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Abstract: We introduce and study ternary f -distributive structures, Ternary f -quandles and more generally
their higher n-ary analogues. A classi�cation of ternary f -quandles is provided in low dimensions. More-
over, we study extension theory and introduce a cohomology theory for ternary, and more generally n-ary,
f -quandles. Furthermore, we give some computational examples.
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1 Introduction
The �rst instances of ternary operations appeared in the nineteenth century when Cayley considered cubic
matrices. Ternary operations or more generally n-ary operations appeared naturally in various domains of
theoretical and mathematical physics. The �rst instances of ternary Lie algebras appeared in the Nambu’s
Mechanics when generalizing hamiltonian mechanics by considering more than one hamiltonian [1]. The
algebraic formulation of Nambu’s Mechanics was achieved by Takhtajan in [2]. Moreover, ternary algebraic
structures appeared in String and Superstring theories when Basu and Harvey suggested to replace Lie
algebra in the context of Nahm equations by a 3-Lie algebra. Furthermore, a ternary operation was used by
Bagger-Lambert in the context of Bagger-Lambert-Gustavsson model of M2-branes and in the work of Okubo
[3] onYang-Baxter equationwhich gave impulse to signi�cant development on n-ary algebras. In recent years,
there has been a growth of interests in many generalizations of binary structures to higher n-ary contexts. In
Lie algebra theory, for example, the bracket is replaced by a n-ary bracket and the Jacobi identity is replaced
by its higher analogue, see [4]. Generalizations of quandles to the ternary case were done recently in [5]. One
may also mention reference [6] where the author uses two ternary operators, providing a generalization of
a Dehn presentation which assigns a relation to each crossing in terms of the regions of the diagram that
surround the crossing. For example, by coloring the four regions respectively a, b, c and d (see �gure 2 in
[6]), the author obtains d as a ternary function T(a, b, c) = ab−1c. This example of ternary operation was
also considered in Example 2.8 in [5]. The author shows under certain conditions that ternary checkerboard
colorings de�ne link invariants. The paper deals with di�erent algebraic structures considered in [5] and in
this work.

In this paper we introduce and study a twisted version of ternary, respectively n-ary, generalizations of
racks and quandles, where the structure is de�ned by a ternary operation and a linear map twisting the
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distributive property. These type of algebraic structures, called sometimes Hom-algebras, appeared �rst in
quantum deformations of algebras of vector �elds, motivated by physical aspects. A systematic study and
mathematical aspects were provided for Lie type algebras by Hartwig-Larsson and Silvestrov in [7] whereas
associative and other nonassociative algebras were discussed by the fourth author and Silvestrov in [8] and
n-ary Hom-type algebras in [9]. The main feature of all these generalization is that the usual identities are
twisted by a homomorphism. We introduce in this article the notions of ternary, respectively n-ary, f -shelf
(resp. f -rack, f -quandle), give somekey constructions andproperties.Moreover,we provide a classi�cation in
low dimensions of f -quandles. We also study extensions andmodules, as well as cohomology theory of these
structures. For classical quandles theory, we refer to [10], see also [11–19]. For basics and some developments
of Hom-type algebras, we refer to [8, 20–26].

This paper is organized as follows. In Section 2, we review the basics of f -quandles and ternary distribu-
tive structures and give the general n-ary setting. In Section 3, we discuss a key construction introduced by
Yau, we show that given a n-ary f -shelf (resp. f -rack, f -quandle) and a shelf morphism then one constructs a
new n-ary f -shelf (resp. f -rack, f -quandle) andwe provide examples. In Section 4, we provide a classi�cation
of ternary f -quandles in low dimensions. Section 5 gives the extension theory of f -quandles and modules.
Finally, in Section 6 we introduce the cohomology of n-ary f -distributive structures and give examples.

2 f -quandles and ternary (resp. n-ary) distributive structures
In this section we aim to introduce the notion of ternary and more generally n-ary f -quandles, generalizing
the notion of f -quandle given in [27].

2.1 A review of f -quandles and related structures

First, we review the basics of the binary f -quandles. We refer to [27] for the complete study. Classical theory
of quandle could be found in

De�nition 2.1. An f -shelf is a triple (X, *, f ) in which X is a set, * is a binary operation on X, and f : X → X is
a map such that, for any x, y, z ∈ X, the identity

(x * y) * f (z) = (x * z) * (y * z) (1)

holds. An f -rack is an f -shelf such that, for any x, y ∈ X, there exists a unique z ∈ X such that

z * y = f (x). (2)

An f -quandle is an f -rack such that, for each x ∈ X, the identity

x * x = f (x) (3)

holds.
An f -crossed set is an f -quandle (X, *, f ) such that f : X → X satis�es x * y = f (x) whenever y * x = f (y) for

any x, y ∈ X.

De�nition 2.2. Let (X1, *1, f1) and (X2, *2, f2) be two f -racks (resp. f -quandles). A map ϕ : X1 → X2 is an
f -rack (resp. f -quandle) morphism if it satis�es ϕ(a *1 b) = ϕ(a) *2 ϕ(b) and ϕ ◦ f1 = f2 ◦ ϕ.

Remark 2.3. A category of f -quandles is a category whose objects are tuples (A, *, f )which are f -quandles and
morphism are f -quandle morphisms.

Examples of f -quandles include the following:
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– Given any set X and map f : X → X, then the operation x * y = f (x) for any x, y ∈ X gives a f -quandle. We
call this a trivial f -quandle structure on X.

– For any group G and any group endomorphism f of G, the operation x * y = y−1xf (y) de�nes a f -quandle
structure on G.

– Consider the Dihedral quandle Rn, where n ≥ 2, and let f be an automorphism of Rn. Then f is given by
f (x) = ax + b, for some invertible element a ∈ Zn and some b ∈ Zn [16]. The binary operation x * y =
f (2y − x) = 2ay − ax + b (mod n) gives a f -quandle structure called the Dihedral f -quandle.

– Any Z[T±1, S]-module M is a f -quandle with x * y = Tx + Sy, x, y ∈ M with TS = ST and f (x) = (S + T)x,
called an Alexander f -quandle.

Remark 2.4. Axioms of De�nition 2.1 give the following identity,

(x * y) * (z * z) = (x * z) * (y * z).

We note that the two medial terms in this equation are swapped (resembling the mediality condition of a
quandle). Note also that the mediality in the general context may not be satis�ed for f -quandles. For example
one can check that the f -quandle given in item (2) of Examples is not medial.

