT(t)∥ ≤ Mα

tα
.

(iv) For every t > 0, there exists a constant C
′

α such that

∥(T(t) − I)A−α∥ ≤ C
′

αtα.

(v) For 0 < α < β ≤ 1, we get D(Aβ
) ↪ D(Aα

).



Functional partial di�erential equations with nonlocal conditions | 117

D(Aα
) endowed with the norm ∥x∥α = ∥Aαx∥ for all x ∈ D(Aα

) is a Banach space. We denote it by Xα.
From now on, for the sake of brevity, we rewrite that

(t, u(t), u(a1(t)),⋯, u(am(t))) ∶= (t, x(t)). (22)

De�nition 2.3. A function f ∶ J × Xm+1
α → X is said to be Carathéodory continuous provided that

(i) for all x ∈ Xm+1
α , f(⋅, x) ∶ J → X is measurable,

(ii) for a.e. t ∈ [0, a], f(t, ⋅) ∶ ×Xm+1
α → X is continuous.

3 Existence of mild solutions
This section is devoted to the study of the existence of mild solutions for a class of functional partial
di�erential equations with nonlocal initial conditions (1)-(2). In what follows, we will make the following
hypotheses on the data of our problem (1)-(2).
(P1)The function f ∶ J × Xm+1

α → X is Carathéodory continuous and for some positive constant r, there exist
constants q ∈ [0, 1 − α), γ > 0 and function ϕr ∈ L

1
q (J,R+) such that for any t ∈ J and uj ∈ Xα satisfying

∥uj∥α ≤ r for j = 0, 1, 2,⋯,m,

∥f(t, u0, u1,⋯, um)∥ ≤ ϕr(t), lim inf
r→+∞

∥ϕr∥
L
1
q ([0,a])
r

∶= γ < +∞.

Theorem 3.1. Assume that the hypotheses (P0) and (P1) are satis�ed. Then the problem (1)-(2) has at least one
mild solution on C(J, Xα) provided that

a1−α−qMαγ

1 −
p
∑
i=1

∣ci ∣
(

1 − q
1 − α − q

)
1−q

< 1. (23)

Proof. We consider the operator Q on C(J, Xα) de�ned by

(Qu)(t) =
p
∑
i=1

ciT(t)B
ti

∫

0

T(ti − s)f(s, x(s))ds +
t

∫

0

T(t − s)f(s, x(s))ds, t ∈ J. (24)

With the help of Lemma 2.2, we know that the mild solution of the problem (1)-(2) is equivalent to the �xed
point of the operator Q de�ned by (24). In what follows, we shall prove that the operator Q has at least one
�xed point by applying the famous Schauder’s �xed point theorem.

For this purpose, we �rst prove that there exists a positive constant R such that the operator Q de�ned
by (24) maps the bounded closed convex set

DR = {u ∈ C(J, Xα) ∶ ∥u(t)∥α ≤ R, t ∈ J}

toDR. If this is not true, therewould exist ur ∈ Dr and tr ∈ J such that ∥(Qur)(tr)∥α > r for each r > 0.However,
by (9), the condition (P1), Lemma 2.1 and Hölder inequality, we get that

r <∥(Qur)(tr)∥α

≤∥

p
∑
i=1

ciT(tr)B
ti

∫

0

T(ti − s)f(s, x(s))ds∥
α
+ ∥

tr

∫

0

T(tr − s)f(s, x(s))ds∥
α

≤∥B∥
p
∑
i=1

∣ci ∣
ti

∫

0

∥AαT(ti − s)f(s, x(s))∥ds +
tr

∫

0

∥AαT(tr − s)f(s, x(s))∥ds

(25)
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≤

p
∑
i=1

∣ci ∣

1 −
p
∑
i=1

∣ci ∣

ti

∫

0

Mα

(ti − s)α
ϕr(s)ds +

tr

∫

0

Mα

(tr − s)α
ϕr(s)ds

≤

Mα

p
∑
i=1

∣ci ∣

1 −
p
∑
i=1

∣ci ∣
(

ti

∫

0

(ti − s)
−α
1−q ds)

1−q
(

ti

∫

0

ϕ
1
q
r (s)ds)

q

+Mα(

tr

∫

0

(tr − s)
−α
1−q ds)

1−q
(

tr

∫

0

ϕ
1
q
r (s)ds)

q

≤

Mα

p
∑
i=1

∣ci ∣

1 −
p
∑
i=1

∣ci ∣
(

1 − q
1 − α − q

)
1−q

a1−α−q∥ϕr∥
L
1
q ([0,a])

+Mα(
1 − q

1 − α − q
)
1−q

a1−α−q∥ϕr∥
L
1
q ([0,a])

≤
a1−α−qMα

1 −
p
∑
i=1

∣ci ∣
(

1 − q
1 − α − q

)
1−q

∥ϕr∥
L
1
q ([0,a]).

