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Abstract: Recently, Chen and Xia proved that for n > 6, the g-derangement numbers Dy (q) are log-concave
except for the last term when n is even. In this paper, employing a recurrence relation for D2 (q) discovered
by Chow, we show that for n > 4, the g-derangement numbers of type B D5 (gq) are also log-concave.
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1 Introduction

Let D, denote the set of derangements on {1, 2,...,n}andlet D(r) := {ijl <i<n-1,7(i) > n(i+ 1)}
denote the descent set of a permutation . Define the major index of = by

maj(r) = > i M

ieD(m)

The g-derangement number Dy (q) is defined by

Du(q) = > ¢™™. )

weDy,
Gessel [1] (see also [2]) discovered the following formula

1
[k]V

where [n] = 1+ q+q*> + - +q" " and [n]! = [1][2]---[n]. Combinatorial proofs of (3) have been found by
Wachs [3] and Chen and Xu [4]. Chen and Rota [5] showed that the g-derangement numbers are unimodal,
and conjectured that the maximum coefficient appears in the middle. Zhang [6] confirmed this conjecture by
showing that the g-derangement numbers satisfy the spiral property. Recently, Chen and Xia [7] introduced
the notion of ratio monotonicity for polynomials with nonnegative coefficients, and they proved that, for
n > 6, the g-derangement numbers D, (q) are strictly ratio monotone except for the last term when n is even.
The ratio monotonicity implies the spiral property and log-concavity.

Let B, denote the hyperoctahedral group of rank n, consisting of the signed permutations of
{1,2,...,n}.Let DB denote the set of derangements on By, which is defined as

Da(g) = [n]! 3 (~1)%() 3)
k=0

DE .= {x|r € By, n(i) #iforallie {1,2,...,n}}. (%)
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Let N(r) := #{i|1 < i< n,n(i) < 0} be the number of negative letters of = and let maj(r) be defined as before.
In [8], Chow considered the g-derangement number of type B D5 (gq), which is defined as
DR(q) =3 ¢™™, )

meDB
where fmaj(r) := 2maj(x) + N(x). Chow [8] (see also [9]) established the following formula
n o _1yk.2(8)
DE(q) = %’
@ = 214112 3 g

where [n] is defined as before. Furthermore, Chow [8] discovered that for all integers n > 1,
Dia(9) = (1+g++ g )DR(g) + (-1)" g™ ™", ™

Chen and Wang [10] proved the normality of the limiting distribution of the coefficients of the usual g-
derangement numbers of type B.

Recall that a positive sequence ao, a1, . . ., a, or the polynomial ao + a1 x +---+ anx" is called log-concave
if the ratios

(6)

aop ai an-1
Ty T Ty eeey
a; ap an

3)

form an increasing sequence. Clearly, if a positive sequence is log-concavity, then it is unimodality. In this
paper, we prove that for n > 4, the g-derangement numbers of type B D2 (q) are log-concave.
2
Suppose that n is given. It is easy to prove that the degree of D2 (g) is n? and the coefficient of g" is 1.
Set

DE(Q) :Bn(l)q+Bn(2)q2+...+Bn(n2)qn2. ©)

The log-concavity of DE(g) can be stated as the following theorem.

Theorem 1.1. For all integers n > 4, the q-derangement numbers of type B DE (g) are log-concave, namely,
Bn(1)  Ba(2) Bn(n®-2) Bp(n*-1)

. 10
Bx(2) “Ba(3) = Bu(n2-1) = Ba(n2) (10)
For example, by (6), we have
D2(q) =q + 4q* + 8¢° + 13q" + 18¢° + 22¢° + 26¢" + 28¢° + 284’ + 25¢™°
+ 21q11 + 17q12 + 11q13 + 7q14 + 3q15 + ql(’.
It is easy to check that
1 4 8 13 18 22 26 28 28 25 21 17 11 7 3
R R Il e G D R P e G G < JED R
4 8 13 18 22 26 28 28 25 21 17 11 7 3 1
2 Some lemmas
To prove Theorem 1.1, we first present some lemmas. By (7), it is easy to check that
Lemma 2.1. Forn > 4,
k
> Bn(i), 1<k<2n+2,
i=1
k
Y Ba(i), 2n+2<k<n’,
B (k) ={ 70t (11)
Y Bu(i)+ (-1)™, k=n®+n,
i=n2-n-1
nZ
Y Ba(i), n*<k<(n+1)%andk+n*+n.
i=k-2n-1
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Based on recurrence relation (11), it is easy to verify the following lemma.

