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1 Introduction

The classical Euler-Poisson-Darboux equation has the form

ot du ko
ox?  ot2  tot’

i=1

u=u(x,t), xeR", t>0, -oo<k<oo. 60}

The operator acting by ¢ in (1) is called the Bessel operator. For the Bessel operator we use the notation (see.
(1], p.3) 2 ko
(Bk)[ = ﬁ + ?a

The Euler-Poisson-Darboux equation for n = 1 appears in Euler’s work (see [2], p. 227). Further Euler’s case
of (1) was studied by Poisson in [3], Riemann in [4] and Darboux in [5] (for the history of this issue see also
in [6], p. 532 and [7], p. 527). The generalization of it was studied in [8]. When n > 1 the equation (1) was
considered, for example, in [9, 10]. The Euler-Poisson-Darboux equation appears in different physics and
mechanics problems (see [11-15]). In [16] (see also [17], p. 243) and in [18] there were different approaches to
the solution of the Cauchy problem for the general Euler-Poisson-Darboux equation

n N2 . 2

Z‘;;?HZ(?;:‘;;H’;?;, 0<~v, i=1,..,n, k>0 )

i=1

with the initials conditions

u(x,0) = f(x), % =0. 3)
t=0

The Cauchy problem with the nonequal to zero first derivative by t of u for the (2) (and for (1)) is incorrect.
However, if we use the special type of the initial conditions containing the nonequal to zero first derivative
by t of u then such Cauchy problem for the (2) will by solvable. Following [17] and [19] we will use the term
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singular Cauchy problem in this case. The abstract Euler-Poisson-Darboux equation (when in the left hand
of (2) an arbitrary closed linear operator is presented) was studied in [20-22].

In this article we consider the solution of the problem (2)-(3) when —oo < k < +o0o and its properties.
Besides this, we get the formula for the connection of solution of the problem (2)-(3) and solution of a simpler
problem. Also using the solution of the problem (2)-(3) we obtain solution of the singular Cauchy problem for
the equation (2) when k < 1 with the conditions

ou _

— 1 k
u(x,0) =0, }Lngt 5% -

o(x). (4)

2 Property of general Euler-Poisson-Darboux equations’ solutions

In this section we give some necessary definitions and obtain two fundamental recursion formulas for
solution of (2).
Let
RY={x=(x1,...,xn) € R", x1>0,...,x,>0}

and (2 is open set in R, which is symmetric correspondingly to each hyperplane x;=0, i=1, ..., n, 2, = 2nR}
and 2, = 2 nR" where

RY={x=(x1,...,xn) €R", x120,...,x,>0}.
We have 2. ¢ R and 2, ¢ R. Consider the set C"(£2.), m > 1, consisting of differentiable functions

on 2. by order m. Let C™(£2.) be the set of functions from C™(£2,) such that all their derivatives by x; for
alli = 1,...,n are continuous up to the x;=0. Class Cj, (2.) consists of functions from C™(£2.) such that

k+

% = 0 for all non-negative integers k < "’7‘1 and all x;, i = 1,...,n (see [1], p. 21). A multi-index
! x=0

v=(71, . - ., 7n) consists of fixed positive numbers ; > 0, i=1, ..., nand |y|=y1+. . .+7n.

We consider the multidimensional Euler-Poisson-Darboux equation wherein the Bessel operator acts in
each of the variables:

(&y)xu = (Br)iu, —oo<k<oo, u:uk(x, t), xeR}, t>0, (5)
where 5
n noy Vi P)
A =0y =SBy ) =S — + L=,
(&4)x ¥ l;( i ; axg + X; 90X (6)
0> ko
(Bk)t—ﬁ‘F?a, kER.

Equation (5) we will call the general Euler-Poisson-Darboux equation.

