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1 Introduction

The first instances of ternary operations appeared in the nineteenth century when Cayley considered cubic
matrices. Ternary operations or more generally n-ary operations appeared naturally in various domains of
theoretical and mathematical physics. The first instances of ternary Lie algebras appeared in the Nambu’s
Mechanics when generalizing hamiltonian mechanics by considering more than one hamiltonian [1]. The
algebraic formulation of Nambu’s Mechanics was achieved by Takhtajan in [2]. Moreover, ternary algebraic
structures appeared in String and Superstring theories when Basu and Harvey suggested to replace Lie
algebra in the context of Nahm equations by a 3-Lie algebra. Furthermore, a ternary operation was used by
Bagger-Lambert in the context of Bagger-Lambert-Gustavsson model of M2-branes and in the work of Okubo
[3] on Yang-Baxter equation which gave impulse to significant development on n-ary algebras. In recent years,
there has been a growth of interests in many generalizations of binary structures to higher n-ary contexts. In
Lie algebra theory, for example, the bracket is replaced by a n-ary bracket and the Jacobi identity is replaced
by its higher analogue, see [4]. Generalizations of quandles to the ternary case were done recently in [5]. One
may also mention reference [6] where the author uses two ternary operators, providing a generalization of
a Dehn presentation which assigns a relation to each crossing in terms of the regions of the diagram that
surround the crossing. For example, by coloring the four regions respectively a, b, ¢ and d (see figure 2 in
[6]), the author obtains d as a ternary function T(a, b, ¢) = ab™'c. This example of ternary operation was
also considered in Example 2.8 in [5]. The author shows under certain conditions that ternary checkerboard
colorings define link invariants. The paper deals with different algebraic structures considered in [5] and in
this work.

In this paper we introduce and study a twisted version of ternary, respectively n-ary, generalizations of
racks and quandles, where the structure is defined by a ternary operation and a linear map twisting the
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distributive property. These type of algebraic structures, called sometimes Hom-algebras, appeared first in
quantum deformations of algebras of vector fields, motivated by physical aspects. A systematic study and
mathematical aspects were provided for Lie type algebras by Hartwig-Larsson and Silvestrov in [7] whereas
associative and other nonassociative algebras were discussed by the fourth author and Silvestrov in [8] and
n-ary Hom-type algebras in [9]. The main feature of all these generalization is that the usual identities are
twisted by a homomorphism. We introduce in this article the notions of ternary, respectively n-ary, f-shelf
(resp. f-rack, f-quandle), give some key constructions and properties. Moreover, we provide a classification in
low dimensions of f-quandles. We also study extensions and modules, as well as cohomology theory of these
structures. For classical quandles theory, we refer to [10], see also [11-19]. For basics and some developments
of Hom-type algebras, we refer to [8, 20-26].

This paper is organized as follows. In Section 2, we review the basics of f-quandles and ternary distribu-
tive structures and give the general n-ary setting. In Section 3, we discuss a key construction introduced by
Yau, we show that given a n-ary f-shelf (resp. f-rack, f-quandle) and a shelf morphism then one constructs a
new n-ary f-shelf (resp. f-rack, f-quandle) and we provide examples. In Section 4, we provide a classification
of ternary f-quandles in low dimensions. Section 5 gives the extension theory of f-quandles and modules.
Finally, in Section 6 we introduce the cohomology of n-ary f-distributive structures and give examples.

2 f-quandles and ternary (resp. n-ary) distributive structures

In this section we aim to introduce the notion of ternary and more generally n-ary f-quandles, generalizing
the notion of f-quandle given in [27].

2.1 Areview of f-quandles and related structures

First, we review the basics of the binary f-quandles. We refer to [27] for the complete study. Classical theory
of quandle could be found in

Definition 2.1. An f-shelf is a triple (X, *, f) in which X is a set, * is a binary operationon X, and f: X > X is
a map such that, for any x, y, z € X, the identity

x*y)*f2) = (x*2)*(y*2) @
holds. An f-rack is an f-shelf such that, for any x, y € X, there exists a unique z € X such that
z*y = fx). ®)
An f-quandle is an f-rack such that, for each x € X, the identity
xX*x = f(x) (3)

holds.
An f-crossed set is an f-quandle (X, *, f) such that f : X - X satisfies x * y = f(x) whenevery * x = f(y) for
any x,y € X.

Definition 2.2. Let (X1, *1, f1) and (X3, *2, f>) be two f-racks (resp. f-quandles). Amap ¢ : X1 > X; is an
f-rack (resp. f-quandle) morphism if it satisfies ¢p(a *1 b) = ¢(a) *2 p(b) and P o f1 = f> o ¢.

Remark 2.3. A category of f-quandles is a category whose objects are tuples (A, *, f) which are f-quandles and
morphism are f-quandle morphisms.

Examples of f-quandles include the following:
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— Given any set X and map f : X > X, then the operation x *y = f(x) for any x, y € X gives a f-quandle. We
call this a trivial f-quandle structure on X.

- Forany group G and any group endomorphism f of G, the operation x *y = y"*xf(y) defines a f-quandle
structure on G.

— Consider the Dihedral quandle R,, where n > 2, and let f be an automorphism of R,. Then f is given by
f(x) = ax + b, for some invertible element a € Z, and some b € Zj [16]. The binary operation x * y =
f(2y —x) = 2ay - ax + b (mod n) gives a f-quandle structure called the Dihedral f-quandle.

- Any Z[T*', S]-module M is a f-quandle with x *y = Tx + Sy, x, y € M with TS = ST and f(x) = (S + T)x,
called an Alexander f-quandle.