Divided by r on both sides of (25) and then take the lower limits as r → +∞ we get

a1−α−qMαγ

1 −
p
∑
i=1

∣ci ∣
(

1 − q
1 − α − q

)
1−q

≥ 1,

which contradicts with the inequality (23). Therefore, there exists a positive constant R such that the operator
Q maps DR to DR.

Belowwewill verify thatQ ∶ DR → DR is a completely continuous operator. From thede�nition of operator
Q and the assumption (P1) we note that Q is obviously continuous on DR. Next, we shall prove that {Qu ∶ u ∈
DR} is a family of equi-continuous functions. Let u ∈ DR and t′, t′′ ∈ J, t′ < t′′. By (24) one get that

(Qu)(t′′) − (Qu)(t′) ≤ (T(t′′) − T(t′))
p
∑
i=1

ciB
ti

∫

0

T(ti − s)f(s, x(s))ds

+

t′′

∫

t′
T(t′′ − s)f(s, x(s))ds

+

t′

∫

0

[T(t′′ − s) − T(t′ − s)]f(s, x(s))ds

∶= B1 + B2 + B3.

It is obvious that

∥(Qu)(t′′) − (Qu)(t′)∥α ≤
3
∑
k=1

∥Bk∥α.

Therefore, we only need to check ∥Bk∥α tend to 0 independently of u ∈ DR when t′′ − t′ → 0 for k = 1, 2, 3.
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For B1, by the condition (P1), Lemma 2.1 and Hölder inequality, we have

∥

p
∑
i=1

ciB
ti

∫

0

T(ti − s)f(s, x(s))ds∥
α

≤

p
∑
i=1

∣ci ∣

1 −
p
∑
i=1

∣ci ∣

ti

∫

0

∥AαT(ti − s)f(s, x(s))∥ds

≤

p
∑
i=1

∣ci ∣

1 −
p
∑
i=1

∣ci ∣

ti

∫

0

Mα

(ti − s)α
ϕR(s)ds

≤

Mα

p
∑
i=1

∣ci ∣

1 −
p
∑
i=1

∣ci ∣
(

1 − q
1 − α − q

)
1−q

a1−α−q∥ϕR∥L
1
q ([0,a]).

(26)

Combining (26) and the strong continuity of the semigroup T(t) (t ≥ 0), one can easily get that ∥B1∥α → 0
as t′′ − t′ → 0.

For B2, taking assumption (P1), Lemma 2.1 and Hölder inequality into account, we obtain

∥B2∥α ≤

t′′

∫

t′
∥AαT(t′′ − s)f(s, x(s))∥ds

≤

t′′

∫

t′

Mα

(t′′ − s)α
ϕR(s)ds

≤ Mα(
1 − q

1 − α − q
)
1−q

(t′′ − t′)1−α−q∥ϕR∥L
1
q ([0,a])

→ 0 as t′′ − t′ → 0.

For t′ = 0, 0 < t′′ ≤ a, it is easy to see that ∥B3∥ = 0. For t′ > 0 and 0 < ε < t′ small enough, by the condition
(P1), Lemma 2.1, Hölder inequality and the equi-continuity of T(t) (t > 0), we know that

∥B3∥α ≤

ε

∫

0

∥[T(t′′ − t′ + s
2
) − T( s

2
)]AαT( s

2
)f(t′ − s, x(t′ − s))∥ds

+

t′

∫
ε

∥[T(t′′ − t′ + s
2
) − T( s

2
)]AαT( s

2
)f(t′ − s, x(t′ − s))∥ds

≤ 2
ε

∫

0

∥AαT( s
2
)f(t′ − s, x(t′ − s))∥ds

+ sup
s∈[ε,t′]

