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Abstract:A parametrization of the �ne Simpsonmoduli spaces of 1-dimensional sheaves supported on plane
quartics is given: we describe the gluing of the Brill-Noether loci described by Drézet and Maican, provide a
common parameter space for these loci, and show that the Simpson moduli spaceM = M4m±1(P2) is a blow-
down of a blow-up of a projective bundle over a smooth moduli space of Kronecker modules. Two di�erent
proofs of this statement are given.
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Introduction
Fix an algebraically closed �eld , char = 0. Let V be a 3-dimensional vector space over and let P2 = PV be
the corresponding projective plane. Let P(m) = dm + c be a linear polynomial in m with integer coe�cients,
d > 0. Let M = Mdm+c = Mdm+c(P2) be the Simpson moduli space (cf. [1]) of semi-stable sheaves on P2 with
Hilbert polynomial dm+ c. As shown in [2],M is a projective irreducible locally factorial variety of dimension
d2 +1. In general, moduli spaceM parameterizes the s-equivalence classes, i. e., there is a bijection between
the closed points of M and the s-equivalence classes of semistable sheaves on P2 with Hilbert polynomial
dm+c. This way di�erent isomorphism classes of sheaves could be identi�ed in themoduli space. However, if
gcd(c, d) = 1, every semi-stable sheaf is stable, s-equivalence coincides with the notion of isomorphism, and
M is a �ne moduli space whose closed points are in bijection with the isomorphism classes of stable sheaves
on P2 with Hilbert polynomial dm+ c. In this case there is a universal family of stable sheaves parameterized
by M such that every family of (dm + c)-sheaves is obtained (up to a twist) as a pull-back of this universal
family. As demonstrated in [2, Proposition 3.6], M is smooth in this case.

In [3] and [4] it was proved that Mdm+c ≅ Md′m+c′ if and only if d = d′ and c = ±c′ mod d. Therefore,
in order to understand, for �xed d, the Simpson moduli spaces Mdm+c it is enough to understand at most
[d/2] + 1 di�erent moduli spaces.

For d ⩽ 3 the�nemoduli spacesMdm+c are completely understood. By [2, Théorème 5.1]Mdm+c ≅ P(SdV∗)
for d = 1, and d = 2. For d = 3, M3m±1 is isomorphic to the universal cubic plane curve

{(C, p) ∈ P(S3V∗) × P2 ∣ p ∈ C}.
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These are the simplest and rather trivial examples of the Simpson moduli spaces of planar 1-dimensional
sheaves. Each of them can be endowed with an open covering such that the coordinates in every open
chart come from some globally de�ned objects, which can be called global coordinates (or moduli, using
the original terminology of Riemann), and allow one to de�ne the subvarieties of the moduli space in terms
of equations in these coordinates.

Indeed, for P(SdV∗), which is constructed as SdV∗/GL1(), every basis of SdV∗ provides global ho-
mogeneous coordinates of P(SdV∗). Being a universal planar curve, the moduli spaces M3m±1 have a nice
description as a quotient (by a non-reductive group) of the variety of matrices

A = ( x y
p q ) , x, y ∈ H0(P2,OP2(1)), p, q ∈ H0(P2,OP2(2)), detA ≠ 0, x ∧ y ≠ 0,

which provides convenient global coordinates for M3m±1 and allows one to study the moduli spaces in more
details (cf. [5]).

By [3] one has the isomorphisms M4m+b ≅ M4m−1 for d = 4 and odd b. In [6] a description of the moduli
spaceM4m−1 is given in termsof two strata (Brill-Noether loci): anopen stratumM0 and its closed complement
M1 in codimension 2. The open stratum is naturally described as an open subvariety of a projective bundle
B→ N associated to a vector bundle of rank 12 over a smooth 6-dimensional projective variety N. The closed
stratum is the universal quartic planar curve. Each stratum is described as a geometric quotient of a set of
morphisms of locally free sheaves modulo non-reductive algebraic groups. The morphisms come from the
Beilinson’s resolutions and can be seen as coordinates (parameters, moduli) of the corresponding strata.

The main result of the paper

The aim of this paper is to “glue together” the parameterizations of the strata from [6] and to equip M ∶=
M4m−1, and hence all �ne Simpson moduli spaces of 1-dimensional sheaves supported on plane quartics,
with open charts parameterized by convenient coordinates.

The main result of this paper is an observation that every sheaf from M can be given as the cokernel of a
morphism

2OP2(−3) ⊕ 3OP2(−2) Ð→ OP2(−2) ⊕ 3OP2(−1),

which provides a common parameter space for the strata from [6] and gives a simple way to deform the
sheaves from M0 to the ones from M1. This parametrization can be seen as a natural generalization of the
parametrizations of the strata from [6]. The new parameter space is deduced from the closer understanding
of the complement B′ of M0 in B. The way we obtain it immediately provides over B̃ ∶= BlB′ B a family of
stable sheaves on P2 with Hilbert polynomial 4m − 1 and thus a map from B̃ to M. Under this map the
exceptional divisor D of the blow-up B̃ → B is a P1-bundle over the closed stratum M1, which leads to the
statement of Theorem 3.1 that M is a blow-down to M1 of the exceptional divisor D of the blow-up B̃. This
result coincides with the statement of [7, Theorem 3.1], which appeared earlier. Our methods are, however,
signi�cantly di�erent.

Theorem 3.1 can be also discovered by just looking at the geometric data involved and seeing the
corresponding statement, which provides a very geometric proof. The exceptional divisor D can be naturally
seen as a projective bundle over the closed stratum M1 with �bres being projective lines. The variety B̃ can
be blown down along these �bres.
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Structure of the paper

In Section 1 we review the description of the strata of M from [6] and give a description of the degenerations
to the closed stratum. In Section 2 we present a geometric description of the �bres of the bundle B → N and
construct local charts around the closed subvariety B′ ∶= B ∖M0. As a side remark we provide here a simple
computation of the Poincaré polynomial ofM that follows directly from [8] and [6]. The geometric description
of the �bres of B → N allows one to describe the blow up B̃ → B geometrically and to see Theorem 3.1 in
Section 3 by just looking at the geometric data involved. In Section 4 we construct a common parameter
space for the sheaves in M and rigorously prove Theorem 3.1.