2.2 Ternary and n-ary f -quandles

Nowwe introduce and discuss the analogous notion of a f -quandle in the ternary setting andmore generally
in the n-ary setting.

De�nition 2.5. Let Q be a set, α be amorphismand T : Q×Q×Q → Q bea ternary operation on Q. The operation
T is said to be right f -distributive with respect to α if it satis�es the following condition for all x, y, z, u, v ∈ Q

T(T(x, y, z), α(u), α(v)) = T(T(x, u, v), T(y, u, v), T(z, u, v)). (4)

The previous condition is called right f -distributivity.

Remark 2.6. Using the diagonal map D : Q → Q × Q × Q = Q×3 such that D(x) = (x, x, x), equation (4) can be
written, as a map from Q×5 to Q, in the following form

T ◦ (T × α × α) = T ◦ (T × T × T) ◦ ρ ◦ (id × id × id × D × D), (5)

where id stands for the identity map. In the whole paper we denote by ρ : Q×9 → Q×9 the map de�ned as
ρ = p6,8 ◦ p3,7 ◦ p2,4 where pi,j is the transposition ith and jth elements, i.e.

ρ(x1, · · · , x9) = (x1, x4, x7, x2, x5, x8, x3, x6, x9). (6)

De�nition 2.7. Let T : Q×Q×Q → Q be a ternary operation on a set Q. The triple (Q, T, α) is said to be a ternary
f -shelf if the identity (4) holds. If, in addition, for all a, b ∈ Q, themap Ra,b : Q → Q givenby Ra,b(x) = T(x, a, b)
is invertible, then (Q, T, α) is said to be a ternary f -rack. If further T satis�es T(x, x, x) = α(x), for all x ∈ Q,
then (Q, T, α) is called a ternary f -quandle.

Remark 2.8. Using the right translation Ra,b : Q → Q de�ned as Ra,b(x) = T(x, a, b), the identity (4) can be
written as Rα(u),α(v) ◦ Ry,z = RRu,v(y),Ru,v(z) ◦ Ru,v.

Example 2.9. Let (Q, *, f ) be a f -quandle and de�ne a ternary operation on Q by

T(x, y, z) = (x * y) * f (z), ∀x, y, z ∈ Q.

It is straightforward to see that (Q, T, α) is a ternary f -quandle where α = f ◦ f . Note that in this case Ra,b =
Rb ◦ Ra. We will say that this ternary f -quandle is induced by a (binary) quandle.
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Remark 2.10. Binary f -quandles are related to ternary f -quandles when α = f ◦ f . Also, ternary operations T
lead to binary operations by setting for example x * y = T(x, y, y).

Example 2.11. Let (M, *, f ) be an Alexander f -quandle, then the ternary f -quandle (M, T, α) coming from M,
has the operation T(x, y, z) = Px + Qy + Rz where P, Q, R commutes with each other and α(x) = (P + Q + R)x.
It is also called a�ne ternary f -quandle.

Example 2.12. Any group G with the ternary operation T(x, y, z) = f (xy−1z) gives an example of ternary f -
quandle. This is called f heap (sometimes also called a groud) of the group G.

A morphism of ternary quandles is a map ϕ : (Q, T) → (Q′, T ′) such that

ϕ(T(x, y, z)) = T ′(ϕ(x), ϕ(y), ϕ(z)).

A bijective ternary quandle endomorphism is called ternary f -quandle automorphism.
Therefore, we have a category whose objects are ternary f -quandles and morphisms as de�ned above.

As in the case of the binary quandle there is a notion ofmedial ternary quandle

De�nition 2.13 ([28, 29]). A ternary quandle (Q, T, α) is said to be medial if for all a, b, c, d, e, f , g, h, k ∈ Q,
the following identity is satis�ed

T(T(a, b, c), T(d, e, f ), T(g, h, k)) = T(T(a, d, g), T(b, e, h), T(c, f , k)). (7)

This de�nition ofmediality can be written in term of the following commutative diagram

Q × · · · × Q︸ ︷︷ ︸
9 times

Q × Q × Q

Q Q × Q × Q

Q × · · · × Q︸ ︷︷ ︸
9 times

ρ
**

T×T×T
uu

T

��

T×T×T

��Too

Example 2.14. Every a�ne ternary f -quandle, de�ned in Example 2.11, is medial. That is, condition (2.13) is
satis�ed. Indeed the left hand side (LHS) of the mediality condition is shown below to equal the right hand side
(RHS):

LHS = P(Pa + Qb + Rc) + Q(Pd + Qe + Rf ) + R(Pg + Qh + Rk)
= P2a + PQb + PRc + QPd + Q2e + QRf + RPg + RQh + R2k
= P(Pa + Qd + Rg) + Q(Pb + Qe + Rh) + R(Pc + Qf + Rk) = RHS.

We generalize the notion of ternary f -quandle to n-ary setting.

De�nition 2.15. An n-ary distributive set is a triple (Q, T, α) where Q is a set, α : Q → Q is a morphism and
T : Q×n → Q is an n-ary operation satisfying the following conditions:
(I)

T(T(x1, · · · , xn), α(u1), · · · , α(un−1)) =
T(T(x1, u1, · · · , un−1), T(x2, u1, · · · , un−1), · · · , T(xn , u1, · · · , un−1)),

∀xi , ui ∈ Q (f -distributivity).
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(II) For all a1, · · · , an−1 ∈ Q, the map Ra1 ,··· ,an−1 : Q → Q given by

Ra1 ,··· ,an−1 (x) = T(x, a1, · · · , an−1)

is invertible.
(III) For all x ∈ Q,

T(x, · · · , x) = α(x).

If T satis�es only condition (1), then (Q, T, α) is said to be an n-ary f -shelf. If both conditions (1) and (2) are
satis�ed then (Q, T, α) is said to be an n-ary f -rack. If all three conditions (1), (2) and (3) are satis�ed then
(Q, T, α) is said to be an n-ary f -quandle.

Example 2.16. Let (Q, *, f ) be an f -quandle and de�ne an n-ary twisted operation on Q by

T(x1, x2, · · · , xn) = ((. . . (x1 * x2) * f (x3)) * f 2(x4)) * . . . ) * f n−2(xn)∀xi ∈ Q,

where i = 1, · · · , n.
It is straightforward to see that (Q, T, α) is an n-ary f -quandle where α = f n−1.

Example 2.17. Let (M, *, f ) be an Alexander f -quandle, then the n-ary f -quandle (M, T, α) coming from M has
the operation T(x1, · · · , xn) = S1x1 + S2x2 + · · · + Snxn , where Si , i = 1, · · · , n commutes with each other and
α(x) = (S1 + S2 + · · · + Sn)x.