Remark 2.4. Axioms of Definition 2.1 give the following identity,
x*y)*(z*2) = (x*2)*(y * 2).

We note that the two medial terms in this equation are swapped (resembling the mediality condition of a
quandle). Note also that the mediality in the general context may not be satisfied for f-quandles. For example
one can check that the f-quandle given in item (2) of Examples is not medial.

2.2 Ternary and n-ary f-quandles

Now we introduce and discuss the analogous notion of a f-quandle in the ternary setting and more generally
in the n-ary setting.

Definition 2.5. Let Q be aset, a be amorphismand T : QxQxQ - Q be a ternary operation on Q. The operation
T is said to be right f-distributive with respect to a if it satisfies the following condition for all x,y, z, u,v € Q

T(T(x,y, z), a(u), a(v)) = T(T(x, u, v), T(y, u,v), T(z, u, v)). (4)

The previous condition is called right f-distributivity.

Remark 2.6. Using the diagonalmap D : Q > Q x Q x Q = Q* such that D(x) = (x, x, x), equation (4) can be
written, as a map from Q*° to Q, in the following form

To(Txaxa)=To(TxTxT)opo(idxidxidxD x D), (5)

where id stands for the identity map. In the whole paper we denote by p : Q° > Q*° the map defined as
P = De,8 ©P3,7 © P2,4 Where p; ; is the transposition i™ and j™ elements, i.e.

px1, -+, x9) = (X1, X4, X7, X2, X5, X3, X3, Xg, X9). (6)

Definition 2.7. Let T : QxQxQ - Q be a ternary operation on a set Q. The triple (Q, T, a) is said to be a ternary
f-shelfif the identity (4) holds. If, in addition, foralla, b € Q,themap R, , : Q > Qgivenby R, ,(x) = T(x, a, b)
is invertible, then (Q, T, a) is said to be a ternary f-rack. If further T satisfies T(x, x, x) = a(x), forall x € Q,
then (Q, T, a) is called a ternary f-quandle.

Remark 2.8. Using the right translation R, j, : Q - Q defined as R, ;(x) = T(x, a, b), the identity (4) can be
written as Ra(u)’a(v) o Ry,z = RRu,v(y),Ru,v(Z) o Ru,v-

Example 2.9. Let (Q, *, f) be a f-quandle and define a ternary operation on Q by

T(x,y,2z) = (x*y)*f(2),vx,y,z € Q.

It is straightforward to see that (Q, T, a) is a ternary f-quandle where a = f o f. Note that in this case R, =
R}, o Rq. We will say that this ternary f-quandle is induced by a (binary) quandle.
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Remark 2.10. Binary f-quandles are related to ternary f-quandles when a = f o f. Also, ternary operations T
lead to binary operations by setting for example x *y = T(x, y, y).

Example 2.11. Let (M, *, f) be an Alexander f-quandle, then the ternary f-quandle (M, T, a) coming from M,
has the operation T(x, y, z) = Px + Qy + Rz where P, Q, R commutes with each other and a(x) = (P + Q + R)x.
It is also called affine ternary f-quandle.

Example 2.12. Any group G with the ternary operation T(x,y, z) = f(xy 'z) gives an example of ternary f-
quandle. This is called f heap (sometimes also called a groud) of the group G.

A morphism of ternary quandles isamap ¢ : (Q, T) > (Q', T) such that
¢(T(X’ Y, Z)) = T,((p(x)’ ¢()/)3 ¢(Z))-

A bijective ternary quandle endomorphism is called ternary f-quandle automorphism.
Therefore, we have a category whose objects are ternary f-quandles and morphisms as defined above.
As in the case of the binary quandle there is a notion of medial ternary quandle

Definition 2.13 ([28, 29]). A ternary quandle (Q, T, a) is said to be medial if forall a, b, ¢, d, e,f, g, h,k € Q,
the following identity is satisfied

T(T(a, b, c), T(d, e, f), T(g, h, k)) = T(T(a, d, g), T(b, e, h), T(c, f, k)). 7

This definition of mediality can be written in term of the following commutative diagram

Qx-+-xQ
~—_——
y 9 times \p
Q * Q * Q Q x9.ti.m.e;< Q
T TxTxT
Q - QxQxQ

Example 2.14. Every affine ternary f-quandle, defined in Example 2.11, is medial. That is, condition (2.13) is
satisfied. Indeed the left hand side (LHS) of the mediality condition is shown below to equal the right hand side
(RHS):
LHS = P(Pa + Qb + Rc) + Q(Pd + Qe + Rf) + R(Pg + Qh + Rk)
= P’a+PQb + PRc + QPd + Q®e + QRf + RPg + RQh + R*k
= P(Pa + Qd + Rg) + Q(Pb + Qe + Rh) + R(Pc + Qf + Rk) = RHS.

We generalize the notion of ternary f-quandle to n-ary setting.

Definition 2.15. An n-ary distributive set is a triple (Q, T, @) where Q is a set, « : Q - Q is a morphism and
T : Q" - Qs an n-ary operation satisfying the following conditions:
)

T(T(x1,++ , xn), a(u), -+ , a(up-1)) =

T(T(le Ug, -+, unfl)y T(X29 Ug,**+, unfl)y ) T(Xn, Ug, -+, un—l)),

Vxi, u; € Q (f-distributivity).
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(I) Forallay,---,an-1 € Q,themap Rq,, ,a,, : Q > Q given by
Ra, - 4, () =Tk, ai, -+ ,an1)

is invertible.
(IIl) Forallx € Q,
T(x, -+ ,x)=alx).