∥T(t′′ − t′ + s
2
) − T( s

2
)∥

t′

∫
ε

∥AαT( s
2
)f(t′ − s, x(t′ − s))∥ds

≤ 2Mα(
1 − q

1 − α − q
)
1−q

(
ε

2
)
1−α−q

∥ϕR∥L
1
q [0,a] + sup

s∈[ε,t′]
∥T(t′′ − t′ + s

2
) − T( s

2
)∥

Mα(
1 − q

1 − α − q
)
1−q

((
t′

2
)

1−α−q
1−q

− (
ε

2
)

1−α−q
1−q

)
1−q

∥ϕR∥L
1
q ([0,a])

≤ 2Mα(
1 − q

1 − α − q
)
1−q

(
ε

2
)
1−α−q

∥ϕR∥L
1
q ([0,a]) + sup

s∈[ε,t′]
∥T(t′′ − t′ + s

2
) − T( s

2
)∥

Mα(
1 − q

1 − α − q
)
1−q

(
t′ − ε
2

)
1−α−q

∥ϕR∥L
1
q ([0,a])
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→ 0 as t′′ − t′ → 0 and ε→ 0.

As a result, ∥(Qu)(t′′) − (Qu)(t′)∥α → 0 independently of u ∈ DR as t′′ − t′ → 0, which means that Q maps
DR into a family of equi-continuous functions.

It remains to prove that V(t) = {(Qu)(t) ∶ u ∈ DR} is relatively compact in Xα. Obviously it is true in the
case t = 0. Fix t ∈ (0, a], for each ε ∈ (0, t) and u ∈ DR, de�ne

(Qεu)(t) =
p
∑
i=1

ciT(t)B
ti

∫

0

T(ti − s)f(s, x(s))ds +
t−ε

∫

0

T(t − s)f(s, x(s))ds

= T(t)
p
∑
i=1

ciB
ti

∫

0

T(ti − s)f(s, x(s))ds

+T(ε)
t−ε

∫

0

T(t − s − ε)f(s, x(s))ds.

The compactness of T(t) (t > 0) ensures that the sets Vε(t) = {(Qεu)(t) ∶ u ∈ DR} are relatively compact in
Xα. Since

∥(Qu)(t) − (Qεu)(t)∥α ≤

t

∫

t−ε
∥T(t − s)f(s, x(s))∥αds

≤

t

∫

t−ε
∥AαT(t − s)f(s, x(s))∥ds

≤

t

∫

t−ε

Mα

(t − s)α
ϕR(s)ds

≤ Mα(
1 − q

1 − α − q
)
1−q

ε
1−α−q

∥ϕR∥L
1
q ([0,a])

for every u ∈ DR. Therefore, there are relatively compact sets Vε(t) arbitrarily close to V(t) for t > 0. Hence,
V(t) is also relatively compact in Xα for t ≥ 0.

Thus, the Ascoli-Arzela theorem guarantees that Q ∶ DR → DR is a completely continuous operator.
According to the famous Schauder’s �xed point theorem we know that the operator Q has at least one �xed
point u ∈ DR, and this �xedpoint is thedesiredmild solutionof theproblem (1)-(2) on C(J, Xα). This completes
the proof.

If we replace the condition (P1) by the following condition:
(P2)The function f ∶ J × Xm+1

α → X is Carathéodory continuous and there exist a function φ ∈ L
1
q (J,R+)

(q ∈ [0, 1 − α)) and a nondecreasing continuous function ψ ∶ R+ → R+ such that

∥f(t, u0, u1,⋯, um)∥ ≤ φ(t)ψ(
m
∑
j=0

∥uj∥α),

for all uj ∈ C(J, Xα), j = 0, 1, 2,⋯,m, and t ∈ J,

then we have the following existence result.