De�nition 2.18. An n-ary quandle (Q, T, α) is said to be medial if for all xij ∈ Q, 1 ≤ i, j ≤ n, the following
identity is satis�ed

T(T(x11, x12, · · · , x1n), T(x21, x22, · · · , x2n), · · · , T(xn1, xn2, · · · , xnn)) =
T(T(x11, x21, · · · , xn1), T(x12, x22, · · · , xn2), · · · , T(x1n , x2n , · · · , xnn)).

3 Yau twist
The following proposition provides a way of constructing new n-ary f -shelf (resp. f -rack, f -quandle) along
a shelf morphism. In particular, given an n-ary shelf (resp. rack, quandle) and a shelf morphism, one may
obtain an n-ary f -shelf (resp. f -rack, f -quandle). Recall that this construction was introduced �rst by Yau
to deform a Lie algebra to a Hom-Lie algebra along a Lie algebra morphism. It was generalized to di�erent
situation, in particular to n-ary algebras in [9].

Proposition 3.1. Let (Q, T, α) be an n-ary f -shelf (resp. f -rack, f -quandle) and β : Q → Q a shelf morphism.
Then (Q, β ◦ T, β ◦ α) is an n-ary f -shelf (resp. f -rack, f -quandle).

Proof. (A)

LHS(I) = β ◦ T(β ◦ T(x1, · · · , xn), β ◦ α(u1), · · · , β ◦ α(un−1))
= β ◦ T(T(β(x1), · · · , β(xn)), α(β(u1)), · · · , α(β(un−1)))
= T(β(T(β(x1), · · · , β(xn))), β(α(β(u1))), · · · , β(α(β(un−1))))
= T(T(β2(x1), · · · , β2(xn)), α(β2(u1)), · · · , α(β2(un−1)))
= T[T{β2(x1), β2(u1), · · · , β2(un−1)}, T{β2(x2), β2(u1), · · · , β2(un−1)},
· · · , T{β2(xn), β2(u1), · · · , β2(un−1)}]

= T[T{β2(x1, u1, · · · , un−1)}, T{β2(x2, u1, · · · , un−1)},
· · · , T{β2(xn , u1, · · · , un−1)}] ∵ [I]

= β ◦ T[T{β(x1, u1, · · · , un−1)}, T{β(x2, u1, · · · , un−1)},
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· · · , T{β(xn , u1, · · · , un−1)}]
= β ◦ T(β ◦ T(x1, u1, · · · , un−1), β ◦ T(x2, u1, · · · , un−1),
· · · , β ◦ T(xn , u1, · · · , un−1))

= RHS(I), ∀xi , ui ∈ Q.

Therefore, (Q, β ◦ T, β ◦ α) is an n-ary f -shelf.

(B) For all a1, · · · , an−1 ∈ Q, the map Rβ(a1),··· ,β(an−1) : Q → Q given by

Rβ(a1),··· ,β(an−1)(x)
= T(β(x), β(a1), · · · , β(an−1))
= β ◦ T(x, a1, · · · , an−1)

is invertible. Therefore, (Q, β ◦ T, β ◦ α) is an n-ary f -rack.
(C) For all x ∈ Q,

β ◦ T(x, · · · , x)
= T(β(x), · · · , β(x))
= β ◦ α(x).

Therefore, (Q, β ◦ T, β ◦ α) is an n-ary f -quandle.

Example 3.2. Let (Q, *) be a quandle and de�ne a ternary operation on Q by T(x, y, z) = (x*y)*z, ∀x, y, z ∈ Q.
It is straightforward to see that (Q,T) is a ternary quandle. Let α : Q → Q be a morphism. Then (Q, α ◦ T, α) is a
ternary f -quandle.

Example 3.3. Let (M, T) be an Alexander ternary quandle, where T(x, y, z) = t2x + t(1 − t)y + (1 − t)z. Let
f : M → M be a morphism. Then (M, f ◦ T, f ) is a ternary f -quandle.

Example 3.4. Let M be a Z[t, t−1]-module. Consider the ternary quandle (M, T) de�ned by the operation
T(x, y, z) = t2x+ t(1− t)y+(1− t)z, where x, y, z ∈ M. For anymap ϕ : M → M satisfying ϕ◦T = T◦(ϕ⊗ϕ⊗ϕ),
we associate a new ternary f -quandle (M, ϕ ◦ T, ϕ).

Example 3.5. Let M be any Λ-module where Λ = Z[t±1, s]. The operation T(x, y, z) = tx + sy + kz where
α(x) = (t+s+k)x de�nes a ternary f -quandle structure on M. Let f : M → M be amorphism. Then (M, f ◦T, f ◦α)
is a ternary f -quandle.

Example 3.6. Let (Q, *) be a quandle and de�ne a n-ary operation on Q by T(x1, x2, · · · , xn) = ((. . . (x1 * x2) *
x3) * x4) * . . . ) * xn), ∀xi ∈ Q where i = 1, · · · , n. Let f : Q → Q be a morphism. It is straightforward to see that
(Q, f ◦ T, f ) is an n-ary f -quandle.

Example 3.7. Let (Q = Zn , T) be a ternary quandle de�ned by T(x, y, z) = 2z − 2y + x. Let f : Zn → Zn be a
quandle morphism de�ned by f (x) = mx, where m ∈ Zn. According to the previous proposition (Q, f ◦ T, f ) is a
ternary f -quandle, with a new operation f ◦ T(x, y, z) = m(2z − 2y + x).

4 Classi�cation of ternary f -quandles of low orders
We developed a simple program to compute all ternary f -quandles of orders 2 and 3. The results of which we
used to obtain the complete list of isomorphism classes.
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For order 2, we found 6 distinct isomorphism classes, each of which can be de�ned over Z2 by one of the
following maps: τ(x, y, z) = x, τ(x, y, z) = x + 1, τ(x, y, z) = x + y, τ(x, y, z) = x + z, τ(x, y, z) = x + y + z, or
τ(x, y, z) = x + y + z + 1.

In the case of order 3, we found a total of 84 distinct isomorphism classes, including 30 ternary quandles
(those such that f = idQ).

