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1 Introduction
The classical Euler-Poisson-Darboux equation has the form

n
∑
i=1

∂2u
∂x2i

= ∂2u
∂t2

+ k
t
∂u
∂t

, u = u(x, t), x ∈ Rn , t > 0, −∞ < k < ∞. (1)

The operator acting by t in (1) is called the Bessel operator. For the Bessel operator we use the notation (see.
[1], p. 3)

(Bk)t =
∂2

∂t2
+ k
t
∂
∂t
.

The Euler-Poisson-Darboux equation for n = 1 appears in Euler’s work (see [2], p. 227). Further Euler’s case
of (1) was studied by Poisson in [3], Riemann in [4] and Darboux in [5] (for the history of this issue see also
in [6], p. 532 and [7], p. 527). The generalization of it was studied in [8]. When n ≥ 1 the equation (1) was
considered, for example, in [9, 10]. The Euler-Poisson-Darboux equation appears in di�erent physics and
mechanics problems (see [11–15]). In [16] (see also [17], p. 243) and in [18] there were di�erent approaches to
the solution of the Cauchy problem for the general Euler-Poisson-Darboux equation

n
∑
i=1

∂2u
∂x2i

+ γi
xi

∂u
∂xi

= ∂2u
∂t2

+ k
t
∂u
∂t

, 0 < γi , i = 1, ..., n, k > 0 (2)

with the initials conditions
u(x, 0) = f(x), ∂u

∂t
∣
t=0

= 0. (3)

The Cauchy problem with the nonequal to zero �rst derivative by t of u for the (2) (and for (1)) is incorrect.
However, if we use the special type of the initial conditions containing the nonequal to zero �rst derivative
by t of u then such Cauchy problem for the (2) will by solvable. Following [17] and [19] we will use the term
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singular Cauchy problem in this case. The abstract Euler-Poisson-Darboux equation (when in the left hand
of (2) an arbitrary closed linear operator is presented) was studied in [20–22].

In this article we consider the solution of the problem (2)-(3) when −∞ < k < +∞ and its properties.
Besides this, we get the formula for the connection of solution of the problem (2)-(3) and solution of a simpler
problem. Also using the solution of the problem (2)-(3) we obtain solution of the singular Cauchy problem for
the equation (2) when k < 1 with the conditions

u(x, 0) = 0, lim
t→0

tk ∂u
∂t

= ϕ(x). (4)

2 Property of general Euler-Poisson-Darboux equations’ solutions
In this section we give some necessary de�nitions and obtain two fundamental recursion formulas for
solution of (2).

Let
Rn
+={x=(x1, . . . , xn) ∈ Rn , x1>0, . . . , xn>0}

andΩ is open set inRn which is symmetric correspondingly to each hyperplane xi=0, i=1, ..., n,Ω+ = Ω∩R n
+

andΩ+ = Ω ∩R n
+ where

R n
+={x=(x1, . . . , xn) ∈ Rn , x1≥0, . . . , xn≥0}.

We have Ω+ ⊆ R n
+ and Ω+ ⊆ R n

+. Consider the set Cm(Ω+), m ≥ 1, consisting of di�erentiable functions
on Ω+ by order m. Let Cm(Ω+) be the set of functions from Cm(Ω+) such that all their derivatives by xi for
all i = 1, ..., n are continuous up to the xi=0. Class Cm

ev(Ω+) consists of functions from Cm(Ω+) such that
∂2k+1 f
∂x2k+1i

∣
x=0

= 0 for all non-negative integers k ≤ m−1
2 and all xi, i = 1, ..., n (see [1], p. 21). A multi-index

γ=(γ1, . . ., γn) consists of �xed positive numbers γi > 0, i=1, ..., n and ∣γ∣=γ1+. . .+γn .
We consider the multidimensional Euler-Poisson-Darboux equation wherein the Bessel operator acts in

each of the variables:

(△γ)xu = (Bk)t u, −∞ < k < ∞, u = uk(x, t), x ∈ Rn
+, t > 0, (5)

where
(△γ)x = △γ =

n
∑
i=1

(Bγ1)xi =
n
∑
i=1

∂2

∂x2i
+ γi
xi

∂
∂x

, (6)

(Bk)t =
∂2

∂t2
+ k
t
∂
∂t
, k ∈ R.

Equation (5) we will call the general Euler-Poisson-Darboux equation.