Theorem 3.2. Assume that the hypotheses (P0) and (P2) are satis�ed. Then the problem (1)-(2) has at least one
mild solution on C(J, Xα) provided that there exists a positive constant R such that

a1−α−qψ((m + 1)R)Mα

1 −
p
∑
i=1

∣ci ∣
(

1 − q
1 − α − q

)
1−q

∥φ∥
L
1
q ([0,a]) ≤ R. (27)



Functional partial di�erential equations with nonlocal conditions | 121

Proof. From the proof of Theorem 3.1, we know that the mild solution of the problem (1)-(2) is equivalent to
the �xed point of the operatorQ de�ned by (24). Inwhat follows,we prove that there exists a positive constant
R such that the operator Q maps the set DR to itself. For any uj ∈ DR, j = 0, 1, 2,⋯,m, and t ∈ J, by (8), (14),
(24), (27), the hypothesis (P2) and Hölder inequality, we have

∥(Qu)(t)∥α

≤ ∥

p
∑
i=1

ciT(t)B
ti

∫

0

T(ti − s)f(s, x(s))ds∥
α
+

t

∫

0

∥AαT(t − s)f(s, x(s))∥ds

≤

p
∑
i=1

∣ci ∣

1 −
p
∑
i=1

∣ci ∣

ti

∫

0

ψ((m + 1)R)Mα

(ti − s)α
φ(s)ds +

t

∫

0

ψ((m + 1)R)Mα

(t − s)α
φ(s)ds

≤

ψ((m + 1)R)Mα

p
∑
i=1

∣ci ∣

1 −
p
∑
i=1

∣ci ∣
(

ti

∫

0

(ti − s)
−α
1−q ds)

1−q
(

ti

∫

0

φ
1
q (s)ds)

q

+ψ((m + 1)R)Mα(

t

∫

0

(t − s)
−α
1−q ds)

1−q
(

t

∫

0

φ
1
q (s)ds)

q

≤
a1−α−qψ((m + 1)R)Mα

1 −
p
∑
i=1

∣ci ∣
(

1 − q
1 − α − q

)
1−q

∥φ∥
L
1
q ([0,a])

≤ R,

which implies Q(DR) ⊂ DR. By adopting a completely similar methodwhich used in the proof of Theorem 3.1,
we can prove that the problem (1)-(2) has at least onemild solution on C(J, Xα). This completes the proof.

Similarly to Theorem 3.2, we have the following result.

Corollary 3.3. Assume that the hypotheses (P0) and (P2) are satis�ed. Then the problem (1)-(2) has at least
one mild solution on C(J, Xα) provided that

lim inf
r→+∞

ψ((m + 1)r)
r

<

1 −
p
∑
i=1

∣ci ∣

a1−α−qMα∥φ∥
L
1
q [0,a]

(
1 − q

1 − α − q
)
q−1

. (28)

4 The regularity of solutions
In this section, we discuss the existence of strong solutions for the problem (1)-(2), that is, we shall provide
conditions to allow the di�erential for mild solutions of the problem (1)-(2). To do this, we need the following
lemma:

Lemma 4.1 ([12]). If X is a re�exive Banach space, then Xα is also a re�exive Banach space.

Theorem 4.2. Let X be a re�exive Banach space. If there exists α′ ∈ (α, 1), such that the hypothesis (P0),
(P3)there exists a positive constant L, such that for any t′′, t′ ∈ J and xj , yj ∈ Xα, j = 0, 1, 2,⋯,m,

∥f(t′′, x0, x1,⋯, xm) − f(t′, y0, y1,⋯, ym)∥ ≤ L(∣t′′ − t′∣α
′−α

+
m
∑
j=0

∥xj − yj∥α)

(P4)There exist constants lj > 0, j = 1, 2,⋯,m, such that for any t′′, t′ ∈ J,

∣aj(t′′) − aj(t′)∣ ≤ lj ∣t′′ − t′∣, j = 1, 2,⋯,m,
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(P5) a
1−αLMα

1−α (1 +
m
∑
j=1

lα
′−α

j ) < 1,

hold, then the problem (1)-(2) has a strong solution.

