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Abstract: Recently, Chen and Xia proved that for n ≥ 6, the q-derangement numbers Dn(q) are log-concave
except for the last term when n is even. In this paper, employing a recurrence relation for DB

n(q) discovered
by Chow, we show that for n ≥ 4, the q-derangement numbers of type B DB

n(q) are also log-concave.
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1 Introduction
Let Dn denote the set of derangements on {1, 2, . . . , n} and let D(π) ∶= {i∣1 ≤ i ≤ n − 1, π(i) > π(i + 1)}
denote the descent set of a permutation π. De�ne the major index of π by

maj(π) ∶= ∑
i∈D(π)

i. (1)

The q-derangement number Dn(q) is de�ned by

Dn(q) ∶= ∑
π∈Dn

qmaj(π). (2)

Gessel [1] (see also [2]) discovered the following formula

Dn(q) ∶= [n]!
n
∑
k=0

(−1)kq(
k
2)

1
[k]! , (3)

where [n] = 1 + q + q2 + ⋯ + qn−1 and [n]! = [1][2]⋯[n]. Combinatorial proofs of (3) have been found by
Wachs [3] and Chen and Xu [4]. Chen and Rota [5] showed that the q-derangement numbers are unimodal,
and conjectured that the maximum coe�cient appears in the middle. Zhang [6] con�rmed this conjecture by
showing that the q-derangement numbers satisfy the spiral property. Recently, Chen and Xia [7] introduced
the notion of ratio monotonicity for polynomials with nonnegative coe�cients, and they proved that, for
n ≥ 6, the q-derangement numbers Dn(q) are strictly ratio monotone except for the last term when n is even.
The ratio monotonicity implies the spiral property and log-concavity.

Let Bn denote the hyperoctahedral group of rank n, consisting of the signed permutations of
{1, 2, . . . , n}. LetDB

n denote the set of derangements on Bn, which is de�ned as

D
B
n ∶= {π∣π ∈ Bn , π(i) ≠ i for all i ∈ {1, 2, . . . , n}}. (4)
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Let N(π) ∶= #{i∣1 ≤ i ≤ n, π(i) < 0} be the number of negative letters of π and let maj(π) be de�ned as before.
In [8], Chow considered the q-derangement number of type B DB

n(q), which is de�ned as

DB
n(q) ∶= ∑

π∈DB
n

qfmaj(π), (5)

where fmaj(π) ∶= 2maj(π) + N(π). Chow [8] (see also [9]) established the following formula

DB
n(q) ∶= [2][4]⋯[2n]

n
∑
k=0

(−1)kq2(
k
2)

[2][4]⋯[2k] , (6)

where [n] is de�ned as before. Furthermore, Chow [8] discovered that for all integers n ≥ 1,

DB
n+1(q) = (1 + q +⋯ + q2n+1)DB

n(q) + (−1)n+1qn
2
+n . (7)

Chen and Wang [10] proved the normality of the limiting distribution of the coe�cients of the usual q-
derangement numbers of type B.

Recall that a positive sequence a0, a1, . . . , an or the polynomial a0+a1x+⋯+anxn is called log-concave
if the ratios

a0
a1

, a1
a2

, . . . , an−1
an

(8)

form an increasing sequence. Clearly, if a positive sequence is log-concavity, then it is unimodality. In this
paper, we prove that for n ≥ 4, the q-derangement numbers of type B DB

n(q) are log-concave.
Suppose that n is given. It is easy to prove that the degree of DB

n(q) is n2 and the coe�cient of qn
2
is 1.

Set

DB
n(q) = Bn(1)q + Bn(2)q2 +⋯ + Bn(n2)qn

2
. (9)

The log-concavity of DB
n(q) can be stated as the following theorem.

Theorem 1.1. For all integers n ≥ 4, the q-derangement numbers of type B DB
n(q) are log-concave, namely,

Bn(1)
Bn(2)

< Bn(2)
Bn(3)

< ⋯ < Bn(n2 − 2)
Bn(n2 − 1)

< Bn(n2 − 1)
Bn(n2)

. (10)

For example, by (6), we have

DB
4(q) =q + 4q2 + 8q3 + 13q4 + 18q5 + 22q6 + 26q7 + 28q8 + 28q9 + 25q10

+ 21q11 + 17q12 + 11q13 + 7q14 + 3q15 + q16.

It is easy to check that
1
4
< 4
8
< 8
13

< 13
18

< 18
22

< 22
26

< 26
28

< 28
28

< 28
25

< 25
21

< 21
17

< 17
11

< 11
7

< 7
3
< 3
1
.

2 Some lemmas
To prove Theorem 1.1, we �rst present some lemmas. By (7), it is easy to check that

Lemma 2.1. For n ≥ 4,

Bn+1(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k
∑
i=1

Bn(i), 1 ≤ k ≤ 2n + 2,
k
∑

i=k−2n−1
Bn(i), 2n + 2 < k ≤ n2,

n2

∑
i=n2−n−1

Bn(i) + (−1)n+1, k = n2 + n,
n2

∑
i=k−2n−1

Bn(i), n2 ≤ k ≤ (n + 1)2 and k ≠ n2 + n.