Some notations and conventions

Dealing with homomorphisms between direct sums of line bundles and identifying them with matrices, we
consider thematrices acting on elements from the right. In particular, a section of a direct sumof line bundles
E1 ⊕ ⋅ ⋅ ⋅ ⊕ Em is identi�ed with the row-vector of sections of Ei, i = 1, . . . ,m.

1 M4m−1 as a union of two strata
As shown in [2]M = M4m−1 is a smooth projective variety of dimension 17. By [6]M is a disjoint union of two
strataM1 andM0 such thatM1 is a closed subvariety ofM of codimension 2 andM0 is its open complement.

1.1 Closed stratum

The closed stratum M1 is a closed subvariety of M of codimension 2 given by the condition h0(E) ≠ 0.
The sheaves from M1 possess a locally free resolution

0→ 2OP2(−3)
(
z1 q1
z2 q2

)

ÐÐÐÐ→ OP2(−2) ⊕OP2 → E → 0, (1)

with linear independent linear forms z1 and z2 on P2. M1 is a geometric quotient of the variety of injective
matrices ( z1 q1

z2 q2 ) as above by the non-reductive group

(Aut(2OP2(−3)) × Aut(OP2(−2) ⊕OP2))/
∗.

The points of M1 are the isomorphism classes of sheaves that are non-trivial extensions

0→ OC → E → O{p} → 0, (2)

where C is a plane quartic given by the determinant of ( z1 q1
z2 q2 ) from (1) and p ∈ C a point on it given as the

common zero set of z1 and z2.
This describes M1 as the universal plane quartic, the quotient map is given by

(z1 q1

z2 q2
) ↦ (C, p), C = Z(z1q2 − z2q1), p = Z(z1, z2).

M1 is smooth of dimension 15.
LetM11 be the closed subvariety ofM1 de�ned by the condition that p is contained on a line L contained

in C. Equivalently, a matrix from (1) represents a point in M11 if and only if it lies in the orbit of a matrix of
the form ( z1 0

z2 q2
). The dimension of M11 is 12.

Lemma 1.1. The sheaves in M11 are non-trivial extensions

0→ OL(−2) → F → OC′ → 0,

where C′ is a cubic and L is a line.
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Proof. Consider the isomorphism class of F with resolution

0→ 2OP2(−3)
(
l 0
w h )ÐÐÐ→ OP2(−2) ⊕OP2 → F → 0. (3)

This gives the commutative diagram with exact rows and columns.

0 0 0

0 OP2(−3) OP2(−2) OL(−2) 0

0 2OP2(−3) OP2(−2) ⊕OP2 F 0

0 OP2(−3) OP2 OC′ 0

0 0 0

l //

( 1 0 )

��
( 1 0 )

��
//

(
l 0
w h ) // // //

(
0
1 )

��h //

(
0
1 )

��
//
��

//

��

�� �� ��

�� �� ��

//

//

//

//

Therefore, F is an extension
0→ OL(−2) → F → OC′ → 0,

which is nontrivial since F is stable. This proves the required statement.

Let M10 denote the open complement of M11 in M1.

1.2 Open stratum

The open stratum M0 is the complement of M1 given by the condition h0(E) = 0, it consists of the
isomorphism classes [EA] of the cokernels EA of the injective morphisms

OP2(−3) ⊕ 2OP2(−2) AÐ→ 3OP2(−1) (4)

such that the (2 × 2)-minors of the linear part ( z0 z1 z2
w0 w1 w2 ) of A = (

q0 q1 q2
z0 z1 z2
w0 w1 w2

) are linear independent.

1.2.1 M0 as a geometric quotient

M0 is an open subvariety in the geometric quotient B of the variety Ws of stable matrices as in (4) (see [8,
Proposition 7.7] for details) by the group

Aut(OP2(−3) ⊕ 2OP2(−2)) × Aut(3OP2(−1)).

Its complement in B is a closed subvariety B′ corresponding to the matrices with zero determinant.

1.2.2 Extensions

If themaximalminors of the linear part of A corresponding to a point [EA] inM0 have a linear common factor,
say l, then det(A) = l ⋅ h and EA is in this case a non-split extension

0→ OL(−2) → EA → OC′ → 0, (5)
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where L = Z(l), C′ = Z(h).
The subvarietyM01 of such sheaves is closed inM0 and locally closed inM. Its boundary coincides with

M11.

1.2.3 Twisted ideals of 3 points on a quartic

Let M00 denote the open complement of M01 in M0. In this case the maximal minors of the linear part of A
are coprime, and the cokernel EA of (4) is a part of the exact sequence

0→ EA → OC(1) → OZ → 0,

where C is a planar quartic curve given by the determinant of A from (4) and Z is the zero dimensional
subscheme of length 3 given by the maximal minors of the linear submatrix of A. Notice that in this case the
subscheme Z does not lie on a line.

1.3 Degenerations to the closed stratum

Proposition 1.2. 1) Every sheaf inM1 is a degeneration of sheaves fromM00. This corresponds toadegeneration
of Z ⊆ C, where Z is a zero-dimensional scheme of length 3 not lying on a line and C is a quartic curve, to a �ag
Z ⊆ C with Z contained in a line L that is not included in C. The limit corresponds to the point in M1 described
by the point (L ∩ C) ∖ Z on the quartic curve C.
2) The sheaves from M1 given by pairs (C, p) such that p belongs to a line L contained in C, i. e., those from
M11, are also degenerations of sheaves from M01. This corresponds to degenerations of extensions (5) without
sections to extensions with sections.

The proof follows from the considerations below.

1.3.1 Degenerations along M00

Fix a curve C ⊆ P2 of degree 4, C = Z(f), f ∈ Γ(P2,OP2(4)). Let Z ⊆ C be a zero-dimensional scheme of length
3 contained in a line L = Z(l), l ∈ Γ(P2,OP2(1)). Let F = IZ(1) be the twisted ideal sheaf of Z in C so that
there is an exact sequence

0→ F → OC(1) → OZ → 0.

Lemma 1.3. In the notations as above, the twisted ideal sheaf F = IZ(1) is semistable if and only if L is not
contained in C.

Proof. Let us construct a locally free resolution of F . Let g ∈ Γ(P2,OP2(3)) such that OZ is given by the
resolution

0→ OP2(−4) ( l g )ÐÐÐ→ OP2(−3) ⊕OP2(−1)
(
−g
l )

ÐÐÐ→ OP2 → OZ → 0.