Lemma 2.2. Let n > 4 be an integer. Then By (i) are positive integers for 1 < i < n* and

Bn(n®-2)="

Bn(n?) =1,

2_n+2
2 ’

Ba(n® -1)=n-1,

n’+5n-18

Bn(n®*-3) =
(n"-3) G

To prove Theorem 1.1, we require the following lemma.

Lemma 2.3. For positive integers a1, az, .

we have

vy i1, Agea (k > 1) satisfying

a; a; .
—L <2 1<i<k,
Aiy1  Qiy2

k k+1
Yic1 @i 2l ai
k+1 k+2 ’
i1 di i1 di
k k+1
Yic1 @i Xl ag
k+1 k+2 ’
Zi:ﬁ a; Zi!z ai;
k k+1
Yic1 i 25 ag
k+1 k+2 ’
Zijz a; Z,!; ai;
k k+1
Yio1 di < Yies Qi
k+1 k+1 ’
Zi:Z a; Zi:3 ai;
k k
Yic1 4 < Yic2 4
k k *
2ia i 23 G

—_ 129

(12)

(13)

(14)

(15)

(16)

17)

(18)

(19)

Proof. We only prove (15). The rest can be proved similarly and the details are omitted. Based on (14),

and
Therefore,

(a1 +az +-
=(ar+ax+--
<(ai1+az+--
<(ai+az+--
=(ar+ax+-

AiAj42 < i1 g1

(1<i<k),

Ae2(ar + az +-+ay) < agy1(a2 + az + -+ + agy1).

+ag)(ar+az+ -+ ag+ Agpr + Agr1)

+ @)+ A (A1 + @ + -+ A + Az (@1 + Ay + - + )

+ @)’ + Arar (A1 + @ + -+ Q) + A1 (A2 + A3+ + Apsr)

+ )’ + Qa1 (@1 + @2 + o+ Q) + Qg1 (@2 + A3+ o+ Agar) + A1 g

2
S A+ Arer)’,

which yields (15). This completes the proof of this lemma.

3 Proof of Theorem 1.1

We prove Theorem 1.1 by induction on n. It is easy to check that Theorem 1.1 holds for 4 < n < 12. Thus, we
always assume that n > 13 in the following proof. Suppose that Theorem 1.1 holds for n = m, namely,

Bm(i)

Bn(i+1)

1<i<m®-2.

Bm(i+1)

Bm(i+2)’

(20)
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We proceed to show that Theorem 1.1 holds for n = m + 1, that is,

Bm+1(k) < Bm+1(k+ 1)

2
Brr(k+1) < Bra(k+2)’ l<k<(m+1) -2, (21)

Employing (11), (15) and (20), we see that (21) holds for 1 < k < 2m. It follows from (11), (16) and (20) that (21)
is true for the case k = 2m + 1. In view of (11), (17) and (20), we find that (21) holds for 2m + 2 < k < m* - 2.
From (11), (18) and (20), we deduce that (21) is true for the case k = m* — 1. By (11), (19) and (20), we can prove
that (21) holds for m* <k <m?+m-3andm?> + m+1<k< (m+1)*-2.
Now, special attentions should be paid to three cases k = m* + m -2, k=m? + m—1and k = m*> + m.
By (12) and (13), it is easy to check that for m > 4,

Bm(m? —=2) + Bn(m* - 1) + Bu(m*) -m-3  Bn(m>-3)