Proof. Let Q be the operator de�ned in the proof of Theorem 3.1. By the conditions (P0), (P3) and (P5), one
can use the same argument as in the proof of Theorem 3.1 to deduce that there exists a constant R > 0, such
that Q(DR) ⊂ DR. For this R, consider the set

D = {u ∈ C(J, Xα) ∶ ∥u∥α ≤ R, ∥u(t′′) − u(t′)∥α ≤ L∗∣t′′ − t′∣α
′−α, t′′, t′ ∈ J, ∣t′′ − t′∣ < 1} (29)

for some L∗ large enough. It is clear that D is a convex, closed and nonempty set. We shall prove that Q has
a �xed point on D. For any u ∈ D and t′, t′′ ∈ J, 0 < t′′ − t′ < 1, we have

∥(Qu)(t′′) − (Qu)(t′)∥α ≤∥(T(t′′) − T(t′))
p
∑
i=1

ciB
ti

∫

0

T(ti − s)f(s, x(s))ds∥
α

+ ∥

t′

∫

0

T(s)(f(t′′ − s, x(t′′ − s)) − f(t′ − s, x(t′ − s)))ds∥
α

+ ∥

t′′−t′

∫

0

T(t′′ − s)f(s, x(s))ds∥
α

∶=I1 + I2 + I3.

(30)

By (8), (30), Lemma 2.1 and the condition (P3), we know that

I1 =∥(T(t′′) − T(t′))
p
∑
i=1

ciB
ti

∫

0

T(ti − s)f(s, x(s))ds∥
α

=∥T(t′)(T(t′′ − t′) − I)A−(α
′−α) p
∑
i=1

ciB
ti

∫

0

Aα′T(ti − s)f(s, x(s))ds∥

≤C
′

α′−α(t′′ − t′)α
′−α

∥

p
∑
i=1

ciB
ti

∫

0

Aα′T(ti − s)f(s, x(s))ds∥

≤

C
′

α′−α
p
∑
i=1

∣ci ∣

1 −
p
∑
i=1

∣ci ∣

ti

∫

0

Mα′(ti − s)−α
′

∥f(s, x(s))∥ds ⋅ (t′′ − t′)α
′−α

≤

a1−α
′

Mα′C
′

α′−α
p
∑
i=1

∣ci ∣{L(a + (1 +m)R) + ∥f(0, 0)∥}

(1 − α′)(1 −
p
∑
i=1

∣ci ∣)
(t′′ − t′)α

′−α.

(31)
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According to the assumptions (P3) and (P4), Lemma 2.1, (29) and (30), we have

I2 =∥
t′

∫

0

T(s)[f(t′′ − s, x(t′′ − s)) − f(t′ − s, x(t′ − s))]ds∥
α

=∥

t′

∫

0

AαT(s)(f(t′′ − s, x(t′′ − s)) − f(t′ − s, x(t′ − s)))ds∥

≤Mα

t′

∫

0

s−α∥f(t′′ − s, x(t′′ − s)) − f(t′ − s, x(t′ − s))∥ds

≤LMα

t′

∫

0

s−α(∣t′′ − t′∣α
′−α

+ ∥u(t′′ − s) − u(t′ − s)∥α

+
m
∑
j=1

∥u(aj(t′′ − s)) − u(aj(t′ − s))∥α)ds

≤LMα

t′

∫

0

s−α(∣t′′ − t′∣α
′−α

+ L∗∣t′′ − t′∣α
′−α

+
m
∑
j=1

L∗∣aj(t′′ − s) − aj(t′ − s)∣α
′−α

)ds

≤
a1−αLMα

1 − α
[∣t′′ − t′∣α

′−α
+ L∗(1 +

m
∑
j=1

lα
′−α

j )∣t′′ − t′∣α
′−α

].

(32)

Using the condition (P3), Lemma 2.1, (30) and (29), we get that

I3 = ∥

t′′−t′

∫

0

AαT(t′′ − s)f(s, x(s))ds∥ ≤ Mα{L(a + (1 +m)R) + ∥f(0, 0)∥}
1 − α

∣t′′ − t′∣α
′−α. (33)

Thus, from (30)-(33) we get that

∥(Qu)(t′′) − (Qu)(t′)∥α ≤ {K0 + L∗[a
1−αLMα

1 − α
(1 +

m
∑
j=1

lα
′−α

j )]}∣t′′ − t′∣α
′−α, (34)

where K0 is a constant independent of L∗. Since the condition (P5) implies that

K∗ ∶= a1−αLMα

1 − α
(1 +

m
∑
j=1

lα
′−α

j ) < 1,

then
∥(Qu)(t′′) − (Qu)(t′)∥α ≤ L∗∣t′′ − t′∣α

′−α,

whenever
L∗ ≥ K0

1 − K∗
.