Since Z = Z(l, g) is contained in C = Z(f), one concludes that f = lh − wg for some w ∈ Γ(P2,OP2(1)) and
h ∈ Γ(P2,OP2(3)). This gives the following commutative diagram with exact rows and columns.
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OP2(1) OC(1)OP2(−3)0

0

0

0

0

OZ OZ

0 0

OP2(−2) ⊕OP2

OP2(−3)

00

OP2(−3)

2OP2(−3) F

0

0 0

��

//
��

��

//

//lh−wg //// //

�� ��

�� ��

(
−g
l )

��

( l g )

��

��

( 1 0 )

��

(
0
1 )

��

(
l g
w h ) // //

��

// //

// //

Therefore, F possesses a locally free resolution

0→ 2OP2(−3)
(
l g
w h )ÐÐÐ→ OP2(−2) ⊕OP2 → F → 0.

In particular, if l and w are linear independent, which is true if and only if f is not divisible by l, this is a
resolution of type (1), hence F is a sheaf from M1.

If l and w are linear dependent, then without loss of generality we can assume that w = 0, which gives
an extension

0→ OC′ → F → OL(−2) → 0, C′ = Z(h),

and thus a destabilizing subsheafOC′ of F . This concludes the proof.

Let H(3, 4) be the �ag Hilbert scheme of zero-dimensional schemes of length 3 on plane projective curves
C ⊆ P2 of degree 4. Let H′(3, 4) ⊆ H(3, 4) be the subscheme of those �ags Z ⊆ C such that Z lies on a linear
component of C. Using the universal family on H(3, 4), one obtains a natural morphism

H(3, 4) ∖ H′(3, 4) → M,

whose image coincides with M ∖M01.
Its restriction to the open subvariety H0(3, 4) of H(3, 4) of �ags Z ⊆ C ⊆ P2 such that Z does not lie on a

line gives an isomorphism
H0(3, 4) → M00.

Over M1 one gets one-dimensional �bres: over an isomorphism class in M1, which is uniquely de�ned by a
point p ∈ C on a curve of degree 4, the �bre can be identi�ed with the variety of lines through p that are not
contained in C, i. e., with a projective line without up to 4 points.

Remark 1.4. Notice that the subvariety H′(3, 4) is aP3-bundle overPV∗×PS3V∗, the �bre over the pair (L, C′)
of a line L and a cubic curve C′ is the Hilbert scheme L[3].

As shown in [9, Theorem 3.3 and Proposition 4.4], the blow-up of H(3, 4) along H′(3, 4) can be blown down
along the �bres L[3] to the blow-up M̃ ∶= BlM1 M.
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Fig. 1. Moduli space M = M4m−1(P2).

M00 , dim M00 = 17

M10 , dim M10 = 15

M01 , dim M01 = 13

M11 , dim M11 = 12

1.3.2 Degenerations along M01

For a �xed line L and a �xed cubic curve C′ one can compute Ext1(OC′ ,OL(−2)) ≅3. Therefore, using [10]
one gets a projective bundle P over PV∗ × PS3V∗ with �bre P2 and a universal family of extensions on it
parameterizing the extensions

0→ OL(−2) → F → OC′ → 0, L ∈ PV∗, C′ ∈ PS3V∗.

This provides a morphism P → M and describes the degenerations of sheaves from M01 to sheaves in M11.

2 Description of B
B is a projective bundle associated to a vector bundle of rank 12 over the moduli space N = N(3; 2, 3) of
stable (2 × 3) Kronecker modules, i. e., over the GIT-quotient of the space Vs of stable (2 × 3)-matrices of
linear forms on P2 by Aut(2OP2(−2)) × Aut(3OP2(−1)).

The projection B→ N is induced by

(
q0 q1 q2
z0 z1 z2
w0 w1 w2

) ↦ ( z0 z1 z2
w0 w1 w2 ) .

For more details see [8, Proposition 7.7].

2.1 The base N

The subvarietyN′ ⊆ N corresponding to thematriceswhoseminors have a common linear factor is isomorphic
to P∗2 = PV∗, the space of lines in P2, such that a line corresponds to the common linear factor of the minors
of the corresponding Kronecker module ( z0 z1 z2

w0 w1 w2 ).
The blow up of N along N′ is isomorphic to the Hilbert scheme H = P[3]

2 of 3 points in P2 (cf. [11,
Théorème 4]). The exceptional divisor H′ ⊆ H is a P3-bundle over N′, whose �bre over ⟨l⟩ ∈ P∗2 is the Hilbert
scheme L[3] of 3 points on L = Z(l). The class in N of a Kronecker module ( z0 z1 z2

w0 w1 w2 ) with coprime minors
corresponds to the subscheme of 3 non-collinear points in P2 de�ned by the minors of the matrix.

2.2 The �bres of B→ N

2.2.1 Fibres over N ∖ N′

A �bre over a point from N ∖ N′ can be seen as the space of plane quartics through the corresponding
subscheme of 3 non-collinear points. Indeed, consider a point from N ∖ N′ given by a Kronecker module



On the �ne Simpson moduli spaces | 53

( z0 z1 z2
w0 w1 w2 ) with coprime minors d0, d1, d2. The �bre over such a point consists of the orbits of injective

matrices
⎛
⎜⎜
⎝

q0 q1 q2

z0 z1 z2

w0 w1 w2

⎞
⎟⎟
⎠
, q0, q1, q2 ∈ S2V∗,

under the group action of
Aut(OP2(−3) ⊕ 2OP2(−2)) × Aut(3OP2(−1)).

If two matrices
(
q0 q1 q2
z0 z1 z2
w0 w1 w2

) , ( Q0 Q1 Q2
z0 z1 z2
w0 w1 w2

)

lie in the sameorbit of the group action, then their determinants are equal up to amultiplication by anon-zero
constant. Vice versa, if the determinants of two such matrices are equal, q − Q = (q0 − Q0, q1 − Q1, q2 − Q2)
lies in the syzygy module of (

d0
d1
d2

), which is generated by the rows of ( z0 z1 z2
w0 w1 w2 ) by Hilbert-Burch theorem.

This implies that q − Q is a combination of the rows and thus the matrices lie on the same orbit.