Since for each �xed a, b, the map x 7→ τ(x, a, b) is a permutation, in the following table we describe
all ternary f -quandles of order three in terms of the columns of the Cayley table. Each column is a per-
mutation of the elements and is described in standard notation, that is by explicitly writing it in terms of
products of disjoint cycles. Thus for a given z we give the permutations resulting from �xing y = 1, 2, 3.
For example, the ternary set τ12(x, y, z) with the Cayley Table 1 will be represented with the permutations
(1), (12), (13); (12), (1), (23); (13), (23), (1). This will appear in Table 3 as shown in Table 2.

Table 1. Cayley representation of ternary quandle τ12

z=1 z=2 z=3
1 2 3 2 1 1 3 1 1
2 1 2 1 2 3 2 3 2
3 3 1 3 3 2 1 2 3

Table 2. Permutation representation of ternary quandle τ12

τ z=1 z=2 z=3
τ12 (1),(12),(13) (12),(1),(23) (13),(23),(1)

Table 3. Isomorphism classes of ternary quandles of order 3

z=1 z=2 z=3 z=1 z=2 z=3
(1),(1),(1) (1),(1),(1) (1),(1),(1) (1),(1),(1) (1),(1),(1) (1),(1),(1 2)
(1),(1),(1) (1),(1),(1) (1 2),(1 2),(1) (1),(1),(1) (1),(1),(1) (1 2),(1 2),(1 2)
(1),(1),(1) (1),(1),(2 3) (1),(2 3),(1) (1),(1),(1) (2 3),(1),(1) (2 3),(1),(1)
(1),(1),(1) (2 3),(1),(2 3) (2 3),(2 3),(1) (1),(1),(1 2) (1),(1),(1 2) (1),(1),(1 2)
(1),(1),(1 2) (1),(1),(1 2) (1 2),(1 2),(1) (1),(1),(1 2) (1),(1),(1 2) (1 2),(1 2),(1 2)
(1),(1),(1 2 3) (1 2 3),(1),(1) (1),(1 2 3),(1) (1),(1),(1 3 2) (1 3 2),(1),(1) (1),(1 3 2),(1)
(1),(1),(1 3) (1),(1 3),(1) (1 3),(1),(1) (1),(1),(1 3) (1 3),(1),(1 3) (1 3),(1),(1)
(1),(1),(1 3) (1 3),(1 3),(1 3) (1 3),(1),(1) (1),(2 3),(2 3) (2 3),(1),(2 3) (2 3),(2 3),(1)
(1),(2 3),(2 3) (1 3),(1),(1 3) (1 2),(1 2),(1) (1),(1 2),(1 2) (1 2),(1),(1 2) (1),(1),(1 2)
(1),(1 2),(1 2) (1 2),(1),(1 2) (1 2),(1 2),(1 2) (1),(1 2),(1 3) (1 2),(1),(2 3) (1 3),(2 3),(1)

(1),(1 2 3),(1 2 3) (1 2 3),(1),(1 2 3) (1 2 3),(1 2 3),(1) (1),(1 2 3),(1 3 2) (1 3 2),(1),(1 2 3) (1 2 3),(1 3 2),(1)
(1),(1 3 2),(1 2 3) (1 2 3),(1),(1 3 2) (1 3 2),(1 2 3),(1) (1),(1 3),(1 2) (2 3),(1),(1 2) (2 3),(1 3),(1)

(2 3),(1),(1) (1),(1 3),(1) (1),(1),(1 2) (2 3),(2 3),(2 3) (1 3),(1 3),(1 3) (1 2),(1 2),(1 2)
(2 3),(1 2),(1 3) (1 2),(1 3),(2 3) (1 3),(2 3),(1 2) (2 3),(1 2 3),(1 3 2) (1 3 2),(1 3),(1 2 3) (1 2 3),(1 3 2),(1 2)

(2 3),(1 3 2),(1 2 3) (1 2 3),(1 3),(1 3 2) (1 3 2),(1 2 3),(1 2) (2 3),(1 3),(1 2) (2 3),(1 3),(1 2) (2 3),(1 3),(1 2)
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Table 4 lists the isomorphism classes, the �rst table lists those that such that f = idQ, and the second table
lists classes with members with a non-trivial twisting.

Table 4. Isomorphism classes of ternary f -quandles of order 3

z=1 z=2 z=3 z=1 z=2 z=3
(1),(1),(1) (1),(2 3),(1) (1),(1),(2 3) (1),(1),(1) (1),(2 3),(2 3) (1),(2 3),(2 3)
(1),(1),(1) (2 3),(2 3),(1) (2 3),(1),(2 3) (1),(1),(1) (2 3),(2 3),(2 3) (2 3),(2 3),(2 3)
(1),(1),(1) (1 2 3),(1 2 3),(1 2 3) (1 3 2),(1 3 2),(1 3 2) (1),(1),(1) (1 3 2),(1 3 2),(1 3 2) (1 2 3),(1 2 3),(1 2 3)

(1),(1),(1 2 3) (1),(1 3 2),(1 3 2) (1 2 3),(1 3 2),(1 2 3) (1),(1),(1 3 2) (1 2 3),(1 3 2),(1 3 2) (1 2 3),(1),(1 2 3)
(1),(2 3),(2 3) (1),(2 3),(1) (1),(1),(2 3) (1),(2 3),(2 3) (1),(2 3),(2 3) (1),(2 3),(2 3)
(1),(2 3),(2 3) (2 3),(2 3),(1) (2 3),(1),(2 3) (1),(2 3),(2 3) (2 3),(2 3),(2 3) (2 3),(2 3),(2 3)
(1),(2 3),(2 3) (2 3),(1 2 3),(2 3) (2 3),(2 3),(1 3 2) (1),(1 2),(1 3) (1 3),(1 2 3),(1 2) (1 2),(1 3),(1 3 2)

(1),(1 2 3),(1 2 3) (1),(1 3 2),(1) (1 3 2),(1 3 2),(1 2 3) (1),(1 2 3),(1 3 2) (1),(1 2 3),(1 3 2) (1),(1 2 3),(1 3 2)
(1),(1 2 3),(1 3 2) (1 2 3),(1 3 2),(1) (1 3 2),(1),(1 2 3) (1),(1 3 2),(1 2 3) (1),(1 3 2),(1 2 3) (1),(1 3 2),(1 2 3)
(1),(1 3 2),(1 2 3) (1 3 2),(1 2 3),(1) (1 2 3),(1),(1 3 2) (1),(1 3),(1 2) (1 2),(1 2 3),(1 3) (1 3),(1 2),(1 3 2)