Bn(m2 - 1) + Bu(m?) + 1 ~ Bm(m?-2)
m*-13m? +72m-132
= 0. 22
6(m-3)(m2-m+2) @)
In view of (20) and (22),
Bn(m*-m-3) Bm(m*-3) Bmn(m®-2)+Bn(m*-1)+Bn(m*)-m-3 3)
Bn(m2-m-2) Bp(m?-2) Bn(m?2-1)+Bnp(m?)+1
From (11), it is easy to prove that for m > 4,
Bn(m*-=m=2)>Bn(m* =m—-1)> > Bp(m* - 1) > Bu(m?). (24)
Thanks to (23) and (24),
m+2
Bm(m® —=m =3)(Bm(m* = 1) + Bu(m?) + (-1)"") + (-1)™" 3 Bu(m® - 1)
i=0
< Bm(m® = m = 3)(Bm(m? = 1) + Bp(m?®) + 1) + (m + 3)Bu(m* - m - 2)
< Bm(m® = m = 2)(Bm(m® = 2) + Bn(m® = 1) + Bp(m?)). (25)
By (20),
m+1 m+2
Bm(m®-m=-3) > Bn(m® -i) < Bn(m*-m-2) Y Bu(m® -1i). (26)
i=2 i=3
Combining (25) and (26) yields
mZ . mZ )
S Ba() Y Ba(i)
i=m?-m-3 N i=m2-m-2 , (27)
m2 . m2 .
Y Ba(i) Y Bm(i)+(-1)m*!
i=m2-m-2 i=m2-m-1
which can be rewritten as
Bmii(m*+m-2) Bpu(m?>+m-1)
(28)
Bmii(m?2+m-1) Bm+1(m? + m)
Therefore, (21) holds for the case k = m? + m - 2.
Based on (12) and (13), we deduce that for m > 13,
Bun(m? = 2) + Bu(m® —1) + Bn(m*) -2(m +2) Bn(m’-3)
Bn(m? — 1) + Bn(m?) Bp(m? -2)
4 3 2 _
_m 12m’ - 13m*° + 36m - 36 So0. (29)

6m(m? -m+2)
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By (20) and (29),
Bn(m* —m-2) . Bm(m* - 3) . Bm(m? = 2) + Bu(m?® = 1) + Bpu(m?) — 2(m + 2) (30)
Bu(m2-m-1)  Bp(m?-2) Bm(m? — 1) + Bp(m2) '
It follows from (24) and (30) that
Bn(m?* = m=2)(Bu(m* = 1) + Bu(m?))
< Bm(m* =m—1)(Bn(m*=2) + Bu(m* = 1) + Bu(m?) = 2(m + 2))
m+1
<Bm(m® —m—1)(Bm(m* - 2) + Bu(m®> = 1) + Bm(m®)) =2 5" Bn(m* - i)
i=0
< Bm(m® = m-1)(Bn(m* = 2) + Bu(m? = 1) + Bu(m?))
m+1
+2x (=1)™ S Bu(m* - i). 31
i=0
In view of (20),
m m+1
Bu(m® -m-2) Bn(m® i) < Bn(m®> ~m-1) Y Bu(m® - i). (32)
i=2 i=3
It follows from (31) and (32) that
mz mz
X Bn(i) X Bu(h)+(-1)™"
i=m?-m-2 i=m?-m-1
T— < " )
Y Bm(i)+(-1)m*! > Bm(i)
i=m2-m-1 i=m2-m
By (11), we can rewrite (33) as follows
Bm+1(m2 +m-1) Berl(mz +m) (34)
Bmi1(m2 +m) Bnii(m?2+m+1)°
which implies that (21) holds for the case k = m? + m - 1.
In view of (12) and (13), we see that for m > 4,
Bm(m® =2) + Bu(m® - 1) + Ba(m*) —m _ Bn(m*-3)
Bm(m? - 1) + By(m?) Bm(m? -2)
~(m+1)(m’ - 7m? +12m + 12)
- 6m(m2 -m+2) > 0. G5)
By (20) and (35), we find that for m > 4,
Bu(m*-m-1) Bm(m*-3) Bm(m®-2)+Bn(m®>-1)+Bn(m?)-m
< < . (36)
Bm(m? - m) Bm(m?2 -2) Bm(m2-1) + Bn(m?)
It follows from (24) and (36) that
m-1
Bm(m® —=m—1)(Bm(m® = 1) + Bu(m?*)) + (-1)™" 3 Bm(m® - 1)
i=0
< Bm(m® = m —1)(Bn(m* = 1) + Bn(m?)) + mBm(m* — m)
< Bm(m® = m)(Bm(m® - 2) + Bu(m® — 1) + Bpn(m?)). 37)
By (20),
m-1 m
Bum(m® -m—1) 3 Bu(m®—i) < Bu(m> —m) Y Bn(m* - i). (38)

i=2 i=3
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In view of (37) and (38), we can prove that

2

S Ba() s (D™ % Ba()

i=m2-m-1 . < 1:m22—m . (39)
m . m .
Y Bu(i) Y Bm(i)
i=m2-m i=m2-m+1

By (11), we can rewrite (39) as follows

Bmi1(m? + m) . Bmii(m? +m+1)

, 40
Bmii(m?+m+1)  Bpii(m?+m+2) (40)

which implies that (21) holds for the case k = m? + m. This completes the proof.
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