If T satisfies only condition (1), then (Q, T, ) is said to be an n-ary f-shelf. If both conditions (1) and (2) are
satisfied then (Q, T, a) is said to be an n-ary f-rack. If all three conditions (1), (2) and (3) are satisfied then
(Q, T, @) is said to be an n-ary f-quandle.

Example 2.16. Let (Q, *, f) be an f-quandle and define an n-ary twisted operation on Q by
T(x1, X2, -+, Xn) = (( o (1 * x2) ¥ FOG)) * f2(xa)) * .. ) * [ 2 (xn)Vx; € Q,

wherei=1,---,n.
It is straightforward to see that (Q, T, ) is an n-ary f-quandle where a = f" 1,

Example 2.17. Let (M, *, f) be an Alexander f-quandle, then the n-ary f-quandle (M, T, a) coming from M has
the operation T(xq, - ,Xn) = S1X1 + SoXx2 + -+ + + Snxn, where S;,i = 1, --- , n commutes with each other and
a(x) =(S1+Sy +---+Sp)x.

Definition 2.18. An n-ary quandle (Q, T, a) is said to be medial if for all x;; € Q,1 < i,j < n, the following
identity is satisfied
T(T(x11, X125+ ** s X1n)s T(X21, X22, *++ , X2n), =+ + , T(Xn1, Xn2, * =+ , Xnn)) =

T(T(X119X21’ tee ’an), T(XIZ’ X225 ’XHZ)’ ) T(Xl)‘l’ Xon,* o ,Xnn))-

3 Yau twist

The following proposition provides a way of constructing new n-ary f-shelf (resp. f-rack, f-quandle) along
a shelf morphism. In particular, given an n-ary shelf (resp. rack, quandle) and a shelf morphism, one may
obtain an n-ary f-shelf (resp. f-rack, f-quandle). Recall that this construction was introduced first by Yau
to deform a Lie algebra to a Hom-Lie algebra along a Lie algebra morphism. It was generalized to different
situation, in particular to n-ary algebras in [9].

Proposition 3.1. Let (Q, T, ) be an n-ary f-shelf (resp. f-rack, f-quandle) and B : Q - Q a shelf morphism.
Then (Q, B o T, B o a) is an n-ary f-shelf (resp. f-rack, f-quandle).

Proof. (A)

LHS(I) =BoT(Bo T(x1,-++ ,xn), Boalus), - ,Boalun1))

= Bo T(T(B(x1), - -+ , Bxn)), a(B(u1)), - -+ , a(B(un-1)))

= T(B(T(B(x1), - -+ , BOxn))), Bla(B(u1))), - - - , Bla(B(un-1))))

= T(T(B*(x1), - -+ , B*(xn)), a(B*(ur)), -+, a(B* (un-1)))

= T[T{B*(x1), B* (1), -+ , B (un-1)}, T{B*(x2), B> (1), -+ , B*(un-1)},
o T{B (), B2 Q) -+ B2 (un-)}]

= T[T{B*(x1, u1,*+ , un-1)}, T{* (X2, u1, +++ , un-1)},
o TR (ny uas -+ s un- ) o (]

=B o TIT{B(x1, ur, -+ ,un-1)}, T{B0x2, ur, +++ , un-1)},
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coo, T{BGn, ut, =+, Un-1)}

=BoT(BoT(x1, U, ,uUn-1),BoT(X2, U1, , Un-1),
coo, BoT(xn,ur,++ , Un-1))

= RHS(I), Vx;,u; € Q.

Therefore, (Q, B o T, B o @) is an n-ary f-shelf.
(B) Forallay, -, an-1 € Q, themap Rg,).... pa, ) : Q> Q given by

Rp(ay), Blan)X)
= T(B(x), B(ar), -+, Blan-1)

=BOT(X’ala"' san—l)

is invertible. Therefore, (Q, B o T, B o a) is an n-ary f-rack.
(C) Forallx € Q,

BoT(x,-+,x)
= T(B0, -+, (X))
= Boa(x).

Therefore, (Q, Bo T, B o a) is an n-ary f-quandle.
O

Example 3.2. Let (Q, *) be a quandle and define a ternary operationon Q by T(x, y, z) = (x*y)*z,Vx,y,z € Q.
It is straightforward to see that (Q,T) is a ternary quandle. Let & : Q - Q be a morphism. Then (Q, a0 T, a)isa
ternary f-quandle.

Example 3.3. Let (M, T) be an Alexander ternary quandle, where T(x,y,z) = t*x + t(1 - )y + (1 - t)z. Let
f : M > M be a morphism. Then (M, f o T, f) is a ternary f-quandle.

Example 3.4. Let M be a Z[t, t ']-module. Consider the ternary quandle (M, T) defined by the operation
T(x,y,z) = 2x+t(1-t)y+(1-t)z, where x, y, z € M. Foranymap ¢ : M > M satisfying poT = To(p 2P @),
we associate a new ternary f-quandle (M, ¢ o T, ).

Example 3.5. Let M be any A-module where A = Z[t*}, s]. The operation T(x,y,z) = tx + sy + kz where
a(x) = (t+s+k)x defines a ternary f-quandle structure on M. Let f : M - M be a morphism. Then (M, foT, foa)
is a ternary f-quandle.

Example 3.6. Let (Q, *) be a quandle and define a n-ary operationon Q by T(x1, x2,+++ ,Xxn) = ((... (x1 *x2)*
X3)*X4)*...)*Xn),VX; € Qwherei=1,--- ,n.Letf : Q > Q be a morphism. It is straightforward to see that
(Q,f o T,f)is an n-ary f-quandle.