(2 3),(1),(1) (1),(2 3),(1) (1),(1),(2 3) (2 3),(1),(1) (1),(2 3),(2 3) (1),(2 3),(2 3)
(2 3),(1),(1) (2 3),(2 3),(1) (2 3),(1),(2 3) (2 3),(1),(1) (2 3),(2 3),(2 3) (2 3),(2 3),(2 3)
(2 3),(1),(1) (1 2 3),(2 3),(1 2 3) (1 3 2),(1 3 2),(2 3) (2 3),(2 3),(2 3) (1),(2 3),(1) (1),(1),(2 3)

(2 3),(2 3),(2 3) (1),(2 3),(2 3) (1),(2 3),(2 3) (2 3),(2 3),(2 3) (2 3),(2 3),(1) (2 3),(1),(2 3)
(2 3),(2 3),(2 3) (2 3),(2 3),(2 3) (2 3),(2 3),(2 3) (2 3),(2 3),(2 3) (1 2),(1 2),(1 2) (1 3),(1 3),(1 3)
(2 3),(1 2),(1 3) (2 3),(1 2),(1 3) (2 3),(1 2),(1 3) (2 3),(1 2),(1 3) (1 3),(2 3),(1 2) (1 2),(1 3),(2 3)

(2 3),(1 2 3),(1 3 2) (1),(2 3),(1 3 2) (1),(1 2 3),(2 3) (2 3),(1 3 2),(1 2 3) (1 3 2),(2 3),(1) (1 2 3),(1),(2 3)
(2 3),(1 3),(1 2) (1 2),(2 3),(1 3) (1 3),(1 2),(2 3) (2 3),(1 3),(1 2) (1 3),(1 2),(2 3) (1 2),(2 3),(1 3)
(1 2),(1),(1 3 2) (1 3 2),(2 3),(1) (1),(1 3 2),(1 3) (1 2),(2 3),(1 3) (1 2),(2 3),(1 3) (1 2),(2 3),(1 3)
(1 2),(1 2),(1 2) (2 3),(2 3),(2 3) (1 3),(1 3),(1 3) (1 2),(1 2 3),(1 2 3) (1 2 3),(2 3),(1 2 3) (1 2 3),(1 2 3),(1 3)
(1 2),(1 3 2),(1) (1),(2 3),(1 3 2) (1 3 2),(1),(1 3) (1 2),(1 3),(2 3) (1 3),(2 3),(1 2) (2 3),(1 2),(1 3)
(1 2 3),(1),(1) (1),(1 2 3),(1) (1),(1),(1 2 3) (1 2 3),(1),(1 2 3) (1 2 3),(1 2 3),(1) (1),(1 2 3),(1 2 3)

(1 2 3),(1),(1 3 2) (1 3 2),(1 2 3),(1) (1),(1 3 2),(1 2 3) (1 2 3),(2 3),(1 3) (1 2),(1 2 3),(1 3) (1 2),(2 3),(1 2 3)
(1 2 3),(1 2),(1 2) (2 3),(1 2 3),(2 3) (1 3),(1 3),(1 2 3) (1 2 3),(1 2 3),(1) (1),(1 2 3),(1 2 3) (1 2 3),(1),(1 2 3)

(1 2 3),(1 2 3),(1 2 3) (1 2 3),(1 2 3),(1 2 3) (1 2 3),(1 2 3),(1 2 3) (1 2 3),(1 2 3),(1 3 2) (1 3 2),(1 2 3),(1 2 3) (1 2 3),(1 3 2),(1 2 3)
(1 2 3),(1 3 2),(1) (1),(1 2 3),(1 3 2) (1 3 2),(1),(1 2 3) (1 2 3),(1 3 2),(1 2 3) (1 2 3),(1 2 3),(1 3 2) (1 3 2),(1 2 3),(1 2 3)

(1 2 3),(1 3 2),(1 3 2) (1 3 2),(1 2 3),(1 3 2) (1 3 2),(1 3 2),(1 2 3) (1 2 3),(1 3),(2 3) (1 3),(1 2 3),(1 2) (2 3),(1 2),(1 2 3)

5 Extensions of f -quandles and modules
In this section we investigate extensions of ternary f -quandles. We de�ne generalized ternary f -quandle 2-
cocycles and give examples. We give an explicit formula relating group 2-cocycles to ternary f -quandle 2-
cocycles, when the ternary f -quandle is constructed from a group.

5.1 Extensions with dynamical cocycles and extensions with constant cocycles

Proposition 5.1. Let (X, T, F) be a ternary f -quandle and A be a non-empty set. Let α : X × X × X →
Fun(A × A × A, A) be a function and f , g : A → A are maps. Then, X × A is a ternary f -quandle by the operation
T((x, a), (y, b), (z, c)) = (T(x, y, z), αx,y,z(a, b, c)), where T(x, y, z) denotes the ternary f -quandle product in
X, if and only if α satis�es the following conditions:
1. αx,x,x(a, a, a) = g(a) for all x ∈ X and a ∈ A;
2. αx,y,z(−, b, c) : A → A is a bijection for all x, y, z ∈ X and for all b, c ∈ A;
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3. αT(x,y,z),f (u),f (v)(αx,y,z(a, b, c), g(d), g(e)) =
αT(x,u,v),T(y,u,v),T(z,u,v)(αx,u,v(a, d, e), αy,u,v(b, d, e), αz,u,v(c, d, e)) for all x, y, z, u, v ∈ X and
a, b, c, d, e ∈ A.

Such function α is called a dynamical ternary f -quandle cocycle or dynamical ternary f -rack cocycle (when it
satis�es above conditions).

The ternary f -quandle constructed above is denoted by X ×α A, and it is called extension of X by a dynamical
cocycle α. The construction is general, as Andruskiewitch and Graña showed in [11].

Assume (X, T, F) is a ternary f -quandle and α be a dynamical f -cocycle. For x ∈ X, de�ne Tx(a, b, c) :=
αx,x,x(a, b, c). Then it is easy to see that (A, Tx , F) is a ternary f -quandle for all x ∈ X.

Remark 5.2. When x = y = z in condition (3) above, we get

αf (x),f (u),f (v)(αx,x,x(a, b, c), g(d), g(e)) =
αT(x,u,v),T(x,u,v),T(x,u,v)(αx,u,v(a, d, e), αx,u,v(b, d, e), αx,u,v(c, d, e))

for all a, b, c, d, e ∈ A.

Now, we discuss Extensions with constant cocycles. Let (X, T, F) be a ternary f -rack and λ : X × X × X → SA
where SA is group of permutations of X.