Therefore, Q has a �xed point u which is a mild solution of the problem (1)-(2). By the above calculation, we
see that for this u(⋅) and the following function

F(t) ∶=
t

∫

0

T(t − s)f(s, x(s))ds

are Hölder continuous. Since the space Xα is re�exive by assumption and Lemma 4.1, u(⋅) is almost every-
where di�erentiable on (0, a] and u′(⋅) ∈ L1(J, X). A similar argument shows that F also have this property.
Furthermore, we can obtain that

F′(t) = f(t, x(t)) − A
t

∫

0

T(t − s)f(s, x(s))ds. (35)
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Therefore, by (35) we get for almost all t ∈ J that

d
dt

u(t) =
d
dt

(

p
∑
i=1

ciT(t)B
ti

∫

0

T(ti − s)f(s, x(s))ds +
t

∫

0

T(t − s)f(s, x(s))ds)

= −A(
p
∑
i=1

ciT(t)B
ti

∫

0

T(ti − s)f(s, x(s))ds)

+f(t, x(t)) − A
t

∫

0

T(t − s)f(s, x(s))ds

= −Au(t) + f(t, x(t)).

This shows that u is a strong solution of the problem (1)-(2). This completes the proof.

5 Example
In this section we apply some of the results established in this paper to the following �rst order parabolic
partial di�erential equation with homogeneous Dirichlet boundary condition and nonlocal initial condition

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂tw(x, t) − ∂2

∂x2w(x, t) = f(x, t,w(x, t), ∂
∂xw(x, t),w(x, a1(t)), ∂

∂xw(x, a1(t))),

(x, t) ∈ [0, π] × J,

w(0, t) = w(π, t) = 0, t ∈ J,

w(x, 0) =
p
∑
i=1

arctan 1
2i2w(x, i), x ∈ [0, π],

(36)

where the functions f and a1 will be described below.
Set X = L2([0, π],R) with the norm ∥ ⋅ ∥L2 . Then X is re�exive Banach space. De�ne an operator A in

re�exive Banach space X by

D(A) = W2,2
(0, π) ∩W1,2

0 (0, π), Au = − ∂2

∂x2
u.

From [13] we know that −A generates a strong continuous semigroup T(t) (t ≥ 0), which is compact, analytic
and exponentially stable in X. Furthermore, A has discrete spectrum with eigenvalues xn = n2, n ∈ N,
associated normalized eigenvectors en(x) =

√
2
π sin(nx). Then the following properties hold:

(a) If u ∈ D(A), then

Au =
∞
∑
n=0

n2⟨u, en⟩en .

(b) For each u ∈ X,
A−

1
2 u =

∞
∑
n=1

1
n
⟨u, en⟩en .

In particular, ∥A−
1
2 ∥ = 1. Hence, it follows that ∥A−1∥ ≤ 1.

(c) The operator A
1
2 is given by

A
1
2 =

∞
∑
n=1

n⟨u, en⟩en

on the space D(A
1
2 ) = {u(⋅) ∈ X,

∞
∑
n=1

n⟨u, en⟩en ∈ X}.

To prove the main result of this section, we need the following lemma.
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Lemma 5.1 ([14]). If u ∈ D(A
1
2 ), then u is absolutely continuous with u′ ∈ X and ∥u′∥L2 = ∥A

1
2 u∥L2 .

According to Lemma 5.1, we can de�ne the Banach space X 1
2
= (D(A

1
2 ), ∥ ⋅ ∥ 1

2
). Then for u ∈ X 1

2
, we have

∥u∥ 1
2
= ∥A

1
2 u∥L2 = ∥u′∥L2 .

We assume that the nonlinear function g satis�es the following assumption:
(P6)The function g ∶ [0, π] × J × R4

→ R is continuous and there is a function h ∈ L∞(J,R) such that
∣g(x, t, ζ , ξ, η, ρ)∣ ≤ h(t), for t ∈ J and ζ, ξ, η, ρ ∈ R.

For each t ∈ J and u ∈ X 1
2
, we de�ne

α =
1
2
, m = 1, u(t) = w(⋅, t),

f(t, u(t), u(a1(t)))(x) = g(x, t,w(x, t), ∂
∂x

w(x, t),w(x, a1(t)),
∂
∂x

w(x, a1(t))),

ci =
p
∑
i=1

arctan 1
2i2

, ti = i, i = 1, 2,⋯, p.