Statement 2.1. Let uk = uk(x, t) denote the solution of (5) when the next two fundamental recursion formulas
hold

uk = t1−ku2−k , (7)

ukt = tuk+2. (8)

Proof. Following [23] we prove (7). Putting w = tk−1v, v = uk we have

wt = (k − 1)tk−2v + tk−1vt =
k − 1
t

w + tk−1vt ,

wtt = (k − 1)(k − 2)tk−3v + (k − 1)tk−2vt + (k − 1)tk−2vt + tk−1vtt =

= (k − 1)(k − 2)
t2

w + 2(k − 1)tk−2vt + tk−1vtt ,
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2 − k
t

wt = −
(k − 1)(k − 2)

t2
w + (2 − k)tk−2vt ,

wtt +
2 − k
t

wt = 2(k − 1)tk−2vt + tk−1vtt + (2 − k)tk−2vt = tk−1 (vtt +
k
t
vt)

or
wtt +

2 − k
t

wt = tk−1 (vtt +
k
t
vt) . (9)

If w = tk−1v satis�es the equation
∆γw = wtt +

2 − k
t

wt ,

then using (9) we get
tk−1∆γv = tk−1 (vtt +

k
t
vt)

which means that v satis�es the equation

∆γv = vtt +
k
t
vt .

Denoting w = u2−k we obtain (7).
Now we prove the (8). Let tw = vt, v = uk. We obtain

wt = −
1
t2
vt +

1
t
vtt ,

wtt =
2
t3
vt −

2
t2
vtt +

1
t
vttt .

We �nd now k+2
t wt:

k + 2
t

wt = −
k + 2
t3

vt +
k + 2
t2

vtt .

Then we get
wtt +

k + 2
t

wt =
2
t3
vt −

2
t2
vtt +

1
t
vttt −

k + 2
t3

vt +
k + 2
t2

vtt =

= 1
t
vttt −

k
t3
vt +

k
t2
vtt =

1
t
(vttt −

k
t2
vt +

k
t
vtt) =

1
t
∂
∂t

(vtt +
k
t
vt)

or
wtt +

k + 2
t

wt =
1
t
∂
∂t

(vtt +
k
t
vt) . (10)

Recursion formulas (7) and (8) allow us to obtain, from a solution uk of equation (5), the solutions of the same
equationwith the parameter k+2 and 2−k, respectively. Both formulas are proved for Euler-Poisson-Darboux
equation ∂2u

∂t2 +
k
t
∂u
∂t −△u = 0.

3 Weighted spherical mean and the �rst Cauchy problem for the
general Euler-Poisson-Darboux equation

Here we present the solutions of the problem (2)-(3) for di�erent values of k for which we obtain solution of
(2)-(4) in the next section, and get formula for the connection of solution of problem (2)-(3) and solution of
simpler problem when k = 0 in (2).

In Rn
+ we will use multidimensional generalized translation corresponding to multi-index γ:

γT t = γ1T t1
x1 ...

γnT tn
xn ,
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where each γiTτixi is de�ned by the formula (see [24])

γiTτixi f(x) =
Γ (γi+12 )

Γ (γi2 )Γ ( 1
2)

π

∫
0

f(x1, ..., xi−1,
√
x2i + τ2i − 2xiτi cosαi , xi+1, ..., xn) sinγi−1 αi dαi .

The below-consideredweighted sphericalmean generated by amultidimensional generalized translation γT t

has the form (see [25])
Mγ

f (x; r) =
1

∣S+1 (n)∣γ
∫

S+1 (n)

γT rθ
x f(x)θγdS, (11)

where θγ=
n
∏
i=1
θ
γi
i , S

+
1 (n)={θ∶∣θ∣=1, θ∈Rn

+} and the coe�cient ∣S+1 (n)∣γ is computed by the formula

∣S+1 (n)∣γ = ∫
S+1 (n)

n
∏
i=1

xγii dS(y) =

n
∏
i=1
Γ (γi+12 )

2n−1Γ ( n+∣γ∣
2 )

(12)

(see [26], p. 20, formula (1.2.5) in which we should put N=n). Construction of a multidimensional generalized
translation and the weighted spherical mean are transmutation operators (see [27]).

Theorems 3.1-3.4 have been proved in [28]. We give formulations of these theorems here because they will
be needed in the next section.

Theorem 3.1. The weighted spherical mean of f ∈ C2ev satis�es the general equation Euler–Poisson–Darboux
equation

(∆γ)xMγ
f (x; t) = (Bk)tMγ

f (x; t) , k = n + ∣γ∣ − 1 (13)

and the conditions
Mγ

f (x; 0) = f , (Mγ
f )

′
t(x; 0) = 0. (14)

This theorem has been proved in [25]).
Wegive theoremson the solutionof theCauchyproblem for thegeneral Euler–Poisson–Darbouxequation

for the remaining values of k.