Example 3.7. Let (Q = Zn, T) be a ternary quandle defined by T(x,y,z) = 2z -2y + x. Let f : Zn > Zn be a
quandle morphism defined by f(x) = mx, where m € Zn. According to the previous proposition (Q,f o T, f) is a
ternary f-quandle, with a new operation f o T(x, y, z) = m(2z - 2y + x).

4 Classification of ternary f-quandles of low orders

We developed a simple program to compute all ternary f-quandles of orders 2 and 3. The results of which we
used to obtain the complete list of isomorphism classes.



38 —— |I.R.U. Churchill et. al.

DE GRUYTER OPEN

For order 2, we found 6 distinct isomorphism classes, each of which can be defined over Z, by one of the
following maps: 7(x,y,z) = x, 7(x, ¥, 2) = x+ 1, 7(x, y,2) = x+y, 7(x,y,2) = x + 2z, T(x, y,2) = X+ y + z, Or
Tx,y,z)=x+y+z+1.

In the case of order 3, we found a total of 84 distinct isomorphism classes, including 30 ternary quandles
(those such that f = id).

Since for each fixed a, b, the map x » 7(x, a, b) is a permutation, in the following table we describe
all ternary f-quandles of order three in terms of the columns of the Cayley table. Each column is a per-
mutation of the elements and is described in standard notation, that is by explicitly writing it in terms of
products of disjoint cycles. Thus for a given z we give the permutations resulting from fixing y = 1, 2, 3.
For example, the ternary set 71,(x, y, z) with the Cayley Table 1 will be represented with the permutations
(1),(12),(13);(12), (1), (23); (13), (23), (1). This will appear in Table 3 as shown in Table 2.

Table 1. Cayley representation of ternary quandle 712

z=1 2= z=3
2 (3 2 (1)1 3111
1|2 1(2]|3 2 (3] 2
3|1 3|13]|2 1(2 |3
Table 2. Permutation representation of ternary quandle 71,
T ‘ z=1 ‘ z=2 ‘ z=3

112 | (1,(12),13) | (12),1),(23) | (13),(23),(2)

Table 3. Isomorphism classes of ternary quandles of order 3

z=1 z=2 z=3 z=1 z=2 z=3
(1),(1),(1) (1),(2),(1) (1),(2),(1) (1),(2),(1) (1),(2),(2) (1),(1),(12)
(1),(1),(1) (1),(1),(1) (12),12),(2) (1),(2),(1) (1),(1),(1) (12),12),(12)
(1),(1),(1) (1),(1),23) (1),(23),(1) (1),(2),(1) (2 3),(1),(1) (2 3),(1),(1)
(1),(1),(1) (23),(1),(23) (23),23),(2) (1),(1),(12) (1),(1),(12) (1),(1),(12)
(1),(1),(12) (1),(1),(12) (12),12),(2) (1),(1),(1 2) (1),(2),(12) (12),(12),(12)
(1),(1),(123) (123),(1),(2) (1),(123),(2) (1),(1),(132) (132),(1),(2) (1),(132),(2)
(1),(1),(1 3) (1),(1 3),(1) (13),(1),(1) (1),(2),(1 3) (13),(1),(1 3) (1 3),(2),(1)
(1),(1),(13) (13),(13),(13) (13),(1),(1) (1),(23),(23) (23),1),(23) (23),23),(2)
(1),(23),(23) (13),(1),(13) (12),12),(2) (1),(12),(12) (12),1),(12) (1),(1),(12)
(1),(12),(12) (12),(1),(12) (12),(12),(12) (1),(12),(1 3) (12),1),(23) (13),23),(2)
(1),(123),(123) (123),(1),(123) (123),(123),(2) (1),(123),(132) (132),(1),(123) (123),(132),(1)
1),(132),(123) (123),(1),(132) (132),(123),(2) (1),(13),(12) (2 3),(1),(12) (2 3),(1 3),(2)
(2 3),(1),(1) (1),(1 3),(1) (1),(1),(1 2) (23),(23),(23) (13),(13),(13) (12),(12),(12)

(23),(12),(13)

(12),(13),23)

(13),(23),(12)

(23),(123),(132)

(132),13),(123)

(123),(132),(12)

(23),(132),(123)

(123),(13),(132)

(132),(2123),12)

(23),13),12)

(23),13),12)

(23),(13),12)
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Table 4 lists the isomorphism classes, the first table lists those that such that f = id, and the second table

lists classes with members with a non-trivial twisting.

Table 4. Isomorphism classes of ternary f-quandles of order 3

z=1 z=2 z=3 z=1 z=2 z=3

(1),(1),(2) (1),(2 3),(1) (1),(1),(2 3) (1),(1),(1) (1),(2 3),(2 3) (1),(23),23)

(1),1),(1) (23),23),1) (23),(1),(2 3) (1),(1),(1) (23),23),23) (23),(23),23)

(1),(2),(2) (123),(123),123) (132),(132),132) (1),(2),(1) (132),(132),132) (123),(123),123)
(1),(1),123) (1),132),132) (123),(132),(123) (1),(1),(132) (123),(132),132) (123),(1),123)
(1),(2 3),(2 3) (1),(2 3),(1) (1),(1),(2 3) (1),(2 3),(2 3) (1),(2 3),(2 3) (1),(23),23)
(1),(23),(2 3) (23),(23),(1) (23),(1),(23) (1),(23),(2 3) (23),(23),23) (23),(23),(23)
(1),(23),(23) (23),(123),23) (23),(23),132) (1),12),(13) (13),(123),12) (12),13),(132)