Statement 2.1. Let u* = uk(x, t) denote the solution of (5) when the next two fundamental recursion formulas

hold

uk _ tl—kuz—k’ (7)

uk = k2. (8)

Proof. Following [23] we prove (7). Putting w = t*"'v, v = u* we have
_ _ -1 _
we = (k—l)tk 2y 4ty = kTWthk i,
wee = (k-1)(k- Z)tk_3v + (k- 1)tk_2vt + (k- 1)tk_2vt + g =

_(k-1)(k-2)

2 w+2(k = D) v + vy,
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2k, (k=1)(k-2)

; 2 w4+ (2—k)tk_2vt,

Wi +

_ _ _ _ 1
we =2(k- 1)tk 2y £k Y + (2- k)tk th = k1 (v[t + %vt)

or

2-k _ l
Wee + ¢ W = tk ! (Vtt+ ?(V[) . (9)

If w = t*"1v satisfies the equation

then using (9) we get
¢t Ayv = ¢t (vtt + %v[)

which means that v satisfies the equation
k
A»YV =V + ? Vt.

Denoting w = u>~* we obtain (7).

Now we prove the (8). Let tw = v, v = u*. We obtain

We=—-—=Vt+ 1Vtt,
t2 t
Wit = Evt* thHr 1Vttt-
3 t2 t
We find now %2 w:
k+2w[:—k+2v[+ k+2v”.
t t3 t2
Then we get
Wi + k+2Wt= EVt—EVtt-Flvm—k;zvtv“kizvtt=
t 3 t2 t 3 t?
= 1Vttt— Evt‘f‘ kvtt = 1 (Vttt— kvt*' Evtt) = 13 (Vtt+ EVt)
t 3 t2 t t2 t t ot t
or K K
Wet + —:2 We = %% (Vtt+ ?Vl) . (10)

O

Recursion formulas (7) and (8) allow us to obtain, from a solution u; of equation (5), the solutions of the same
equation with the parameter k+2 and 2 — k, respectively. Both formulas are proved for Euler-Poisson-Darboux
aZ

: u k ou _
equation o> + 357 — Au=0.

3 Weighted spherical mean and the first Cauchy problem for the
general Euler-Poisson-Darboux equation

Here we present the solutions of the problem (2)-(3) for different values of k for which we obtain solution of

(2)-(4) in the next section, and get formula for the connection of solution of problem (2)-(3) and solution of

simpler problem when k = 0 in (2).
In R} we will use multidimensional generalized translation corresponding to multi-index ~:

Yt _ vigpti Ynpta
T = HTY.nTl
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where each " T} is defined by the formula (see [24])
r()
r(3)r() 3

The below-considered weighted spherical mean generated by a multidimensional generalized translation 7 T*
has the form (see [25])

Vi T;l’f(X) —

ff(xl,. o Xi_ 1,\/)( + 77 = 2X{Ti COS Qtjy Xis15 +vvy Xn) sin” ! a; day .

1 ro
O f TTOf(x)07dS, a1)

sp(n)

M;(x; r) =

n
where 7= i]_'Il 6", S1(n)={6:6|=1, 6<R’; } and the coefficient |S7 (n)|, is computed by the formula

Ii_ll ('y1+1)

n-1p ( n+2\'y| ) (12)

st = [ TTxase) -
O

(see [26], p. 20, formula (1.2.5) in which we should put N=n). Construction of a multidimensional generalized
translation and the weighted spherical mean are transmutation operators (see [27]).

Theorems 3.1-3.4 have been proved in [28]. We give formulations of these theorems here because they will
be needed in the next section.

Theorem 3.1. The weighted spherical mean of f € C2, satisfies the general equation Euler—Poisson—-Darboux
equation
(A)xM] (x:t) = (Bi)eM{ (x;8), k=n+]y|-1 (13)
and the conditions
M} (x;0)=f, (M])i(x;0) =0. (14)

This theorem has been proved in [25]).
We give theorems on the solution of the Cauchy problem for the general Euler-Poisson—-Darboux equation
for the remaining values of k.

(Ay)xu = (By)eu, u-= uk(x, t), xeRY, t>0, (15)

uk(x,0)=f(x),  uf(x,0)=0. (16)

Theorem 3.2. Let f € C%,. Then for the case k > n + |y| — 1 the solution of (15)—(16) is unique and given by

k+
i) [ rrreo1a-y) T
r( k_"_z”'”)}}lf (257 )i

uk(x, t)= - y'dy. (17)

Using weighted spherical mean we can write

261k (ket t —n-ll
uk(x, t)= (%5 ')1 f(tz_rz)k L 1r"*”"lM]?(x; r)dr. (18)

(knl'le) ( Z'YI)O

n+|yl-k
Theorem 3.3. Iff ¢ CL, ] then the solution of (15)-(16) fork <n+|y|- 1, k + -1,-3, -5, ...