(∆γ)xu = (Bk)tu, u = uk(x, t), x ∈ Rn
+, t > 0, (15)

uk(x, 0) = f(x), ukt (x, 0) = 0. (16)

Theorem 3.2. Let f ∈ C2ev. Then for the case k > n + ∣γ∣ − 1 the solution of (15)–(16) is unique and given by

uk(x, t)=
2nΓ ( k+1

2 )

Γ ( k−n−∣γ∣+1
2 )

n
∏
i=1
Γ (γi+12 )

∫
B+1 (n)

[ γT ty f(x)](1−∣y∣2)
k−n−∣γ∣−1

2 yγdy. (17)

Using weighted spherical mean we can write

uk(x, t)=
2t1−k Γ ( k+1

2 )

Γ ( k−n−∣γ∣+1
2 )Γ ( n+∣γ∣

2 )

t

∫
0

(t2 − r2)
k−n−∣γ∣−1

2 rn+∣γ∣−1Mγ
f (x; r)dr. (18)

Theorem 3.3. If f ∈ C
[ n+∣γ∣−k

2 ]+2
ev then the solution of (15)–(16) for k < n + ∣γ∣ − 1, k ≠ −1,−3,−5, ...

uk(x, t) = t1−k ( ∂
t∂t

)
m
(tk+2m−1uk+2m(x, t)), (19)

where m is a minimum integer such that m ≥ n+∣γ∣−k−1
2 and uk+2m(x, t) is the solution of the Cauchy problem

(Bk+2m)tuk+2m(x, t) = (∆γ)xuk+2m(x, t), (20)
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uk+2m(x, 0) = f(x)
(k + 1)(k + 3)...(k + 2m − 1)

, uk+2mt (x, 0) = 0. (21)

The solution of (15)–(16) is unique for k ≥ 0 and not unique for negative k.

Theorem 3.4. If f ∈ C1−kev is B–polyharmonic of order 1−k
2 then one of the solutions of the Cauchy problem

(20)–(21) for the k=−1,−3,−5, ... is given by

u−1(x, t) = f(x), (22)

uk(x, t) = f(x) +
− k+1

2

∑
h=1

∆h
γ f

(k + 1)...(k + 2h − 1)
t2h

2 ⋅ 4 ⋅ .... ⋅ 2h
, k = −3,−5, ... (23)

The solution of (15)–(16) is not unique for negative k.

The theorem 3.5 contains the explicit form of the transmutation operator for the solution. De�nition,methods
of construction and applications of the transmutation operators can be found in [27, 29, 30].

Theorem 3.5. Let k > 0. The twice continuously di�erentiable on Rn+1
+ solution u=uk(x, t) of the Cauchy

problem
(∆γ)xu = (Bk)tu, u = uk(x, t), x ∈ Rn

+, t > 0, (24)

uk(x, 0) = f(x), ukt (x, 0) = 0 (25)

such that ukxi(x1, ..., xi−1, 0, xi+1, ..., xn , t) = 0, i = 1, ..., n is connected with the twice continuously di�eren-
tiable on Rn

+ ×R solution w=w(x, t) of the Cauchy problem

(∆γ)xw = wtt , w = w(x, t), x ∈ Rn
+, t ∈ R, (26)

w(x, 0) = f(x), wt(x, 0) = 0 (27)

such that wxi(x1, ..., xi−1, 0, xi+1, ..., xn , t) = 0, i = 1, ..., n by formula

uk(x, t) = (P
k−1
2

1 )αw(x,αt), (28)

where (Pλτ )α is transmutation Poisson operator (see [24]) acting by α

(Pλτ )αg(α) =
2Γ(λ + 1)

√
πΓ (λ + 1

2)
1
τ2λ

τ

∫
0

g(α)[τ2 − α2]λ−
1
2 dα.

Proof. The fact that the function uk de�ned by the equality (28) satis�es the conditions (31) is obvious. Let us
show that uk de�ned by (28) satis�es (24)

(∆γ)xu = (P
k−1
2

1 )α(∆γ)xw(x,αt) = (P
k−1
2

1 )αwξξ(x,αt) ==
2Γ ( k+1

2 )
√
πΓ ( k

2)

1

∫
0

(∆γ)xw(x,αt)[1 − α2]
k
2−1 dα,

where ξ = αt. Further integrating by parts we obtain

∂uk

∂t
=
2Γ ( k+1

2 )
√
πΓ ( k

2)

1

∫
0

αwξ(x,αt)[1 − α2]
k
2−1 dα =

= {u = wξ(x,αt), dv = α[1 − α2]
k
2−1 dα, du = twξξ(x,αt)dα, v = −

1
k
[1 − α2]

k
2 } =
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=
2Γ ( k+1

2 )
√
πΓ ( k

2)
t
k

1

∫
0

wξξ(x,αt)[1 − α2]
k
2 dα =

=
2Γ ( k+1

2 )
√
πΓ ( k

2)
t
k

1

∫
0

wξξ(x,αt)[1 − α2]
k
2 dα.