(1),(123),123) (1),(132),(2) (132),(132),(123) (1),(123),(132) (1),(123),132) (1),(123),132)

(1),(123),(132)

(123),(132),(1)

(132),(1),(123)

(1),132),(123)

(1),(132),(123)

(1),(132),(123)

(1),(132),(123) (132),(123),(1) (123),1),(132) (1),13),(12) (12),(123),(13) (13),12),(132)
(23),1),(1) (1),(23),(1) (1),1),(23) (23),1),(1) (1),(23),(23) (1),(23),23)
(23),(1),(1) (23),23),(1) (23),(1),23) (23),(0),() (23),(23),23) (23),(23),(23)
(23),1),(1) (123),23),(123) | (132),132),(23) (23),(23),(23) (1),23),(1) (1),(1),(23)

(23),(23),23) (1),(23),23) (1),(23),23) (23),(23),(23) (23),(23),(1) (23),(1),(23)
(23),(23),23) (23),(23),(23) (23),(23),(23) (23),(23),(23) (12),12),12) (13),(13),(13)

(23),(12),(13)

(23),(12),(13)

(23),(12),(13)

(23),(12),(13)

(13),(23),(12)

(12),(13),23)

(23),(123),(132)

(1),(23),(132)

(1),(123),23)

(23),(132),(123)

(132),(23),(1)

(123),(1),(23)

(23),(13),12)

(12),(23),(13)

(13),(12),23)

(23),(13),(12)

(13),(12),(23)

(12),(23),13)

(12),1),(132)

(132),(23),(1)

(1),(132),(13)

(12),(23),(13)

(12),(23),(13)

(12),(23),(13)

(12),(12),12) (23),(23),23) (13),(13),(13) (12),(123),(123) (123),(23),(123) (123),(123),(13)
(12),(132),(1) (1),(23),(132) (132),(1),(13) (12),13),(23) (13),(23),(12) (23),(12),(13)
(123),(1),(1) (1),(123),(1) (1),(),(a23) (123),1),(123) (123),(123),(1) (1),(123),(123)

(123),(1),(132)

(132),(123),(1)

(1),132),(123)

(123),(23),(13)

(12),123),(13)

(12),23),(123)

(123),12),(12)

(23),(123),(23)

(13),(13),(123)

(123),(123),(1)

1),(123),123)

(123),1),(123)

(123),(123),(123)

(123),(123),(123)

(123),(123),(123)

(123),(123),(132)

(132),(123),(123)

(123),(132),(123)

(123),(132),(1)

(1),(123),(132)

(132),(1),(123)

(123),(132),(123)

(123),(123),(132)

(132),(123),(123)

(123),(132),132)

(132),(123),132)

(132),(132),123)

(123),(13),(23)

(13),123),(12)

(23),(12),123)

5 Extensions of f-quandles and modules

In this section we investigate extensions of ternary f-quandles. We define generalized ternary f-quandle 2-
cocycles and give examples. We give an explicit formula relating group 2-cocycles to ternary f-quandle 2-
cocycles, when the ternary f-quandle is constructed from a group.

5.1 Extensions with dynamical cocycles and extensions with constant cocycles

Proposition 5.1. Let (X, T, F) be a ternary f-quandle and A be a non-empty set. Let a

t X xXxX >

Fun(AxAxA, A) be a functionand f, g : A - A are maps. Then, X x A is a ternary f-quandle by the operation

T((x, a), (y, b), (z,¢)) = (T(x,y,2), ax,y,z(a, b, ¢)), where T(x, y, z) denotes the ternary f-quandle product in

X, if and only if a satisfies the following conditions:
1. axxx(a,a,a)=g(a)forallx € Xand a € A;
2. Qx,y,z(-, b, c): A > Alis a bijection for allx,y,z € X and forall b, c € A;
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3. aT(x,y,z),f(u),f(v)(ax,y,z(a’ b, C)’ g(d): g(e)) =
AT0,u,), T u), Tz u) @y (@, d, @), ayuv(b, d, e), azuv(c, d, e)) for all x,y,z,u,v € X and
a,b,c,d,e € A.
Such function a is called a dynamical ternary f-quandle cocycle or dynamical ternary f-rack cocycle (when it
satisfies above conditions).

The ternary f-quandle constructed above is denoted by X x4 A, and it is called extension of X by a dynamical
cocycle a. The construction is general, as Andruskiewitch and Grafa showed in [11].

Assume (X, T, F) is a ternary f-quandle and a be a dynamical f-cocycle. For x € X, define Tx(a, b, ¢) :=
axx,x(a, b, c). Then it is easy to see that (4, Tx, F) is a ternary f-quandle for all x € X.

Remark 5.2. When x =y = z in condition (3) above, we get

af(x),f(u),f(v)(le,x,x(a, b, c), g(d), g(e)) =

aT(x,u,v),T(x,u,v),T(x,u,v)(ax,u,v(a, d’ e)’ ax,u,v(ba d’ e)’ aX,u,V(C’ d’ e))

foralla, b, c,d, e € A.

Now, we discuss Extensions with constant cocycles. Let (X, T, F) be a ternary f-rackand A : X x X x X > S,
where S, is group of permutations of X.

If Az y.2), F), FonAxy,z = AT, T um), Tz u,v)Axu,y We say A is a constant ternary f-rack cocycle.

If (X, T, F) is a ternary f-quandle and further satisfies Ay x,x = id for all x € X, then we say A is a constant
ternary f-quandle cocycle.