2.2.2 Fibres over N′

A �bre over ⟨l⟩ ∈ N′ can be seen as the join J(L∗,PS3V∗) ≅ P11 of L∗ ≅ PH0(L,OL(1)) ≅ P1 and the space of
plane cubic curves P(S3V∗) ≅ P9. To see this assume l = x0, i. e., ⟨x0⟩ is considered as the class of

(−x2 0 x0

x1 −x0 0
) .

Then the �bre over [( −x2 0 x0
x1 −x0 0 )] is given by the orbits of matrices

⎛
⎜⎜
⎝

q0(x0, x1, x2) q1(x1, x2) q2(x1, x2)
−x2 0 x0

x1 −x0 0

⎞
⎟⎟
⎠

(6)

and can be identi�ed with the projective space P(2H0(L,OL(2)) ⊕ S2V∗).
For a linear form w = w(x1, x2) such that q2(x1, x2) = q2(0, x2) + x1 ⋅ w, one can write

q1(x1, x2) = q′1(x1, x2) − x2 ⋅ w, q2(x1, x2) = q′2(x2) + x1 ⋅ w, q′2(x2) = q2(0, x2).

Abusing notations by renaming q′1 and q′2 into q1 and q2 respectively, rewrite the matrix (6) as

⎛
⎜⎜
⎝

q0(x0, x1, x2) q1(x1, x2) − x2 ⋅ w q2(x2) + x1 ⋅ w
−x2 0 x0

x1 −x0 0

⎞
⎟⎟
⎠
.

Its determinant equals

x0 ⋅ (x0 ⋅ q0(x0, x1, x2) + x1 ⋅ q1(x1, x2) + x2 ⋅ q2(x2)).

This allows to reinterpret the �bre as the projective space

P(H0(L,OL(1)) ⊕ S3V∗) ≅ J(L∗,PS3V∗).

J(L∗,P(S3V∗)) ∖ L∗ is a rank 2 vector bundle over P(S3V∗), whose �bre over a cubic curve C′ ∈ PS3V∗ is
identi�ed with the isomorphism classes of the extensions (5) fromM01 with �xed L and C′. This corresponds
to the projective plane joining C′ with L∗ inside the join J(L∗,P(S3V∗)).
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Fig. 2. The �bre of B over L ∈ N′.
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This allows to reinterpret the fibre as the projective space

P(H0(L,OL(1))⊕ S3V ∗) ∼= J(L∗,PS3V ∗).

J(L∗,P(S3V ∗))\L∗ is a rank 2 vector bundle over P(S3V ∗), whose fibre over a cubic curve C′ ∈ PS3V ∗ is
identified with the isomorphism classes of the extensions (5) fromM01 with fixed L and C′. This corresponds
to the projective plane joining C′ with L∗ inside the join J(L∗,P(S3V ∗)).

L∗ J(L∗,P(S3V ∗))

•
C′

P(S3V ∗)

Fig. 2. The fibre of B over L ∈ N ′.

The points of J(L∗,P(S3V ∗)) \ L∗ parameterize the extensions (5) from M01 with fixed L.

2.3 Description of B′

B′ is a union of lines L∗ from each fibre over N ′ (as explained above). It is isomorphic to the tautological
P1-bundle over N ′ = P∗2

{(L, p) ∈ P∗2 × P2 | L ∈ P∗2, p ∈ L}. (7)

Equivalently (cf. [6, p. 36]), B′ is isomorphic to the projective bundle associated to the tangent bundle TP∗2.
The fibre P1 of B′ over, say, line L = Z(x0) ⊆ P2 can be identified with the space of classes of matrices (4)
with zero determinant




0 −x2 · w x1 · w
−x2 0 x0
x1 −x0 0


 , w = γx1 + δx2, 〈γ, δ〉 ∈ P1. (8)

2.4 Side remark: the Poincaré polynomial of M

The understanding of B and B′ provides an easy way to compute the Poincaré polynomial P (M) of M . We
present here the computation as a side remark. The following is a direct consequence of [8, Proposition 7.7],
where a description of B is given, and [6, p. 36], where the complement B′ is described. Our computation
is slightly more straightforward than the ones from [9, Corollary 5.2] and [12, Theorem 5.2]. Notice that
P (M) has been also computed using a torus action on M in [13, Theorem 1.1].

Recall that the Poincaré polynomial P (X)[t] ∈ Z[t] of a topological space X is defined by P (X)(t) =∑
i>0 dimHi(X,Q) ·ti. Recall that the virtual Poincaré polynomial is a unique map Pv(·)(t) from algebraic

varieties to Z[t] that gives a ring homomorphism from the Grothendieck ring of varieties over k to Z[t]
such that Pv(X)(t) = P (X)(t) for smooth projective varieties X. In particular, this means that Pv(X) =

The points of J(L∗,P(S3V∗)) ∖ L∗ parameterize the extensions (5) from M01 with �xed L.

2.3 Description of B′

B′ is a union of lines L∗ from each �bre over N′ (as explained above). It is isomorphic to the tautological
P1-bundle over N′ = P∗2

{(L, p) ∈ P∗2 × P2 ∣ L ∈ P∗2 , p ∈ L}. (7)

Equivalently (cf. [6, p. 36]), B′ is isomorphic to the projective bundle associated to the tangent bundle TP∗2 .
The �bre P1 of B′ over, say, line L = Z(x0) ⊆ P2 can be identi�ed with the space of classes of matrices (4)
with zero determinant

⎛
⎜⎜
⎝

0 −x2 ⋅ w x1 ⋅ w
−x2 0 x0

x1 −x0 0

⎞
⎟⎟
⎠
, w = γx1 + δx2, ⟨γ, δ⟩ ∈ P1. (8)

2.4 Side remark: the Poincaré polynomial of M

The understanding of B and B′ provides an easy way to compute the Poincaré polynomial P(M) of M. We
present here the computation as a side remark. The following is a direct consequence of [8, Proposition 7.7],
where a description of B is given, and [6, p. 36], where the complement B′ is described. Our computation is
slightly more straightforward than the ones from [9, Corollary 5.2] and [12, Theorem 5.2]. Notice that P(M)
has been also computed using a torus action on M in [13, Theorem 1.1].