For ∂2uk
∂t2 we have

∂2uk

∂t2
=
2Γ ( k+1

2 )
√
πΓ ( k

2)

1

∫
0

α
2 wξξ(x,αt)[1 − α2]

k
2−1 dα =

=
2Γ ( k+1

2 )
√
πΓ ( k

2)

1

∫
0

(∆γ)xw(x,αt)α2 [1 − α2]
k
2−1 dα.

Finally,

∂2uk

∂t2
+ k
t
∂uk

∂t
=
2Γ ( k+1

2 )
√
πΓ ( k

2)

⎡⎢⎢⎢⎢⎣

1

∫
0

(∆γ)xw(x,αt)α2 [1 − α2]
k
2−1 dα +

1

∫
0

(∆γ)xw(x,αt)[1 − α2]
k
2 dα

⎤⎥⎥⎥⎥⎦
=

=
2Γ ( k+1

2 )
√
πΓ ( k

2)

1

∫
0

(∆γ)xw(x,αt)[1 − α2]
k
2−1 dα = (∆γ)xuk .

Thus the function uk de�ned by equality (28) satis�es the problem (24)–(31).
Let us prove that from the relation (28) we can uniquely obtain a solution of the problem (26)–(27). By

introducing new variables αt =
√
τ , t = √y, we get

y
k−1
2 uk(x,

√
y) =

Γ ( k+1
2 )

√
πΓ ( k

2)

y

∫
0

w(x,
√
τ)√

τ
(y − τ)

k
2−1dτ .

Let k > 0 then y
k−1
2 uk(x,√y) is the Riemann-Liouville left-sided fractional integral of the order k

2 (see [31], p.
33):

y
k−1
2 uk(x,

√
y) =

Γ ( k+1
2 )

√
π

(I
k
2
0+
w(x,

√
τ)√

τ
)(y).

Thus we have unique representation of w(x,
√
τ) (see [31], p. 44, theorem 24)

w(x,
√
τ) =

√
τ
√
π

Γ ( k+1
2 )

(D
k
2
0+y

k−1
2 uk(x,

√
y)) (τ)

or

w(x, t) = 2
Γ (n − k

2)
( d
2tdt

)
n t

∫
0

uk(x, z)zk

(t2 − z2) k
2−n+1

dz.

4 The second Cauchy problem for the general
Euler-Poisson-Darboux equation

In this section we obtain solution of (2)-(4).

Theorem 4.1. If ϕ ∈ C
[ n+∣γ∣+k−1

2 ]
ev then the solution v = vk(x, t) of

(△γ)xv = (Bk)tv, 0 < γi , i = 1, ..., n, k < 1, x ∈ Rn
+, t > 0, (29)
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vk(x, 0) = 0, lim
t→0

tk ∂v
∂t

= ϕ(x) (30)

is given by

vk(x, t) =
Γ ( 3−k

2 )
n
∏
i=1
Γ (γi+12 )Γ ( 2−k+2q−n−∣γ∣+1

2 )

2n+q(1 − k)Γ ( 3−k+2q
2 )Γ ( 2−k+2q

2 )
(1
t
∂
∂t

)
q
×

×
⎛
⎜⎜
⎝
t1−k+2q ∫

B+1 (n)
[ γT ty

ϕ(x)](1 − ∣y∣2)
2−k+2q−n−∣γ∣−1

2 yγdy
⎞
⎟⎟
⎠

if n + ∣γ∣ + k is not an odd integer and

vk(x, t) =
2−qΓ ( 3−k

2 )

(1 − k)Γ ( 3−k+2q
2 )

(1
t
∂
∂t

)
q
(tn+∣γ∣−2Mγ

ϕ(x; t)) .

if n+∣γ∣+k is an odd integer, where q ≥ 0 is the smallest positive integer number such that 2−k+2q ≥ n+∣γ∣−1.

Proof. Let q ≥ 0 be the smallest positive integer number such that 2 − k + 2q ≥ n + ∣γ∣ − 1 i.e. q = [ n+∣γ∣+k−12 ]
and let v2−k+2q(x, t) be a solution of (29) when we take 2 − k + 2q instead of k such that

v2−k+2q(x, 0) = ϕ(x), v2−k+2qt (x, 0) = 0. (31)

Then by property (7) we obtain that
vk−2q = t1−k+2qv2−k+2q

is a solution of the equation

(△γ)xv =
∂2v
∂t2

+ k − 2q
t

∂v
∂t

.