If λT(x,y,z),F(u),F(v)λx,y,z = λT(x,u,v),T(y,u,v),T(z,u,v)λx,u,v we say λ is a constant ternary f -rack cocycle.
If (X, T, F) is a ternary f -quandle and further satis�es λx,x,x = id for all x ∈ X , then we say λ is a constant

ternary f -quandle cocycle.

5.2 Modules over ternary f -rack

De�nition 5.3. Let (X, T, F) be a ternary f -rack, A be an abelian group and f , g : X → X be homomorphisms.
A structure of X-module on A consists of a family of automorphisms (ηijk)i,j,k∈X and a family of endomorphisms
(τijk)i,j,k∈X of A satisfying the following conditions:

ηT(x,y,z),f (u),f (v)ηx,y,z = ηT(x,u,v),T(y,u,v),T(z,u,v)ηx,u,v (8)
ηT(x,y,z),f (u),f (v)τx,y,z = τT(x,u,v),T(y,u,v),T(z,u,v)ηy,u,v (9)
ηT(x,y,z),f (u),f (v)µx,y,z = µT(x,u,v),T(y,u,v),T(z,u,v)ηz,u,v (10)
τT(x,y,z),f (u),f (v)g = ηT(x,u,v),T(y,u,v),T(z,u,v)τx,u,v + τT(x,u,v),T(y,u,v),T(z,u,v)τy,u,v
+µT(x,u,v),T(y,u,v),T(z,u,v)τz,u,v (11)
µT(x,y,z),f (u),f (v)g = ηT(x,u,v),T(y,u,v),T(z,u,v)µx,u,v + τT(x,u,v),T(y,u,v),T(z,u,v)µy,u,v
+µT(x,u,v),T(y,u,v),T(z,u,v)µz,u,v (12)

In the n-ary case, we generalized the above de�nition as follows.

De�nition 5.4. Let (X, T, F) be an n-ary f -rack, A be an abelian group and f , g : X → X be homomorphisms.
A structure of X-module on A consists of a family of automorphisms (ηijk)i,j,k∈X and a family of endomorphisms
(τiijk)i,j,k∈X of A satisfying the following conditions:

ηT(x1 ,x2 ,...,xn),f (y2),f (y3),...,f (yn)ηx1 ,x2 ,...,xn = ηT(x1 ,y2,...,yn),T(x2 ,y2 ,...,yn),...,T(xn ,y2 ,...,yn)ηx1 ,y2 ,...,yn (13)
ηT(x1 ,x2 ,...,xn),f (y2),f (y3),...,f (yn)τ

i
x1 ,x2 ,...,xn = τ

i
T(x1 ,y2,...,yn),T(x2 ,y2 ,...,yn),...,T(xn ,y2 ,...,yn)ηxi ,y2 ,...,yn (14)

τiT(x1 ,x2 ,...,xn),f (y2),f (y3),...,f (yn)g = ηT(x1 ,y2,...,yn),T(x2 ,y2 ,...,yn),...,T(xn ,y2 ,...,yn)τ
i
x1 ,y2 ,...,yn

+
n−1∑
j=1

τjT(x1 ,y2,...,yn),T(x2 ,y2 ,...,yn),...,T(xn ,y2 ,...,yn)τ
i
xj ,y2 ,...,yn . (15)
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Remark 5.5. If X is a ternary f -quandle, a ternary f -quandle structure of X-module on A is a structure of an
X-module further satis�es

τf (x),f (u),f (v)g = (ηT(x,u,v),T(x,u,v),T(x,u,v) + τT(x,u,v),T(x,u,v),T(x,u,v) +
µT(x,u,v),T(x,u,v),T(x,u,v))τx,u,v (16)

and

µf (x),f (u),f (v)g = (ηT(x,u,v),T(x,u,v),T(x,u,v) + τT(x,u,v),T(x,u,v),T(x,u,v)
+µT(x,u,v),T(x,u,v),T(x,u,v))µx,u,v . (17)

Furthermore, if f , g = id maps, then it satis�es

ηT(x,u,v),T(x,u,v),T(x,u,v) + τT(x,u,v),T(x,u,v),T(x,u,v) + µT(x,u,v),T(x,u,v),T(x,u,v) = id.

Remark 5.6. When x = y = z in (8), we get

ηf (x),f (u),f (v)ηx,x,x = ηT(x,u,v),T(x,u,v),T(x,u,v)ηx,u,v .

Example 5.7. Let A be a non-empty set and (X, T, F) be a ternary f -quandle, and κ be a generalized 2-cocycle.
For a, b, c ∈ A, let

αx,y,z(a, b, c) = ηx,y,z(a) + τx,y,z(b) + µx,y,z(c) + κx,y,z .

Then, it can be veri�ed directly that α is a dynamical cocycle and the following relations hold:

ηT(x,y,z),f (u),f (v)ηx,y,z = ηT(x,u,v),T(y,u,v),T(z,u,v)ηx,u,v (18)
ηT(x,y,z),f (u),f (v)τx,y,z = τT(x,u,v),T(y,u,v),T(z,u,v)ηy,u,v (19)
ηT(x,y,z),f (u),f (v)µx,y,z = µT(x,u,v),T(y,u,v),T(z,u,v)ηz,u,v (20)
τT(x,y,z),f (u),f (v)g = ηT(x,u,v),T(y,u,v),T(z,u,v)τx,u,v + τT(x,u,v),T(y,u,v),T(z,u,v)τy,u,v

+µT(x,u,v),T(y,u,v),T(z,u,v)τz,u,v (21)
µT(x,y,z),f (u),f (v)g = ηT(x,u,v),T(y,u,v),T(z,u,v)µx,u,v + τT(x,u,v),T(y,u,v),T(z,u,v)µy,u,v

+µT(x,u,v),T(y,u,v),T(z,u,v)µz,u,v (22)
ηT(x,y,z),f (u),f (v)κx,y,z + κT(x,y,z),f (u),f (v) = ηT(x,u,v),T(y,u,v),T(z,u,v)κx,u,v

+τT(x,u,v),T(y,u,v),T(z,u,v)κy,u,v + µT(x,u,v),T(y,u,v),T(z,u,v)κz,u,v
+κT(x,u,v),T(y,u,v),T(z,u,v). (23)

De�nition 5.8. When κ further satis�es κx,x,x = 0 in (23) for any x ∈ X, we call it a generalized ternary f -
quandle 2-cocycle.

Recall that the quandle algebra of an f -quandle (X,B, f ) is a Z-algebra Z(X) presented by generators as in
[11] with relations (8), (9), (10), (11), (12), (13), (14).