~

xf o\" _
uk(X’ £ -t} k (ﬁ) (tk+2m 1uk+2m(X, 0), (19)
where m is a minimum integer such that m > % and u’”z’”(x, t) is the solution of the Cauchy problem

(Biesam) el (x, ) = (A4 2" (x, 1), (20)
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k+2m _ f(x) k+2m
W 0) = T ke 3) (ke am = 1)’ (x,0) = 0. @1

The solution of (15)-(16) is unique for k > 0 and not unique for negative k.

Theorem 3.4. If f ¢ C.,* is B-polyharmonic of order 15X then one of the solutions of the Cauchy problem
(20)-(21) for the k=-1, -3, -5, ... is given by

ut(x,t) = f(x), (22)
k+1 t;f tzh
w0 ) = £ + hzl Dok 2h-D) 242 K=o @)

The solution of (15)-(16) is not unique for negative k.

The theorem 3.5 contains the explicit form of the transmutation operator for the solution. Definition, methods
of construction and applications of the transmutation operators can be found in [27, 29, 30].

Theorem 3.5. Let k > 0. The twice continuously differentiable on R"*! solution u:uk(x, t) of the Cauchy
problem
(Ay)xu=(Bx)eu, u= uk(x, t), xeR}, t>0, (24)

u¥(x,0)=f(x), uf(x,0)=0 (25)

such that u’,ﬁi(xl, cees Xi—1,0, Xiy1, .0y Xn, t) = 0,1 = 1, ..., n is connected with the twice continuously differen-
tiable on R’} x R solution w=w(x, t) of the Cauchy problem

(A)xw =wy, w=w(x,t), xeRY, teR, (26)

w(x,0) = f(x), we(x,0) =0 27

such that wx, (X1, ...y Xi—1, 0, Xi11, «--s Xn, t) = 0,1 = 1, ..., n by formula
uk(x, t) = (73 )aw(x at), (28)
where (P2). is transmutation Poisson operator (see [24]) acting by «

2r(a+1)

A _
(P7)ag(a) = V(D)

Dy fg(a) -« ]/\7% da.

Proof. The fact that the function u* defined by the equality (28) satisfies the conditions (31) is obvious. Let us
show that u* defined by (28) satisfies (24)

(2
vl (3)

(A)et = (P )a( Ay )w(x, ) = (P, )awee (x, ) == f (45)xw(x, at)[1 - a?]2 " da,
0

N\k“

where £ = at. Further integrating by parts we obtain

ou* ( ) - kg
ST F(zg) faw5(x,o¢t)[1—oz2] da =

2.k _q 1 2k
= {u:w§(x,at),dv:a[l—a 1> da, du:tw&(x,at)da,v:—ﬁ[l—a ]2} =
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20 () ¢ f )
= ﬁr(];)kofw&(x,at)[l—a 1t da =
2r () ¢ 7 2
- ké/wff(x,at)[la 1* da
For a;t'ﬁk we have
a;”zk - zf_(% i~ wee (x, at)[1 - a?]* " da =
T (5) 3
:f/;;(ik; Ofl(ﬂv)xw(x,at)az [1-a’]* " da.
Finally,

a” kouk 2r(&t
ot? tat_ﬁ(g

ZF k+1 1
(%) f(AV)XW(x, at)[1-a?]" " da = (A,
\/_F(Z) 0
Thus the function u* defined by equality (28) satisfies the problem (24)—(31).
Let us prove that from the relation (28) we can uniquely obtain a solution of the problem (26)-(27). By
introducing new variables at = \/7, t = \ /¥, we get

(k1)
kTu(X\/_)—\/_Zg fW(X\/_)(y 7—)2

[(AW)XW(X at)al[1-a2]5! da+f(A.Y)XW(X,at)[l—az]gda -

Let k > O then y% uk(x, \/Y) is the Riemann-Liouville left-sided fractional integral of the order § (see [31], p.