Further, applying q-times the formula (8) we obtain that

(1
t
∂
∂t

)
q
vk−2q = (1

t
∂
∂t

)
q
(t1−k+2qv2−k+2q)

is a solution of the (29).
Let’s consider

vk(x, t) =
2−qΓ ( 3−k

2 )

(1 − k)Γ ( 3−k+2q
2 )

(1
t
∂
∂t

)
q
(t1−k+2qv2−k+2q). (32)

We have shown that (32) satis�es the equation (29).
Now we will prove that vk satis�es the conditions (31). For vk ∈ Cq

ev(Ω+) we have the formula (see [19],
p.9)

(1
t
∂
∂t

)
q
(t1−k+2qv2−k+2q) =

q
∑
s=0

2q−sCs
qΓ ( 1−k

2 + q + 1)
Γ ( 1−k

2 + s + 1)
t1−k+2s (1

t
∂
∂t

)
s
v2−k+2q . (33)

Taking into account formula (33) we obtain vk(x, 0) = 0 and

lim
t→0

tkvkt (x, t) =
2−qΓ ( 3−k

2 )

(1 − k)Γ ( 3−k+2q
2 )

lim
t→0

tk ∂
∂t

(1
t
∂
∂t

)
q
(t1−k+2qv2−k+2q) =

=
2−qΓ ( 3−k

2 )

(1 − k)Γ ( 3−k+2q
2 )

lim
t→0

tk ∂
∂t

q
∑
s=0

2q−sCs
qΓ ( 1−k

2 + q + 1)
Γ ( 1−k

2 + s + 1)
t1−k+2s (1

t
∂
∂t

)
s
v2−k+2q =

= 1
1 − k

lim
t→0

tk ∂
∂t

(t1−kv2−k+2q) = 1
1 − k

lim
t→0

tk ((1 − k)t−kv2−k+2q + t1−kv2−k+2qt ) =
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= 1
1 − k

lim
t→0

((1 − k)v2−k+2q + tv2−k+2qt ) = ϕ(x).

Now we obtain the representation of vk through the integral. Using formula (18) we get

v2−k+2q =
2Γ ( 3−k+2q

2 )

Γ ( 3−k+2q−n−∣γ∣
2 )Γ ( n+∣γ∣

2 )

1

∫
0

(1 − r2)
1−k+2q−n−∣γ∣

2 rn+∣γ∣−1Mγ
ϕ(x; rt)dr.

If 2 − k + 2q > n + ∣γ∣ − 1 then by applying (32) and (33) we write

vk =
2−qΓ ( 3−k

2 )

(1 − k)Γ ( 3−k+2q
2 )

q
∑
s=0

2q−sCs
qΓ ( 1−k

2 + q + 1)
Γ ( 3−k

2 + s)
t1−k+2s (1

t
∂
∂t

)
s
v2−k+2q =

=
Γ ( 3−k

2 )
1 − k

q
∑
s=0

Cs
q t1−k+2s

2sΓ ( 3−k
2 + s)

(1
t
∂
∂t

)
s
v2−k+2q =

=
Γ ( 3−k+2q

2 )Γ ( 1−k
2 )

Γ ( 3−k+2q−n−∣γ∣
2 )Γ ( n+∣γ∣

2 )

q
∑
s=0

Cs
q t1−k+2s

2sΓ ( 3−k
2 + s)

×

×
1

∫
0

(1 − r2)
1−k+2q−n−∣γ∣

2 rn+∣γ∣−1 (1
t
∂
∂t

)
s
Mγ
ϕ(x; rt)dr.

If 2 − k + 2q = n + ∣γ∣ − 1 then v2−k+2q = Mγ
ϕ(x; t) and

vk =
2−qΓ ( 3−k

2 )

(1 − k)Γ ( 3−k+2q
2 )

(1
t
∂
∂t

)
q
(tn+∣γ∣−2Mγ

f (x; t)) =

=
2−1−qΓ ( 1−k

2 )

Γ ( 3−k+2q
2 )

q
∑
s=0

2q−sCs
qΓ ( 3−k

2 + q)
Γ ( 3−k

2 + s)
t1−k+2s (1

t
∂
∂t

)
s
Mγ

f (x; t) =

=
q
∑
s=0

Cs
q Γ ( 1−k

2 )
2s+1Γ ( 3−k

2 + s)
t1−k+2s (1

t
∂
∂t

)
s
Mγ

f (x; t).
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