Recall that the Poincaré polynomial P(X)[t] ∈ Z[t] of a topological space X is de�ned by P(X)(t) =
∑i⩾0 dimH i(X,Q) ⋅ ti . Recall that the virtual Poincaré polynomial is a unique map Pv(⋅)(t) from algebraic
varieties toZ[t] that gives a ringhomomorphism from theGrothendieck ring of varieties over toZ[t] such that
Pv(X)(t) = P(X)(t) for smooth projective varieties X. In particular, thismeans that Pv(X) = Pv(Y)+Pv(X∖Y)
if Y is a closed subvariety of X and Pv(X1 × X2) = Pv(X1) ⋅ Pv(X2). The latter property implies that the virtual
Poincaré polynomial of a locally trivial �bration over X with �bre Y equals to the product Pv(X) ⋅ Pv(Y).

Proposition 2.1. The Poincaré polynomial of M equals 1 + 2t2 + 6t4 + 10t6 + 14t8 + 15t10 + 16t12 + 16t14 +
16t16 + 16t18 + 16t20 + 16t22 + 15t24 + 14t26 + 10t28 + 6t30 + 2t32 + t34.

Proof. SinceM is a smooth projective variety, P(M) = Pv(M). SinceM1 is a closed subvariety inM andM0 is
its open complement, since B′ is a closed subvariety in B and its complement B∖B′ is isomorphic toM0, we
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obtain
Pv(M) = Pv(M0) + Pv(M1), Pv(B) = Pv(B ∖ B′) + Pv(B′), Pv(M0) = Pv(B ∖ B′).

Therefore, Pv(M) = Pv(M0) + Pv(M1) = Pv(B ∖ B′) + Pv(M1) = Pv(B) − Pv(B′) + Pv(M1). Since B is a
projective bundle over N with �bre P11, one gets Pv(B) = Pv(N) ⋅ Pv(P11). Similarly, since B′ is a P1-bundle
over N′ ≅ P2 and the universal quartic M1 is a P13-bundle over P2, we obtain Pv(B′) = Pv(P2) ⋅ Pv(P1) and
Pv(M1) = Pv(P2) ⋅ Pv(P13). Therefore,

Pv(M) = Pv(N) ⋅ Pv(P11) − Pv(P2) ⋅ Pv(P1) + Pv(P2) ⋅ Pv(P13)

By [14, page 90] the (virtual) Poincaré polynomial of H is Pv(H) = P(H) = 1+2t2 +5t4 +6t6 +5t8 +2t10 + t12.
AsH is a blow-up of N at N′ by [11, Théorème 4], one gets Pv(N) = Pv(N∖N′)+Pv(N′) = Pv(H∖H′)+Pv(N′) =
Pv(H) − Pv(H′) + Pv(N′) = Pv(H) − Pv(P2) ⋅ Pv(P3) + Pv(P2) because H′ is a P3-bundle over N′. Using this
and P(Pn) = 1−t2(n+1)

1−t2 , we get the result.

2.5 Local charts around B′

Lemma 2.2. Let L ∈ N′ be the class of the Kronecker module

(−x2 0 x0

x1 −x0 0
) .

Then there is an open neighbourhood of L that can be identi�ed with an open neighbourhood U of zero in the
a�ne space 6 via the map 6 ⊇ U → N,

(α, β, a, b, c, d) ↦ [(−x2 cx1 x̄0

x1 −x̄0 + ax1 + bx2 dx2
)] ,

with x̄0 = x0 + αx1 + βx2, which establishes a local section of the quotient Vs → N.

Proof. In some open neighbourhood U of zero in 6 the morphism

U → Vs , (α, β, a, b, c, d) ↦ (−x2 cx1 x̄0

x1 −x̄0 + ax1 + bx2 dx2
)

is well-de�ned. Notice that two Kronecker modules of the form

(−x2 cx1 x̄0

x1 −x̄0 + ax1 + bx2 dx2
)

can lie in the same orbit of the group action if and only if the matrices are equal. Therefore, the morphism

(α, β, a, b, c, d) ↦ [(−x2 cx1 x̄0

x1 −x̄0 + ax1 + bx2 dx2
)]

is injective.

Remark 2.3. By abuse of notation we identify U with its image in N.

Lemma 2.4. N′ is cut out in U by the equations a = b = c = d = 0.

Proof. The maximal minors of ( −x2 cx1 x̄0
x1 −x̄0+ax1+bx2 dx2

) are

cdx1x2 + x̄0(x̄0 − ax1 − bx2), −dx2
2 − x̄0x1, x2(x̄0 − ax1 − bx2) − cx2

1.

Clearly theseminors have a common linear factor if a, b, c, d vanish.On theother hand the condition c = d = 0
is necessary to ensure the reducibility of these quadratic forms. If c = d = 0, the conditions a = b = 0 are
necessary for the minors to have a common factor.
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Lemma 2.5. The restriction of B to U is a trivial P11-bundle. Identifying P11 with the projective space

P(S2V∗ ⊕ 2 Span(x2
1, x1x2, x2

2)),

i. e., a point in P11 is identi�ed with the class of the triple of quadratic forms

(q0(x0, x1, x2), q1(x1, x2), q2(x1, x2)),

one can identify U × P11, and hence B∣U , with the classes of matrices

⎛
⎜⎜
⎝

q0(x0, x1, x2) q1(x1, x2) q2(x1, x2)
−x2 cx1 x̄0

x1 −x̄0 + ax1 + bx2 dx2

⎞
⎟⎟
⎠
. (9)

Assuming one of the coe�cients of q0, q1, q2 equal to 1, we get local charts of the form U×11 and local sections
of the quotientWs → B.

Proof. It is enough to notice that as in (6) one can get rid of x0 in the expressions of q1 and q2.

Charts B(γ) and B(δ)

In order to get charts around [A] ∈ B′,

A =
⎛
⎜⎜
⎝

0 −x2 ⋅ w x1 ⋅ w
−x2 0 x̄0

x1 −x̄0 0

⎞
⎟⎟
⎠
, w = γx1 + δx2, ⟨γ, δ⟩ ∈ P1,

rewrite (9), similarly to what we already did with (6) in 2.2.2, in the form

⎛
⎜⎜
⎝

q0(x0, x1, x2) q1(x1, x2) − x2 ⋅ w q2(x2) + x1 ⋅ w
−x2 cx1 x̄0

x1 −x̄0 + ax1 + bx2 dx2

⎞
⎟⎟
⎠
. (10)

Putting γ = 1 or δ = 1, we get charts around B′, each isomorphic to U × ×10. Denote them by B(γ) and
B(δ) respectively. Their coordinates are those of U together with δ respectively γ and the coe�cients of qi,
i = 0, 1, 2.