33):
k+ X
Vet = TR (1,20 ),

Thus we have unique representation of w(x, \/7) (see [31], p. 44, theorem 24)

W/ = S (0i ) )
2

or

n ! k k
w(x,t) = 2 . ( d ) f u(x, zk)z dz. O
F(n— f) 2tdt J (t2 ,Zz);—n+1

4 The second Cauchy problem for the general
Euler-Poisson-Darboux equation

In this section we obtain solution of (2)-(4).

n+|y|+k-1
Theorem 4.1. If p € C([?V ] then the solution v = v*(x, t) of

(&y)xv=(By)ev, O<wv, i=1,..,n, k<1, xeR}, ¢>0, (29)
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vk(x,0) =0, hmt % = o(X) (30)

is given by
P I (gt (B

10
2ma(1 - k)1 (220) (220 (?&) g

vk(x, t) =

_ 2—k+2g—n—|v|-1
e [Tl - T Yy
By (n)

if n + || + k is not an odd integer and

vk(x, t) =

20 (55) (19 (ne
(- kor (k) (151 (a0

ifn+|y|+k is an odd integer, where q > 0 is the smallest positive integer number such that 2—k+2q > n+|y|-

Proof. Let g > O be the smallest positive integer number such that2 —k+2g>n+|y|-1ie.q =
and let v2~*24(x, t) be a solution of (29) when we take 2 — k + 2q instead of k such that

n+|y|+k-1
2

VIR (6, 0) = o(x),  vEH(x,0) =0. (31)

Then by property (7) we obtain that

Vk—Zq _ tl—k+2qV2—k+2q

is a solution of the equation
o’v  k-2qov
(Bo)v= 3G+ = o

Further, applying g-times the formula (8) we obtain that
10 a k—2q 10 1 1-k+2q . ,2-k+2q
(Fat) 7= () oo

is a solution of the (29).
Let’s consider

v, t) = (32)

271 (35) (13)‘1 (£K2a,2-ke2a)
3—k+2 '
(1—k)F( 2+ Q) t ot

We have shown that (32) satisfies the equation (29).

Now we will prove that vk satisfies the conditions (31). For v¥ ¢ CZ,(£2:) we have the formula (see [19],
p.9)
q-s Cs
(33)

K,
L4 q+1) | s (13)5 2k

10\?, 1-ki2g 2-k+2qy < 2 (%
- Y t —
(tat)( Y ) S;) r(&*+s+1) t ot

Taking into account formula (33) we obtain v¥(x, 0) = 0 and

3-k
hmt v (X t) = F(T) lim tkg (li)q (tl—k+2qv2—k+2q) _
‘ (1—I<)F(3”‘T+2‘1)H0 ot\to

2711 () (0 L277°Cr (B g +1) 1—k+25(12)5V2—k+2q _
(1 k)F(3 k+2t])t%0 atSO F(l%k+s+ t ot

i 0 (,1-k. 2-k+2q
im t Y =
1-k t—»o ot ( )

k 2 k+2q 1-k_2-k+2q\ _
—1_k1t133t (A=l A B
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1 2-k+2q 2-k+2q\ _
1T % ltgr()l ((1—k)v + tvg )—<p(x).

Now we obtain the representation of vk through the integral. Using formula (18) we get

2-k+2q _ 2[‘(37’(2;2‘1)

- I ( 3—k+23—n—|v\ ) I (%lfyl)

1
1-k+2g—n—|~| _

v f(l o) T MY (x; rt)dr.

0

If2 - k+2q > n+|y| - 1 then by applying (32) and (33) we write

v 271 (35) Zq: 270 (5 + g+ 1) (ks (li)s J2k2a _
(1-lr(2)s r(3Ges)

I $ GO (10
1-k Zosr(35*+s) \tot
F(H%Zq)lﬂ(l%k) q C2t1—k+2s

- >

e N COEE D

! 1-k+2g—n—|v S
N f(l _A) ks2g-n-| \rn+|w\—1 (%%) M (x;rt)dr.
0

If2 - k+2q=n+|y| - 1thenv?> "2 = M) (x; t) and
- —k

()

(1 _ k)F(3—1<+2q

10\ nipy-2
2
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