5.2 Modules over ternary f-rack

Definition 5.3. Let (X, T, F) be a ternary f-rack, A be an abelian group and f, g : X > X be homomorphisms.
A structure of X-module on A consists of a family of automorphisms (nj); ;,kex and a family of endomorphisms
(T31)1,j,kex Of A satisfying the following conditions:

N1,y,2).f@.f WYz = NT,uv), T(,u,v), T(z,u,v) Txuv (8)
rlT(X,Y»Z),f(u),f(V)Tva’z = TT(x,u,v),T(y,u,v),T(z,u,v)ﬂy,u,v (9)
rlT(x,y,z),f(u),f(v)"lx,)’,z = IJT(x,u,v),T(y,u,v),T(z,u,v)rlZ,u,V (10)

TT(x,y,2),fw),fFW8 = NT0uv), T(yuv), Tzu) Txuv T TTeou), Ty,u,v), T(z,u,v) Tysu,v
+VT(x,u,v),T(y,u,v),T(z,u,v)TZyll,V (11)
HT(x,y,2).f(u),fv)8 = nT(x,u,v),T(y,u,v),T(z,u,v)]lX,U,V T Tr(x,u,v), T(v,u,v), T(z,u,v) Uy, u,v

tH TOGu,v), T(y,u,v), T(zu,v) Mz uv (12)

In the n-ary case, we generalized the above definition as follows.

Definition 5.4. Let (X, T, F) be an n-ary f-rack, A be an abelian group and f, g : X - X be homomorphisms.
A structure of X-module on A consists of a family of automorphisms (n;;); j,kex and a family of endomorphisms
(T::jk),-, i.kex of A satisfying the following conditions:

NT00 X2 YD T f XXX =TTy 20y T2 Y20y Ty 2oy TDX1 V20V (13)

i o
NT00 X0 X ) YY) f V) TX1 X2 e Xn = DTG0, 12,00y TV 200 Vi) seees TnsY 2 ees ) X5V 250005 Ym (14)

n-1
j i
+ . .
Z TT(xl,y2 ..... Vn)s T(X2,¥25+005¥n)seees TXn5Y 2500, yn)T"/’yl ~~~~ Yn (15)
j=1
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Remark 5.5. If X is a ternary f-quandle, a ternary f-quandle structure of X-module on A is a structure of an
X-module further satisfies

Trx0),fw).f)8 = (rlT(x,u,v),T(x,u,v),T(x,u,v) + Tr(x,u,v), TOGu,v), Tou,v) +
]'1T(x,u,v),T(x,u,v),T(x,u,v))TX,U,V (16)
and
Ko, rw),f»8 = (nT(x,u,v),T(x,u,v),T(x,u,v) T Tr(x,u,v), T(x,u,v), T(x,u,v)
+HT(x,u,v),T(x,u,v),T(x,u,v))}lX,u,V- (17)

Furthermore, if f, g = id maps, then it satisfies
N T0,u), T0Gu), Touuv) + TT00u), T00u), Toouv) + HT0gu,v), Toou,m), Toou,y) = 1d-
Remark 5.6. When x =y = z in (8), we get
60, £, F) TDxxx = T T0eu,), TOGu,), To6u,v) Tl v-

Example 5.7. Let A be a non-empty set and (X, T, F) be a ternary f-quandle, and x be a generalized 2-cocycle.
Fora,b,c c A, let
ax,y,z(ay b, C) = nx,y,z(a) + Tx,y,z(b) + ﬂx,y,z(c) + Kx,y,z-

Then, it can be verified directly that a is a dynamical cocycle and the following relations hold:

rlT(x,y,z),f(u),f(v)rlX,)’,Z = nT(x,u,v),T(y,u,v),T(z,u,v)rIX,ll,V (18)
N1(x,y,2),f@.fNTxy.2 = TT0Gu,v), Ty, u,v), T(z,u,v) Ty.u,v (19)
rlT(x,y,z),f(u),f(v)“x,y,z = yT(x,u,v),T(y,u,v),T(z,u,v)rlZyU,V (20)

TT(x,y,2),f),fV8 = NT(x,u,), Ty,u,v), T(z,u,v) Ty + TT00u,v), T(y,u,v), T(z,u,v) Ty, v

U T u,), T v), Tzu) T2uy (1)
H1(,y,2),f@),fD8 = NT0u,v), Ty,u,v), Tzu) M uw,y + TTgu,v), T(y,u,v), Tz,u,v) Hy,u,v

FUT(u,v), T(y,u,v), T(z,u,v) Hzuv (22)
N10y,2).f).fW K.z + KTy, 2),f(),fv) = TTT00u,), T(,u,v), Tz, u,v) Koy

TTT0,u,v), T(y,u,v), T(z,u) Kyswv + HT(0u,v), T(y,u,v), T(z,u,v) Kz,u,v

+KT(x,u,v),T(y,u,v),T(z,u,v)' (23)

Definition 5.8. When «k further satisfies kx,x,x = 0 in (23) for any x € X, we call it a generalized ternary f-
quandle 2-cocycle.

Recall that the quandle algebra of an f-quandle (X, t>, f) is a Z-algebra Z(X) presented by generators as in
[11] with relations (8), (9), (10), (11), (12), (13), (14).

Example 5.9. Let (X, T, F) be a ternary f-quandle and A be an abelian group. Set Nx,y,> = Tx,y,z, Ux,y,z =
0, Kx,y,z = P(x, y, ). Then ¢ is a 2-cocycle. That is,

o(x,y,2) + P(T(x,y, 2), f(w), f(V)) = px, u, v) + p(y, u, v) + ¢(T(x, u,v), T(y, u, v), T(z, u, v)).