Then f ∶ [0, 1] × X 1
2
× X 1

2
→ X, and the parabolic partial di�erential equation with homogeneous Dirichlet

boundary condition and nonlocal initial conditions (36) can be rewritten into the abstract form of problem
(1)-(2) for m = 1. Since

p
∑
i=1

∣ci ∣ ≤
p
∑
i=1

arctan 1
2i2 =

π
4 < 1, the condition (P0) is satis�ed. Below we will verify that

f satis�es the condition (P1). In fact, it follows from assumption (P6) that

sup
∥u∥ 1

2
≤r

∥f(t, u(t), u(a1(t)))∥ ≤ h(t) and lim inf
r→+∞

∥h∥
L
1
q ([0,a])
r

= 0 < +∞.

Therefore, Theorem 3.1 ensures the following existence result.

Theorem 5.2. If the nonlinear function g satis�es the assumption (P6), then the parabolic partial di�erential
equation with homogeneous Dirichlet boundary condition and nonlocal initial conditions (36) has at least one
mild solution.

In order to obtain the existence of strong solutions to the parabolic partial di�erential equationwith homoge-
neous Dirichlet boundary condition and nonlocal initial conditions (36), the following assumptions are also
needed.
(P7) The function g ∶ [0, π]× J ×R4

→ R is continuous and there is constant L > 0 and α′ ∈ (α, 1) such that

∣g(x, t′′, ζ2, ξ2, η2, ρ2) − g(x, t′, ζ1, ξ1, η1, ρ1)∣

≤ L(∣t′′ − t′∣α
′−α

+ ∣ζ2 − ζ1∣ + ∣ξ2 − ξ1∣ + ∣η2 − η1∣ + ∣ρ2 − ρ1∣),

(P8) There exist constants l1 > 0 such that

∣a1(t′′) − a1(t′)∣ ≤ l1∣t′′ − t′∣, for t′′, t′ ∈ J.

For each φj ,ψj , ∈ X 1
2
, j = 1, 2 and t′, t′′ ∈ J, we have

∥f(t′′, φ2,ψ2) − f(t′, φ1,ψ1)∥L2

= [

π

∫

0

(g(x, t′′, φ2(x, t′′),
∂
∂x
φ2(x, t′′),ψ2(x, t′′),

∂
∂x
ψ2(x, t′′))

−g(x, t′, φ1(x, t′′),
∂
∂x
φ1(x, t′′),ψ1(x, t′′),

∂
∂x
ψ2(x, t′′)))

2
dx]

1
2
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≤ [

π

∫

0

L2(∣t′′ − t′∣α
′−α

+ ∣φ2(x, t′′) − φ1(x, t′)∣ + ∣
∂
∂x
φ2(x, t′′) −

∂
∂x
φ2(x, t′)∣

+∣ψ2(x, t′′) − ψ1(x, t′)∣ + ∣
∂
∂x
ψ2(x, t′′) −

∂
∂x
ψ2(x, t′)∣)

2
dx]

1
2

≤ L(
√
π∣t′′ − t′∣α

′−α
+ ∥φ2 − φ1∥L2 + ∥(φ2 − φ1)

′
∥L2

+∥ψ2 − ψ1∥L2 + ∥(ψ2 − ψ1)
′
∥L2)

≤ L(
√
π∣t′′ − t′∣α

′−α
+ ∥(φ2 − φ1)

′
∥L2

+∥(φ2 − φ1)
′
∥L2 + ∥(ψ2 − ψ1)

′
∥L2 + ∥(ψ2 − ψ1)

′
∥L2)

≤ 2L(∣t′′ − t′∣α
′−α

+ ∥φ2 − φ1∥ 1
2
+ ∥ψ2 − ψ1∥ 1

2
).

Hence (P3) holds with L = 2L. Therefore, it from Theorem 4.2, we have the following result.

Theorem 5.3. If the assumptions (P7) and (P8) are satis�ed, then the parabolic partial di�erential equation
with homogeneous Dirichlet boundary condition and nonlocal initial conditions (36) has a strong solution
solution provided that 4a1/2LMα(1 + lα

′−1/2
1 ) < 1.
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