Example 5.9. Let (X, T, F) be a ternary f -quandle and A be an abelian group. Set ηx,y,z = τx,y,z , µx,y,z =
0, κx,y,z = ϕ(x, y, z). Then ϕ is a 2-cocycle. That is,

ϕ(x, y, z) + ϕ(T(x, y, z), f (u), f (v)) = ϕ(x, u, v) + ϕ(y, u, v) + ϕ(T(x, u, v), T(y, u, v), T(z, u, v)).

Example 5.10. Let Γ = Z[P, Q, R] denote the ring of Laurent polynomials. Then any Γ-module M is a Z(X)-
module for any ternary f -quandle (X, T, F) by ηx,y,z(a) = Pa ,τx,y,z(b) = Qb and µx,y,z(c) = Rc for any
x, y, z ∈ X.

De�nition 5.11. A set G equipped with a ternary operator T : G ×G ×G → G is said to be a ternary group (G, T)
if it satis�es the following condition:
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(i) T(T(x, y, z), u, v) = T(x, T(y, z, u), v) = T(x, y, T(z, u, v)) (associativity),
(ii) T(e, x, e) = T(x, e, e) = T(e, e, x) = x (existence of identity element),
(iii) T(x, y, y) = T(y, x, y) = T(y, y, x) = e ( existence of inverse element).

Example 5.12. Here we provide an example of a ternary f -quandle module and explicit formula of the ternary
f -quandle 2-cocycle obtained from a group 2-cocycle. Let G be a group and let 0 → A → E → G → 1 be a short
exact sequence of groups where E = A oθ G by a group 2-cocycle θ and A is an Abelian group.

The multiplication rule in E is given by (a, x) · (b, y) · (c, z) = (a + x · b + y · c + θ(x, y, z), T(x, y, z)), where
x · b means the action of A on G. Recall that the group 3-cocycle condition is

θ(x, y, z) + xθ(y, z, u) + θ(x, yz, u) = θ(xy, z, u) + θ(x, y, zu).

Now, let X = G be a ternary f -quandle with the operation T(x, y, z) = f (xy−1z) and let g : A → A be a map on
A so that we have a map F : E → E given by F(a, x) = (g(a), f (x)). Therefore the group E becomes a ternary
f -quandle with the operation

T((a, x), (b, y), (c, z)) = F((a, x) · (b, y)−1 · (c, z)).

Explicit computations give that ηx,y,z(a) = g(a), τx,y,z(b) = −2xy−1g(b), µx,y,z = y−1g(c) and κx,y,z =
g[θ(xy, y, y−1)− θ(xy−1, y, y)+ θ(xy, y−1, y)+2θ(x, y, e)− θ(x, y2, y−1)− θ(x, y−1, y2)+ θ(x, y−1, y)− θ(x, y, y)−
θ(x, y, y−1) + θ(x, y−1, z)].

6 Cohomology theory of n-ary f -quandles
In this section we present a general cohomology for n-ary f -quandles, and include speci�c examples,
including the generalized ternary case, and speci�c examples in both the ternary and binary case.

Let (X, T, f ) be a ternary f -rack where f : X → X is a ternary f -rack morphism. We will de�ne the
generalized cohomology theory of f -racks as follows:

For a sequence of elements (x1, x2, x3, x4, . . . , x2p+1) ∈ X2p+1 de�ne

[x1, x2, x3, x4, . . . , x2p+1] =
T(. . . T(T(T(x1, x2, x3), f (x4), f (x5)), f 2(x6), f 2(x7))) . . . )f p−1(x2p), f p−1(x2p+1)).

More generally, if we are considering an n-ary f -rack (X, T, f ), using the same notation T for the n-ary
operation, we de�ne the bracket as follows:

[x1, x2, x3, x4, . . . , x(n−1)p+1] = T(. . . T(T(x1, . . . , xn), f (xn+1), . . . , f (x2n−1)) . . .
. . . , f p−1(xp(n−2)+1), . . . , f p−1(x(n−1)p+1))

Notice that for i = (p − 1)j + 1 < n, we have

[x1, x2, x3, x4, . . . , xn] =
T([x1, . . . , xi−1, xi+p , . . . , xn], f i−2[xi , xi+p , . . . , xn], f i−2[xi+1, xi+p , . . . , xn], . . .
. . . , f i−2[xi+p−1, xi+p , . . . , xn]

This relation is obtained by applying the �rst axiom of f -quandles p − i times, �rst grouping the �rst i − 1
terms together, then iterating this process, again grouping and iterating each.

We provide cohomology theory for the f -rack
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Theorem 6.1. Consider the free leftZ(X)-module Cp(X) = Z(X)Xp with basis Xp. For an abelian group A, denote
Cp(X, A) := HomZ(X)(Cp(X), A), then the coboundary operators are de�ned as ∂ = ∂p : Cp+1(X) → Cp(X) such
that

∂pϕ(x1, . . . , x(n−1)p+1)

= (−1)p+1
p+1∑
i=2

(−1)i{η[A(i)],F i−2([B2(i)]),F i−2([B3(i)]),...,F i−2([Bn(i)])ϕ(A(i))

−ϕ(T(C1(i)), T(C2(i)), ..., T(C(n−1)i−1(i)), F(x(n−1)i), F(x(n−1)i+1), ..., F(x(n−1)p+1))

+(−1)p+1
n−1∑
j=1

τi[B1(0)],[B2(0)],...,[Bn−1(0)]ϕ(Bj(0)),

where A(i) = x1, x2, ..., x̂(n−1)i , x̂(n−1)i+1, ..., x̂(n−1)(i+1), xn(i+1)−i , ..., x(n−1)p+1,
Bk(i) = x(n−1)i+k , x(n−1)i+n+1, x(n−1)i+2, ..., x(n−1)p+1,
Ck(i) = xk , x(n−1)i , x(n−1)i+1, ..., x(n−1)i+n−2.

Then the pair (C(X), ∂) de�nes a cohomology complex.

Proof. To prove that ∂p+1∂p = 0, and thus ∂ is a coboundary map we will break the composition into pieces,
using the linearity of η and τi.