(11)
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Based on recurrence relation (11), it is easy to verify the following lemma.

Lemma 2.2. Let n ≥ 4 be an integer. Then Bn(i) are positive integers for 1 ≤ i ≤ n2 and

Bn(n2) = 1, Bn(n2 − 1) = n − 1, (12)

Bn(n2 − 2) =
n2 − n + 2

2
, Bn(n2 − 3) =

n3 + 5n − 18
6

. (13)

To prove Theorem 1.1, we require the following lemma.

Lemma 2.3. For positive integers a1, a2, . . . , ak+1, ak+2 (k ≥ 1) satisfying
ai
ai+1

< ai+1
ai+2

, 1 ≤ i ≤ k, (14)

we have
∑k

i=1 ai
∑k+1

i=1 ai
< ∑

k+1
i=1 ai
∑k+2

i=1 ai
, (15)

∑k
i=1 ai
∑k+1

i=1 ai
< ∑

k+1
i=1 ai
∑k+2

i=2 ai
, (16)

∑k
i=1 ai
∑k+1

i=2 ai
< ∑

k+1
i=2 ai
∑k+2

i=3 ai
, (17)

∑k
i=1 ai
∑k+1

i=2 ai
< ∑

k+1
i=2 ai
∑k+1

i=3 ai
, (18)

∑k
i=1 ai
∑k

i=2 ai
< ∑

k
i=2 ai
∑k

i=3 ai
. (19)

Proof.We only prove (15). The rest can be proved similarly and the details are omitted. Based on (14),

aiak+2 < ai+1ak+1 (1 ≤ i ≤ k),

and
ak+2(a1 + a2 +⋯ + ak) < ak+1(a2 + a3 +⋯ + ak+1).

Therefore,

(a1 + a2 +⋯ + ak)(a1 + a2 +⋯ + ak + ak+1 + ak+1)

=(a1 + a2 +⋯ + ak)2 + ak+1(a1 + a2 +⋯ + ak) + ak+2(a1 + a2 +⋯ + ak)

<(a1 + a2 +⋯ + ak)2 + ak+1(a1 + a2 +⋯ + ak) + ak+1(a2 + a3 +⋯ + ak+1)

<(a1 + a2 +⋯ + ak)2 + ak+1(a1 + a2 +⋯ + ak) + ak+1(a2 + a3 +⋯ + ak+1) + a1ak+1

=(a1 + a2 +⋯ + ak + ak+1)2,

which yields (15). This completes the proof of this lemma.

3 Proof of Theorem 1.1
We prove Theorem 1.1 by induction on n. It is easy to check that Theorem 1.1 holds for 4 ≤ n ≤ 12. Thus, we
always assume that n ≥ 13 in the following proof. Suppose that Theorem 1.1 holds for n = m, namely,

Bm(i)
Bm(i + 1)

< Bm(i + 1)
Bm(i + 2)

, 1 ≤ i ≤ m2 − 2. (20)
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We proceed to show that Theorem 1.1 holds for n = m + 1, that is,

Bm+1(k)
Bm+1(k + 1)

< Bm+1(k + 1)
Bm+1(k + 2)

, 1 ≤ k ≤ (m + 1)2 − 2. (21)

Employing (11), (15) and (20), we see that (21) holds for 1 ≤ k ≤ 2m. It follows from (11), (16) and (20) that (21)
is true for the case k = 2m + 1. In view of (11), (17) and (20), we �nd that (21) holds for 2m + 2 ≤ k ≤ m2 − 2.
From (11), (18) and (20), we deduce that (21) is true for the case k = m2 −1. By (11), (19) and (20), we can prove
that (21) holds for m2 ≤ k ≤ m2 +m − 3 and m2 +m + 1 ≤ k ≤ (m + 1)2 − 2.

Now, special attentions should be paid to three cases k = m2 +m − 2, k = m2 +m − 1 and k = m2 +m.
By (12) and (13), it is easy to check that for m ≥ 4,

Bm(m2 − 2) + Bm(m2 − 1) + Bm(m2) −m − 3
Bm(m2 − 1) + Bm(m2) + 1 − Bm(m2 − 3)

Bm(m2 − 2)

= m4 − 13m2 + 72m − 132
6(m − 3)(m2 −m + 2) > 0. (22)

In view of (20) and (22),

Bm(m2 −m − 3)
Bm(m2 −m − 2) < Bm(m2 − 3)

Bm(m2 − 2) < Bm(m2 − 2) + Bm(m2 − 1) + Bm(m2) −m − 3
Bm(m2 − 1) + Bm(m2) + 1 . (23)

From (11), it is easy to prove that for m ≥ 4,

Bm(m2 −m − 2) > Bm(m2 −m − 1) > ⋯ > Bm(m2 − 1) > Bm(m2). (24)

Thanks to (23) and (24),

Bm(m2 −m − 3)(Bm(m2 − 1) + Bm(m2) + (−1)m+1) + (−1)m+1
m+2
∑
i=0

Bm(m2 − i)