The equations ofB′ are those of N′ in U, i. e., a = b = c = d = 0, and the conditions imposed by vanishing
of q0, q1, q2.

Remark 2.6. Notice that these equations generate the ideal given by the vanishing of the determinant of (10).

3 Description of M
Consider the blow-up B̃ = BlB′ B. Let D denote its exceptional divisor.

Theorem 3.1. B̃ is isomorphic to the blow-up M̃ ∶= BlM1 M. The exceptional divisor of M̃ corresponds to D under
this isomorphism. The �bres of the morphism D → M1 over the point of M1 represented by a point p on a quartic
curve C is identi�ed with the projective line of lines in P2 passing through p.

3.1 A rather intuitive explanation

Before rigorously proving this, let us explain how to arrive to Theorem 3.1 and see it just by looking at
the geometric data involved. What follows in not completely rigorous but provides, in our opinion, a nice
geometric picture.
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Blowing up B along B′ substitutes B′ by the projective normal bundle of B′. So a point of B′ represented
by a line L ∈ P∗2 and a point p ∈ L, which is encoded by some ⟨w⟩ ∈ PH0(L,OL(1)), is substituted by the
projective space D(L,p) of the normal space T(L,p) B/T(L,p) B′ to B′ at (L, p).

As B is a projective bundle over N, and B′ is a P1-bundle over N′, the normal space is a direct sum of the
normal spaces along the base and along the �bre. Therefore, D(L,p) is the join of the corresponding projective
spaces: of P3 = L[3] (normal projective space to N′ in N at L ∈ N′) and P9 = P(S3V∗) (normal projective space
to L∗ in J(L∗,P(S3V∗)) at p ∈ L ≅ L∗; notice that the normal projective bundle of L∗ ⊆ J(L∗,P(S3V∗)), i. e.,
P1 ⊆ P11, is trivial).

The �bre J(L∗,P(S3V∗)) of B→ N over L ∈ N′ is substituted under the blow-up by the �bre that consists
of two components: the �rst component is the blow-up of J(L∗,P(S3V∗)) along L∗, the second one is a
projective bundle over L∗with the �breP13 = J(L[3],P(S3V∗)), the components intersect along L∗×P(S3V∗).

Fig. 3. The �bre of B̃ over L ∈ N′.
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Fig. 3. The fibre of B̃ over L ∈ N ′.

The space L[3] is naturally identified with the projective space of cubic forms on L∗ whereas P(S3V ∗)
is clearly the space of cubic curves on P2.

Assume L = Z(x0) such that {x0, x1, x2} is a basis of V ∗ = H0(P2,OP2(1)). Identifying x1 and x2
with their images in H0(L,OL(1)), {x1, x2} is a basis of H0(L,OL(1)).

We conclude that the join of L[3] and PS3V ∗ can be identified with the projective space corresponding
to the vector space

{λ · x0h+ λ′ · wg | h(x0, x1, x2) ∈ S3V ∗, g(x1, x2) ∈ H0(L,OL(3)), (λ, λ′) ∈ k2},

The space L[3] is naturally identi�edwith the projective space of cubic forms on L∗whereasP(S3V∗) is clearly
the space of cubic curves on P2.

Assume L = Z(x0) such that {x0, x1, x2} is a basis of V∗ = H0(P2,OP2(1)). Identifying x1 and x2 with
their images in H0(L,OL(1)), {x1, x2} is a basis of H0(L,OL(1)).

We conclude that the join of L[3] and PS3V∗ can be identi�ed with the projective space corresponding to
the vector space

{λ ⋅ x0h + λ
′ ⋅ wg ∣ h(x0, x1, x2) ∈ S3V∗, g(x1, x2) ∈ H0(L,OL(3)), (λ, λ′) ∈2},

i. e., the space of planar quartic curves through the point p = Z(x0,w).
So the exceptional divisor of the blow-up BlB′ B is a projective bundle with �bre over (L, p) being

interpreted as the space of quartic curves through p. This way we obtain a map from the exceptional divisor
to the universal quartic M1. Its �bre over a pair p ∈ C is identi�ed with the space of lines L ∈ P∗2 through p,
i. e., with a projective line. Contracting the exceptional divisor along these lines one getsM. The contraction
is possible by [15–17], which can be seen as follows.

The �bre of D → M1 over a pair p ∈ C may be identi�ed with the �bre B′p over p ∈ P2 of the map B′ → P2

given by the projection to the second factor (cf. (7)). Every two points (L, p) and (L′, p) of B′p ⊆ B′ are
substituted by the projective spaces J(L[3],P(S3V∗)) and J(L′[3],P(S3V∗)) respectively, each of which is
naturally identi�ed with the space of quartics through p. Assume without loss of generality p = ⟨0, 0, 1⟩.

The �bre B′p in this case is identi�ed with the space of lines in P2 through p, i. e., with the projective line
in N′ = P∗2 = PV∗ consisting of classes of linear formsαx0+βx1, ⟨α, β⟩ ∈ P1. The �bre has a standard covering
B′p,0 = {x0 + βx1}, B′p,1 = {αx0 + x1}, which is induced by the standard covering of P∗2 . The elements of the
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�bre corresponding to the points of B′p,0 are the equivalence classes of matrices

A0 =
⎛
⎜⎜
⎝

0 x1 ⋅ x2 −x1 ⋅ x1

−x2 0 x0 + βx1

x1 −(x0 + βx1) 0

⎞
⎟⎟
⎠
.

The elements of the �bre corresponding to the points of B′p,1 are the equivalence classes of matrices

A1 =
⎛
⎜⎜
⎝

0 x0 ⋅ x2 −x0 ⋅ x0

−x2 0 αx0 + x1

x0 −(αx0 + x1) 0

⎞
⎟⎟
⎠
.

In this way, we have chosen, so to say, the normal forms for the representatives of the points in the �bre B′p.
For β = α−1, i. e., on the intersection of B′p,0 and B′p,1, these matrices are equivalent. One computes that
gA1h = A0 for matrices

g =
⎛
⎜⎜
⎝

α3 α2x0 − αx1 α2x2

0 1 0
0 0 −α

⎞
⎟⎟
⎠
, h =

⎛
⎜⎜
⎝

1 0 0
α−1 −α−2 0

0 0 α−1

⎞
⎟⎟
⎠

with determinants
det g = −α4, det h = −α−3.