First we will show that the composition of the ith term of the �rst summand of ∂p with the jth term of the
�rst summand of ∂p+1 cancels with the (j + 1)th term of the �rst summand of ∂p with the ith term of the �rst
summand of ∂p+1 for i ≤ j. As the sign of these terms are opposite, we need only show that the compositions
are equal up to their sign. For the sake of readability wewill introduce the following, based on A and B above:

A(i, j) = x1, ..., x̂(n−1)i , x̂(n−1)i+1, ..., x̂ni , xni+1, ..., x(n−1)j−1,
x̂(n−1)j , x̂(n−1)j+1, ..., x̂nj , ..., x(n−1)p+1,

B(i, j) = x(n−1)i+k , xni+1, xni+2, ..., x̂(n−1)j , x̂(n−1)j+1, ..., x̂nj , ..., x(n−1)p+1.

Now, we can see that the composition of the ith term of the �rst summand of ∂p with the jth term of the �rst
summand of ∂p+1 can be rewritten as follows:

η[A(i)],F i−2[B0(i)],F i−2[B1(i)],...,F i−2[Bn−2(i)]η[A(i,j+1)],F j−1[B0(j+1)],F j−1[B1(j+1)],...,F j−1[Bn−2(j+1)]
= ηT([A(i,j)],F j−1[B0(j+1)],...,F j−1[Bn−2(j+1)]),T(F i−2[B0(i,j)],F j−1[B0(j+1)],...,F j−1[Bn−2(j+1)])

T(F i−2[B1(i,j)],F j−1[B0(j+1)],...,F j−1[Bn−2(j+1)]),...,T(F i−2[Bn−2(i,j)],F j−1[B0(j+1)],...,F j−1[Bn−2(j+1)])

η[A(i,j+1)],F j−1[B0(j+1)],F j−1[B1(j+1)],...,F j−1[Bn−2(j+1)]
= ηT([A(i,j)],F i−2[B0(i,j)],...,F i−2[Bn−2(i,j)]),F j−1[B0(j+1)],...,F j−1[Bn−2(j+1)]η[A(i,j)],F i−2[B0(i,j)],...,F i−2[Bn−2(i,j)]

= η[A(j+1)],F j−1[B0(j+1)],F j−1[B1(j+1)],...,F j−1[Bn−2(j+1)]η[A(i,j)],F i−2[B0(i,j)],...,F i−2[Bn−2(i,j)].

This is precisely the (j + 1)th term of the �rst summand of ∂p with the ith term of the �rst summand of ∂p+1.
Similar manipulations show that the composition of τi from ∂p with the ith term of the �rst sum of ∂p+1

cancels with the composition of the (i+1)th term of the �rst sumof ∂p with τi from ∂p+1. For the sake of brevity
we will omit showing these manipulations, but the table below presents all relations which are canceled by
similar manipulations.

In the table, ηi represents the ith summand of the �rst sum, ◦i represents the ith summand of the second
sum, with order of composition determining its origin in δp or δp+1.

ηiηj = ηj+1ηi
ηi◦j = ◦j+1ηi
ηiτi = τiηi+1
τi◦i = ◦i+1τi
◦i◦j = ◦j+1◦i .
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All these relations leave n + 1 remaining terms, which cancel via the third axiom from the De�nition.

We present the ternary case below, using the convention from the previous section, so τ and µ representing
τ1 and τ2 respectively.

Example 6.2. By specializing n = 2 in Theorem 6.1, the coboundary operator simpli�es to:

∂ϕ(x1, . . . , x2p+1)

=
p∑
i=1

(−1)iη{A,B,C}ϕ(x1, . . . , x̂2i , x̂2i+1, . . . , x2p+1)

−
p∑
i=1

(−1)iϕ(T(x1, x2i , x2i+1), . . . , T(x2i−1, x2i , x2i+1), F(x2i+2), . . . , F(x2p+1))

+(−1)2p+1τ[x1 ,x4 ,...,x2p+1],[x2 ,x4 ,...,x2p+1],[x3 ,...,x2p+1]ϕ(x2, x4, . . . , x2p+1)
+(−1)2p+1µ[x1 ,x4 ,...,x2p+1],[x2 ,x4 ,...,x2p+1],[x3 ,...,x2p+1]ϕ(x3, x4, . . . , x2p+1),

where A = [x1, . . . , x̂2i , x̂2i+1, . . . , x2p+1], B = F{i−1}[x2i , x2i+2, x2i+3, . . . , x2p+1],
C = F{i−1}[x2i+1, x2i+2, . . . , x2p+1].

Specializing further in Example 6.2, we obtain the following result.

Example 6.3. In this example, we compute the �rst and second cohomology groups of the ternary Alexander
f -quandle X = Z3 with coe�cients in the abelian group Z3. For the ternary f -quandle under consideration we
have P = 2, Q = R = 1, that is T(x1, x2, x3) = Px1 + Qx2 + Rx3 and f (x) = (P + Q + R)x as in Example 2.11. Now,
setting η to be the multiplication by P, τ to be the multiplication by Q, and µ to be the multiplication by R, we
have the 1-cocycle condition for ϕ : X → A given by

Pϕ(x) + Qϕ(y) + Rϕ(z) − ϕ(T(x, y, z)) = 0

and the 2-cocycle condition as

Pψ(x1, x2, x3) + ψ(T(x1, x2, x3), f (x4), f (x5))
= Pψ(x1, x4, x5) + Qψ(x2, x4, x5) + Rψ(x3, x4, x5)
+ ψ(T(x1, x4, x5), T(x2, x4, x5), T(x3, x4, x5)).

A direct computation gives H1(X = Z3, A = Z3) is 2-dimensional with basis {2χ0 + χ1, 2χ0 + χ2}. As such the
dim(Im(δ1)) = 1, and additional calculation gives dim(ker(δ2)) = 3, thus H2 is also 2-dimensional.

Lastly we consider a binary case, obtaining, as expected, a familiar result.

Example 6.4. Let η be the multiplication by T and τ be the multiplication by S in Example 2.11. The 1-cocycle
condition is written for a function ϕ : X → A as

Tϕ(x) + Sϕ(y) − ϕ(x * y) = 0.

Note that this means that ϕ : X → A is a quandle homomorphism.
For ψ : X × X → A, the 2-cocycle condition can be written as

Tψ(x1, x2) + ψ(x1 * x2, f (x3)) = Tψ(x1, x3) + Sψ(x2, x3) + ψ(x1 * x3, x2 * x3).

In [27], the groups H1 and H2 with coe�cients in the abelian groupZ3 of the f -quandle X = Z3, T = 1, S = 2 and
f (x) = 0were computed.More precisely, H1(Z3,Z3) is1-dimensionalwith a basis χ1+2χ2 and H2 is1-dimension
with a basis {χ(1,2) − χ(2,1)}.
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