Example 5.10. Let I' = Z[P, Q, R] denote the ring of Laurent polynomials. Then any I'-module M is a Z(X)-
module for any ternary f-quandle (X, T, F) by nxy,(a) = Pa ,Txy.(b) = Qb and px,y,(c) = Rc for any
x,y,z€X.

Definition 5.11. A set G equipped with a ternary operator T : G x G x G - G is said to be a ternary group (G, T)
if it satisfies the following condition:
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(i) T(T(x,y,z),u,v) = T(x, T(y, z,u), v) = T(x, y, T(z, u, v)) (associativity),
(ii)) T(e,x,e)=T(x,e,e)=T(e, e, x) = x (existence of identity element),
(iii) T(x,y,y)=T(,x,y) = T(y,y, x) = e ( existence of inverse element).

Example 5.12. Here we provide an example of a ternary f-quandle module and explicit formula of the ternary
f-quandle 2-cocycle obtained from a group 2-cocycle. Let G be a group andlet 0 > A > E > G - 1 be a short
exact sequence of groups where E = A x4 G by a group 2-cocycle 6 and A is an Abelian group.

The multiplication rule in E is given by (a, x) - (b, y) - (c,z) =(@a+x-b+y-c+0(x,y, z), T(x, y, z)), where
X - b means the action of A on G. Recall that the group 3-cocycle condition is

0(x,y,z) +x6(y, z, u) + 0(x, yz, u) = 0(xy, z, u) + 0(x, y, zu).

Now, let X = G be a ternary f-quandle with the operation T(x,y, z) = f(xy 'z) and let g : A > A be a map on
A so that we have amap F : E - E given by F(a, x) = (g(a), f(x)). Therefore the group E becomes a ternary
f-quandie with the operation

T((a, %), (b, ), (c, 2)) = F((a, x) - (b, y) " - (c, 2)).

Explicit computations give that nx,y,.(a) = g(a), Txy,(b) = -2xy'g(b), pxy,: = y'g(c) and Ky, =
gloxy,y, y =00y, y, )+ 0(xy,y 1, ¥)+260(x,y,e) - 0(x, y*,y ) -00x,y 1, y)+0(x, y 1, y)-0(x, y,y) -
00, y,y )+ 00,y 1, 2)l.

6 Cohomology theory of n-ary f-quandles

In this section we present a general cohomology for n-ary f-quandles, and include specific examples,
including the generalized ternary case, and specific examples in both the ternary and binary case.

Let (X, T, f) be a ternary f-rack where f : X - X is a ternary f-rack morphism. We will define the
generalized cohomology theory of f-racks as follows:

For a sequence of elements (x1, X2, X3, X4, . . . , X2p+1) € X?P*! define

[X1, X2, X3, X4, . .. ,X2p+1] =

T(... T(T(T(x1, X2, X3), f(x4), f(x5)), f2(X6)s F202))) - . P 0xap), 27 (Xopen))-

More generally, if we are considering an n-ary f-rack (X, T, f), using the same notation T for the n-ary
operation, we define the bracket as follows:

[le X2 X33 Xty eeny X(n—l)p+1] = T(' . T(T(Xl, ceey Xn):f(XrHl), cee ,f(XZn—l)) o

-1 -1
. ,fp (Xp(n72)+1), oo ’fp (X(n—l)erl))

Notice that fori = (p - 1)j + 1 < n, we have

[le X2, X3, X450 an] =
i-2 i-2
T([Xl,...,Xl',l,Xier,...,Xn],fl [Xi’Xiera'-"XYl]afl [Xi+1sxi+p’-'-1xfl]’-'-
i-2
--'afl [Xi+p—l)xi+p7---’xn]

This relation is obtained by applying the first axiom of f-quandles p - i times, first grouping the first i - 1
terms together, then iterating this process, again grouping and iterating each.
We provide cohomology theory for the f-rack
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Theorem 6.1. Consider the free left Z(X)-module C,(X) = Z(X)X? with basis X?. For an abelian group A, denote
CP(X, A) := Homyx)(Cp(X), A), then the coboundary operators are defined as 0 = o : CP*Y(X) > CP(X) such
that

ap¢(xl, ey X(n—l)p+1)

p+1
= CUPY D A, 2500 F 208 0D..oo 23, 0D PAD)

i=2
_¢(T(C1(l))’ T(CZ(I))’ ceey T(C(n—l)i—l(i)): F(X(n—l)i)’ F(X(n—l)iJrl)’ ceey F(X(n—l)erl))

n-1

o

DY g, 0, B2, 00 (B (O)),

j-1

where A(l) =X15X2y eeey )A((n—l)i’ 52(n—1)i+1! ceey 52(n—1)(i+1)! Xn(i+1)—i’ ceey X(n—l)p+1’
Bk(i) = X(n-1)i+ks X(n-1)i+n+1> X(n-1)i+2s +++> X(n-1)p+1>
Ck(l) = Xkes X(n-1)is X(n-1)i+1s *++» X(n-1)i+n-2+

Then the pair (C(X), 9) defines a cohomology complex.

Proof. To prove that 0?*10P = 0, and thus 9 is a coboundary map we will break the composition into pieces,
using the linearity of n and 7'.