< Bm(m2 −m − 3)(Bm(m2 − 1) + Bm(m2) + 1) + (m + 3)Bm(m2 −m − 2)
< Bm(m2 −m − 2)(Bm(m2 − 2) + Bm(m2 − 1) + Bm(m2)). (25)

By (20),

Bm(m2 −m − 3)
m+1
∑
i=2

Bm(m2 − i) < Bm(m2 −m − 2)
m+2
∑
i=3

Bm(m2 − i). (26)

Combining (25) and (26) yields

m2

∑
i=m2−m−3

Bm(i)

m2

∑
i=m2−m−2

Bm(i)
<

m2

∑
i=m2−m−2

Bm(i)

m2

∑
i=m2−m−1

Bm(i) + (−1)m+1
, (27)

which can be rewritten as

Bm+1(m2 +m − 2)
Bm+1(m2 +m − 1) < Bm+1(m2 +m − 1)

Bm+1(m2 +m) . (28)

Therefore, (21) holds for the case k = m2 +m − 2.
Based on (12) and (13), we deduce that for m ≥ 13,

Bm(m2 − 2) + Bm(m2 − 1) + Bm(m2) − 2(m + 2)
Bm(m2 − 1) + Bm(m2) − Bm(m2 − 3)

Bm(m2 − 2)

= m4 − 12m3 − 13m2 + 36m − 36
6m(m2 −m + 2) > 0. (29)
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By (20) and (29),

Bm(m2 −m − 2)
Bm(m2 −m − 1) < Bm(m2 − 3)

Bm(m2 − 2) < Bm(m2 − 2) + Bm(m2 − 1) + Bm(m2) − 2(m + 2)
Bm(m2 − 1) + Bm(m2) . (30)

It follows from (24) and (30) that

Bm(m2 −m − 2)(Bm(m2 − 1) + Bm(m2))
< Bm(m2 −m − 1)(Bm(m2 − 2) + Bm(m2 − 1) + Bm(m2) − 2(m + 2))

< Bm(m2 −m − 1)(Bm(m2 − 2) + Bm(m2 − 1) + Bm(m2)) − 2
m+1
∑
i=0

Bm(m2 − i)

≤ Bm(m2 −m − 1)(Bm(m2 − 2) + Bm(m2 − 1) + Bm(m2))

+ 2 × (−1)m+1
m+1
∑
i=0

Bm(m2 − i). (31)

In view of (20),

Bm(m2 −m − 2)
m
∑
i=2

Bm(m2 − i) < Bm(m2 −m − 1)
m+1
∑
i=3

Bm(m2 − i). (32)

It follows from (31) and (32) that

m2

∑
i=m2−m−2

Bm(i)

m2

∑
i=m2−m−1

Bm(i) + (−1)m+1
<

m2

∑
i=m2−m−1

Bm(i) + (−1)m+1

m2

∑
i=m2−m

Bm(i)
. (33)

By (11), we can rewrite (33) as follows

Bm+1(m2 +m − 1)
Bm+1(m2 +m) < Bm+1(m2 +m)

Bm+1(m2 +m + 1) , (34)

which implies that (21) holds for the case k = m2 +m − 1.
In view of (12) and (13), we see that for m ≥ 4,

Bm(m2 − 2) + Bm(m2 − 1) + Bm(m2) −m
Bm(m2 − 1) + Bm(m2) − Bm(m2 − 3)

Bm(m2 − 2)

= (m + 1)(m3 − 7m2 + 12m + 12)
6m(m2 −m + 2) > 0. (35)

By (20) and (35), we �nd that for m ≥ 4,

Bm(m2 −m − 1)
Bm(m2 −m) < Bm(m2 − 3)

Bm(m2 − 2) < Bm(m2 − 2) + Bm(m2 − 1) + Bm(m2) −m
Bm(m2 − 1) + Bm(m2) . (36)

It follows from (24) and (36) that

Bm(m2 −m − 1)(Bm(m2 − 1) + Bm(m2)) + (−1)m+1
m−1
∑
i=0

Bm(m2 − i)

< Bm(m2 −m − 1)(Bm(m2 − 1) + Bm(m2)) +mBm(m2 −m)
≤ Bm(m2 −m)(Bm(m2 − 2) + Bm(m2 − 1) + Bm(m2)). (37)

By (20),

Bm(m2 −m − 1)
m−1
∑
i=2

Bm(m2 − i) < Bm(m2 −m)
m
∑
i=3

Bm(m2 − i). (38)
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In view of (37) and (38), we can prove that

m2

∑
i=m2−m−1

Bm(i) + (−1)m+1

m2

∑
i=m2−m

Bm(i)
<

m2

∑
i=m2−m

Bm(i)

m2

∑
i=m2−m+1

Bm(i)
. (39)

By (11), we can rewrite (39) as follows

Bm+1(m2 +m)
Bm+1(m2 +m + 1) < Bm+1(m2 +m + 1)

Bm+1(m2 +m + 2) , (40)

which implies that (21) holds for the case k = m2 +m. This completes the proof.
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