Consider the automorphismWs ξÐ→Ws, A ↦ gAh. Then

det(ξ(A1 + B1)) = α ⋅ det(A1 + B1). (11)

From (11) it follows that the restriction of the ideal sheaf of D to a �bre of the morphisms D → M1 is
OP1(1). By [15–17], this means that one can blow down D in B̃ along the map D → M1. This gives the blow
down BlB′ B→ M that contracts the exceptional divisor of BlB′ B along all lines B′p.

4 The main result
Now let us properly prove Theorem 3.1 by presenting here the main result of this paper.

4.1 Exceptional divisor D and quartic curves

Notice that the subvariety W′ in Ws parameterizing B′ is given by the condition detA = 0. B′ can be seen
as the indeterminacy locus of the rational map B ⇢ PS4V∗, [A] ↦ ⟨det(A)⟩. This way we realize B̃ as a
subvariety in B × PS4V∗ (the closure of the graph of B⇢ PS4V∗) and obtain a morphism B̃→ PS4V∗.

Lemma 4.1. 1) The restriction of B̃ → PS4V∗ to D maps a point of D lying over a point p ∈ P2 (via the map
D → B′ → P2) to a quartic curve through p, i. e., there is a morphism D → M1 ⊆ P2 × PS4V∗.

2) The �bre D(L,p) of D → B′ over (L, p) ∈ P∗2 ×P2, p ∈ L, is isomorphic via the map B̃→ PS4V∗ to the linear
subspace in PSdV∗ of curves through p.

3) The morphism D → M1 is a P1-bundle over M1, its �bre over a point of M1 given by a pair p ∈ C can be
identi�ed with the �bre of B′ → P2 over p.

Proof. 1) Let [A] ∈ B′ with A as in (8) and let a0, a1, a2 be the rows of A. Let B be a tangent vector at A, which
can be identi�ed with a morphism of type (4). Let b0, b1, b2 be its rows. Then, since detA = 0,

det(A + tB) = fA,B ⋅ t mod (t2),
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for
fA,B = det( b0

a1
a2

) + det(
a0
b1
a2

) + det(
a0
a1
b2

) .

Then fA,B is a non-zero quartic form if B is normal toW′. One computes

fA,B = x0
2
∑
i=0

xib0i − w(x1
2
∑
i=0

xib1i + x2
2
∑
i=0

xib2i)

and thus fA,B vanishes at p, which is the common zero point of x0 and w.
2) Since the map D(L,p) → PS4V∗ is injective, it is enough to notice that, for a �xed A ∈W′, every quartic

form through p can be obtained by varying B. This gives a bijection and thus an isomorphism from D(L,p) to
the space of quartics through p.

3) Follows from 1) and 2).

4.2 Local charts

Let us describe B̃ over B(δ) (cf. 2.5). Around points of D lying over [A] ∈ B(δ) there are 14 charts. For a �xed
coordinate t of B(δ) di�erent from α, β, γ, denote the corresponding chart of BlB′∩B(δ) B(δ) by B̃(t). Then
B̃(t) can be identi�ed with the variety of triples (A, t, B),

A =
⎛
⎜⎜
⎝

0 −x2 ⋅ (γx1 + x2) x1 ⋅ (γx1 + x2)
−x2 0 x̄0

x1 −x̄0 0

⎞
⎟⎟
⎠
,

B =
⎛
⎜⎜
⎝

q0(x0, x1, x2) q1(x1, x2) q2(x2)
0 cx1 0
0 ax1 + bx2 dx2

⎞
⎟⎟
⎠
,

(12)

such that the coe�cient of B corresponding to t equals 1 and A + t ⋅ B belongs to B(δ). The blow-up map
B̃(t) → B(t) is given under this identi�cation by sending a triple (A, t, B) to A + t ⋅ B.

4.3 Family of (4m − 1)-sheaves on B̃

Notice that the cokernel of (4) is isomorphic to the cokernel of

2OP2(−3) ⊕ 3OP2(−2)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

0 0 0 0
0 q0 q1 q2

0 z0 z1 z2

0 w0 w1 w2

1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

ÐÐÐÐÐÐÐÐÐ→ OP2(−2) ⊕ 3OP2(−1).

4.3.1 Local construction

Lemma 4.2. For t ≠ 0 consider the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 −wx2 wx1

0 −x2 0 x̄0

0 x1 −x̄0 0
1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

+ t ⋅

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 q0 q1 q2

0 y0 y1 y2

0 z0 z1 z2

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(13)
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as a morphism 2OP2(−3)⊕3OP2(−2) Ð→ OP2(−2)⊕3OP2(−1). Then its cokernel is isomorphic to the cokernel
of

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

x̄0 x1y0 + x2z0 x1y1 + x2z1 x1y2 + x2z2

w q0 q1 q2

0 −x2 0 x̄0

0 x1 −x̄0 0
0 0 x2 −x1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

+ t

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 y0 y1 y2

0 z0 z1 z2

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

. (14)

Proof. Acting by the automorphisms of 2OP2(−3) ⊕ 3OP2(−2) on the left and by the automorphisms of
OP2(−2) ⊕ 3OP2(−1) on the right of (13), we transform this matrix as follows:

⎛
⎝

0 0 0 0
0 0 −wx2 wx1
0 −x2 0 x̄0
0 x1 −x̄0 0
1 0 0 0

⎞
⎠
+ t ⋅

⎛
⎜
⎝

0 0 0 0
0 q0 q1 q2
0 y0 y1 y2
0 z0 z1 z2
0 0 0 0

⎞
⎟
⎠
∼
⎛
⎝

0 0 0 0
w 0 −wx2 wx1
0 −x2 0 x̄0
0 x1 −x̄0 0
1 0 0 0

⎞
⎠
+ t ⋅

⎛
⎜
⎝

0 0 0 0
0 q0 q1 q2
0 y0 y1 y2
0 z0 z1 z2
0 0 0 0

⎞
⎟
⎠

∼
⎛
⎝

0 0 0 0
w 0 0 0
0 −x2 0 x̄0
0 x1 −x̄0 0
1 0 x2 −x1

⎞
⎠
+ t ⋅

⎛
⎜
⎝

0 0 0 0
0 q0 q1 q2
0 y0 y1 y2
0 z0 z1 z2
0 0 0 0

⎞
⎟
⎠
∼
⎛
⎜
⎝

x̄0 0 x̄0x2 −x̄0x1
w 0 0 0
0 −x2 0 x̄0
0 x1 −x̄0 0
1 0 x2 −x1

⎞
⎟
⎠
+ t ⋅

⎛
⎜
⎝

0 0 0 0
0 q0 q1 q2
0 y0 y1 y2
0 z0 z1 z2
0 0 0 0

⎞
⎟
⎠

∼
⎛
⎜
⎝

x̄0 0 0 0
w 0 0 0
0 −x2 0 x̄0
0 x1 −x̄0 0
1 0 x2 −x1

⎞
⎟
⎠
+ t ⋅

⎛
⎜
⎝

0 x1y0+x2z0 x1y1+x2z1 x1y2+x2z2
0 q0 q1 q2
0 y0 y1 y2
0 z0 z1 z2
0 0 0 0

⎞
⎟
⎠

∼
⎛
⎜
⎝

t−1 x̄0 0 0 0
t−1w 0 0 0

0 −x2 0 x̄0
0 x1 −x̄0 0
1 0 x2 −x1

⎞
⎟
⎠
+
⎛
⎜
⎝

0 x1y0+x2z0 x1y1+x2z1 x1y2+x2z2
0 q0 q1 q2
0 ty0 ty1 ty2
0 tz0 tz1 tz2
0 0 0 0

⎞
⎟
⎠

∼
⎛
⎜
⎝

x̄0 0 0 0
w 0 0 0
0 −x2 0 x̄0
0 x1 −x̄0 0
t 0 x2 −x1

⎞
⎟
⎠
+
⎛
⎜
⎝

0 x1y0+x2z0 x1y1+x2z1 x1y2+x2z2
0 q0 q1 q2
0 ty0 ty1 ty2
0 tz0 tz1 tz2
0 0 0 0

⎞
⎟
⎠

=
⎛
⎜
⎝

x̄0 x1y0+x2z0 x1y1+x2z1 x1y2+x2z2
w q0 q1 q2
0 −x2 0 x̄0
0 x1 −x̄0 0
0 0 x2 −x1

⎞
⎟
⎠
+ t

⎛
⎝

0 0 0 0
0 0 0 0
0 y0 y1 y2
0 z0 z1 z2
1 0 0 0

⎞
⎠
,

which concludes the proof.

Evaluating (14) at t = 0 gives

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

x̄0 x1y0 + x2z0 x1y1 + x2z1 x1y2 + x2z2

w q0 q1 q2

0 −x2 0 x̄0

0 x1 −x̄0 0
0 0 x2 −x1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Lemma 4.3. The isomorphism class of the cokernel F of

2OP2(−3) ⊕ 3OP2(−2)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

x̄0 p0 p1 p2

w q0 q1 q2

0 −x2 0 x̄0

0 x1 −x̄0 0
0 0 x2 −x1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

ÐÐÐÐÐÐÐÐÐÐÐÐ→ OP2(−2) ⊕ 3OP2(−1)

is a sheaf from M1 with resolution

0→ 2OP2(−3)
(
x̄0 g
w h )ÐÐÐÐ→ OP2(−2) ⊕OP2 → F → 0, (15)

if x̄0h − wg ≠ 0 for g = x̄0p0 + x1p1 + x2p2, h = x̄0q0 + x1q1 + x2q2.
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Proof. Consider the isomorphism class of F with resolution (15). Then, using the Koszul resolution ofOP2 ,
one concludes that the kernel of the composition of two surjective morphisms

OP2(−2) ⊕ 3OP2(−1)

⎛

⎜

⎝

1 0
0 x̄0
0 x1
0 x2

⎞

⎟

⎠

ÐÐÐÐ→ OP2(−2) ⊕OP2 → F

coincides with the image of

2OP2(−3) ⊕ 3OP2(−2)

⎛

⎜
⎜
⎜

⎝

x̄0 p0 p1 p2
w q0 q1 q2
0 −x2 0 x̄0
0 x1 −x̄0 0
0 0 x2 −x1

⎞

⎟
⎟
⎟

⎠

ÐÐÐÐÐÐÐÐÐÐ→ OP2(−2) ⊕ 3OP2(−1),

which concludes the proof.

For A + tB with A and B as in (12) we obtain the morphism

2OP2(−3) ⊕ 3OP2(−2) Ð→ OP2(−2) ⊕ 3OP2(−1),

given by the matrix
⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

x̄0 0 cx2
1 + ax1x2 + bx2

2 dx2
2

w q0 q1 q2

0 −x2 tcx1 x̄0

0 x1 −x̄0 + t(ax1 + bx2) tdx2

t 0 x2 −x1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

which de�nes by Lemma 4.3 a family of (4m − 1)-sheaves on B̃(t) and therefore a morphism B̃(t) → M. This
morphism sends the point of the exceptional divisor represented by (A, 0, B) to the point given by the quartic
curve C = Z(f),

f =x̄0 ⋅ (x̄0q0(x0, x1, x2) + x1q1(x1, x2) + x2q2(x2))
−w ⋅ (cx3

1 + ax2
1x2 + bx1x2

2 + dx3
2),

and the point p = Z(x̄0,w) on C.

4.3.2 Gluing the morphisms B̃(t) → M

For di�erent charts B̃(t) and B̃(t′) the corresponding morphisms agree on intersections. Therefore, we
conclude that there exists a morphism B̃ → M. It is an isomorphism outside of D. As already mentioned
in Lemma 4.1, the restriction of this morphism to D gives a P1-bundle D → M1.

Lemma 4.4. The map B̃→ M is the blow-up BlM1 M → M.

Proof. By the universal property of blow-ups, there exists a unique morphism B̃
φÐ→ BlM1 M over M, which

maps D to the exceptional divisor E of BlM1 M and is an isomorphism outside of D. This morphism must be
surjective as its image is irreducible and contains an open set. Its �bres must be connected by the Zariski’s
main theorem. Restricted to Dwe get a surjectivemorphism D → E of P1-bundles overM1. Over every point of
M1 we have a surjective morphism P1 → P1 with connected �bres. The only connected subvarieties of P1 are
the subvarieties consisting of one point and P1 itself. The latter can not be a �bre, since this would contradict
the surjectivity. This implies that the map D → E is a bijection. Therefore, φ is a bijective morphism and thus
an isomorphism.

This concludes the proof of Theorem 3.1.
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