First we will show that the composition of the i" term of the first summand of 07 with the j term of the
first summand of 9P*! cancels with the (j + 1) term of the first summand of o7 with the i'" term of the first
summand of 07*! for i < j. As the sign of these terms are opposite, we need only show that the compositions
are equal up to their sign. For the sake of readability we will introduce the following, based on A and B above:

AL, J) = X1, s Rine)is Xnojiets oo Xnis Xnis1s w0 X(ao1)jo15

X(n-1)j> X(n-1)j+15 =++> Xnjs +++s X(n-1)p+1>

B(l9 }) = X(n—l)iJrk’ Xni+ls Xni+2s «oes X(n—1)j; X(n—l)jJrlr seey an9 seey X(n—l)erl'

Now, we can see that the composition of the it" term of the first summand of o” with the j7 term of the first
summand of 0”*! can be rewritten as follows:

N4, F2[Bo ()], Fi-2[B1 ()], .., 2 [Ba_2 DT A (G, j+ )], FF- [Bo i+ D], 1 [By 5+ 1], .., -1 [By_5 (j+1)]
= NTQAGH],F [BoG+1)],.er B [Buoo G+ D), T(F2[Bo (6,)], 1 [Bo(+ 1], .o, I [By 2 (4 1)])
T(F=2[B1(i,)], I [Bo i+ D], -, F - [Bra G+ D)D), ..., T(F2 [Bp—z (i,/)], F 2 [Bo (j+ 1)), ..., -1 [By—p (j+1)])
N[AG,j+ 1), 1 [BoG+ DI, 1 [By (4 D], ., -1 [By 5 (+1)]
= NT(AGH]LF2Bo()],v... F2 [Bua ()], F-1 [Bo(+ )], 1 B2 G+ DI [AG, )], F2 [Bo (i), ... Fi-2 [By-2 ()]
= N[AG+ D)L F [Bo(+ 1)), L [By (j+ 1)1, ..., 1 [Buea G+ DI TIAG ), F2[Bo (G, .o F-2 [Bpa (i,)]*

This is precisely the (j + 1) term of the first summand of o7 with the i’ term of the first summand of oP*.

Similar manipulations show that the composition of 7! from o7 with the i" term of the first sum of 97*!
cancels with the composition of the (i+1)™ term of the first sum of o7 with 7 from 0?**. For the sake of brevity
we will omit showing these manipulations, but the table below presents all relations which are canceled by
similar manipulations.

In the table, 1; represents the i" summand of the first sum, o; represents the i" summand of the second
sum, with order of composition determining its origin in 6, or §,.1.

ninjy = Njani

nioj = OjaNi
nT = Thia
Tlo; = ojnqT

0iOj = 0j+10i -
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All these relations leave n + 1 remaining terms, which cancel via the third axiom from the Definition. O

We present the ternary case below, using the convention from the previous section, so T and u representing
7! and 72 respectively.

Example 6.2. By specializing n = 2 in Theorem 6.1, the coboundary operator simplifies to:
0P(X1,. .., X2ps1)

»
= Z(_l)ln{A,B,C}(p(Xl’ e Xoi, i1y o+ Xope1)

i=1

p
- Z(—1)1¢(T(X1, X2y X2i41)s + + + » T(X2i21, X2, X2141) F(X2142), « + ., F(X2p41))
i-1

2p+1
+(_1) T[Xl,Xa ,,,,, Xops1l,[X2, X450, Xop i1, (X350, X2p+1]¢(X2’ Xgyoees X2p+1)
2p+1
D P My x5 X Xpia ] 3 e ] P (X35 Xt -5 Xapia),
ISP i-1
where A = [X1, ..., X21, X2is15 - » X2ps1], B = FU Y D0, X012, Xai435 - -+ Xop+1l,
i1
C = FU Y Xpii1, Xoiss + « + s Xops1l-

Specializing further in Example 6.2, we obtain the following result.

Example 6.3. In this example, we compute the first and second cohomology groups of the ternary Alexander
f-quandle X = 75 with coefficients in the abelian group Zs. For the ternary f-quandle under consideration we
have P=2,Q =R =1, thatis T(x1, X2, x3) = Px1 + Qx, + Rx3 and f(x) = (P + Q + R)x as in Example 2.11. Now,
setting n to be the multiplication by P, T to be the multiplication by Q, and u to be the multiplication by R, we
have the 1-cocycle condition for ¢ : X > A given by

Pp(x) + Qp(y) + Rp(2) - p(T(x,y,2)) = 0

and the 2-cocycle condition as

P(x1, x2, x3) + Y(T(x1, X2, x3), f(x4), f(x5))
= PY(x1, x4, x5) + Q(X2, X4, X5) + Rip(X3, X4, X5)

+ Y(T(x1, X4, X5), T(X2, X4, X5), T(X3, X4, X5)).

A direct computation gives H' (X = 73, A = 73) is 2-dimensional with basis {2)o + X1, 2Xo + X2 }. As such the
dim(Im(641)) = 1, and additional calculation gives dim(ker(8,)) = 3, thus H? is also 2-dimensional.

Lastly we consider a binary case, obtaining, as expected, a familiar result.

Example 6.4. Let n be the multiplication by T and T be the multiplication by S in Example 2.11. The 1-cocycle
condition is written for a function ¢ : X > A as

Tp(x) + Sp(y) - p(x *y) = 0.

Note that this means that ¢ : X > A is a quandle homomorphism.
Fori : X x X - A, the 2-cocycle condition can be written as

Thp(x1, x2) + Px1 * x2, f(x3)) = Th(x1, x3) + SP(x2, X3) + P(x1 * X3, X2 * Xx3).

In [27], the groups H' and H? with coefficients in the abelian group Zs of the f-quandle X = 73, T = 1, S = 2 and
f(x) = 0 were computed. More precisely, H(Zs, Z) is 1-dimensional with a basis 1 +2)> and H 2 is 1-dimension
with a basis {X(1,2) ~ X@2.1)}-
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