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Introduction

Fix an algebraically closed field , char = 0. Let V be a 3-dimensional vector space over and let P, = PV be
the corresponding projective plane. Let P(m) = dm + ¢ be a linear polynomial in m with integer coefficients,
d>0.Let M = Mymic = Mgmec(P2) be the Simpson moduli space (cf. [1]) of semi-stable sheaves on P, with
Hilbert polynomial dm + c. As shown in [2], M is a projective irreducible locally factorial variety of dimension
d? + 1. In general, moduli space M parameterizes the s-equivalence classes, i. e., there is a bijection between
the closed points of M and the s-equivalence classes of semistable sheaves on P, with Hilbert polynomial
dm +c. This way different isomorphism classes of sheaves could be identified in the moduli space. However, if
gecd(c, d) = 1, every semi-stable sheaf is stable, s-equivalence coincides with the notion of isomorphism, and
M is a fine moduli space whose closed points are in bijection with the isomorphism classes of stable sheaves
on P, with Hilbert polynomial dm + c. In this case there is a universal family of stable sheaves parameterized
by M such that every family of (dm + c)-sheaves is obtained (up to a twist) as a pull-back of this universal
family. As demonstrated in [2, Proposition 3.6], M is smooth in this case.

In [3] and [4] it was proved that Myp,c = Mg m.e if and only if d = d" and ¢ = +¢’ mod d. Therefore,
in order to understand, for fixed d, the Simpson moduli spaces Myp,. it is enough to understand at most
[d/2] + 1 different moduli spaces.

For d < 3 the fine moduli spaces Mgy, . are completely understood. By [2, Théoréme 5.1] My, = P(S?V*)
ford =1, and d = 2. For d = 3, M3p,41 is isomorphic to the universal cubic plane curve

{(C,p) e P(S’V*) x P, | peC}.
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These are the simplest and rather trivial examples of the Simpson moduli spaces of planar 1-dimensional
sheaves. Each of them can be endowed with an open covering such that the coordinates in every open
chart come from some globally defined objects, which can be called global coordinates (or moduli, using
the original terminology of Riemann), and allow one to define the subvarieties of the moduli space in terms
of equations in these coordinates.

Indeed, for P(S9V*), which is constructed as SYV*/GL1(), every basis of S?V* provides global ho-
mogeneous coordinates of P(Sd V™). Being a universal planar curve, the moduli spaces Ms,;.1 have a nice
description as a quotient (by a non-reductive group) of the variety of matrices

A=(3%), xyeH’(P2,0n(1)), p,qeH’(P2,0p(2)), detAz0, xAy#O0,

which provides convenient global coordinates for Ms,.1 and allows one to study the moduli spaces in more
details (cf. [5]).

By [3] one has the isomorphisms M. & M4m—-1 for d = 4 and odd b. In [6] a description of the moduli
space M1 is given in terms of two strata (Brill-Noether loci): an open stratum Mg and its closed complement
M; in codimension 2. The open stratum is naturally described as an open subvariety of a projective bundle
B — N associated to a vector bundle of rank 12 over a smooth 6-dimensional projective variety N. The closed
stratum is the universal quartic planar curve. Each stratum is described as a geometric quotient of a set of
morphisms of locally free sheaves modulo non-reductive algebraic groups. The morphisms come from the
Beilinson’s resolutions and can be seen as coordinates (parameters, moduli) of the corresponding strata.

The main result of the paper

The aim of this paper is to “glue together” the parameterizations of the strata from [6] and to equip M :=
Mym-1, and hence all fine Simpson moduli spaces of 1-dimensional sheaves supported on plane quartics,
with open charts parameterized by convenient coordinates.
The main result of this paper is an observation that every sheaf from M can be given as the cokernel of a
morphism
20p,(-3) ®30p,(-2) — Op,(-2) ® 30, (-1),

which provides a common parameter space for the strata from [6] and gives a simple way to deform the
sheaves from M to the ones from M;. This parametrization can be seen as a natural generalization of the
parametrizations of the strata from [6]. The new parameter space is deduced from the closer understanding
of the complement B’ of My in B. The way we obtain it immediately provides over B := Blg B a family of
stable sheaves on P, with Hilbert polynomial 4m — 1 and thus a map from B to M. Under this map the
exceptional divisor D of the blow-up B — B is a P;-bundle over the closed stratum M;, which leads to the
statement of Theorem 3.1 that M is a blow-down to M of the exceptional divisor D of the blow-up B. This
result coincides with the statement of [7, Theorem 3.1], which appeared earlier. Our methods are, however,
significantly different.

Theorem 3.1 can be also discovered by just looking at the geometric data involved and seeing the
corresponding statement, which provides a very geometric proof. The exceptional divisor D can be naturally
seen as a projective bundle over the closed stratum M; with fibres being projective lines. The variety B can
be blown down along these fibres.
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Structure of the paper

In Section 1 we review the description of the strata of M from [6] and give a description of the degenerations
to the closed stratum. In Section 2 we present a geometric description of the fibres of the bundle B — N and
construct local charts around the closed subvariety B’ := B \ My. As a side remark we provide here a simple
computation of the Poincaré polynomial of M that follows directly from [8] and [6]. The geometric description
of the fibres of B — N allows one to describe the blow up B — B geometrically and to see Theorem 3.1 in
Section 3 by just looking at the geometric data involved. In Section 4 we construct a common parameter
space for the sheaves in M and rigorously prove Theorem 3.1.

Some notations and conventions

Dealing with homomorphisms between direct sums of line bundles and identifying them with matrices, we
consider the matrices acting on elements from the right. In particular, a section of a direct sum of line bundles
E1® - ® Ep is identified with the row-vector of sections of &, i=1,...,m.

1 M,,,,_, as a union of two strata

As shown in [2] M = My;,-1 is a smooth projective variety of dimension 17. By [6] M is a disjoint union of two
strata M; and My such that M; is a closed subvariety of M of codimension 2 and My is its open complement.

1.1 Closed stratum

The closed stratum M; is a closed subvariety of M of codimension 2 given by the condition h°(&) # 0.
The sheaves from M; possess a locally free resolution

Z1 q1
0 - 205,(-3) M»opz(fz)@opz - €0, (1)

with linear independent linear forms z; and z, on P,. M; is a geometric quotient of the variety of injective
matrices ( 7! {! ) as above by the non-reductive group

(Aut(20p,(-3)) x Aut(Op, (-2) & Op, ))/* .
The points of M; are the isomorphism classes of sheaves that are non-trivial extensions
0->0c—&—- 0y —0, )]

where C is a plane quartic given by the determinant of (2 a ) from (1) and p € C a point on it given as the
common zero set of z; and 2.
This describes M; as the universal plane quartic, the quotient map is given by

z
( : ql) ~ (C’p)a C:Z(Zlqz _qul)’ p = Z(Zl’ZZ)'
Z2 42

M, is smooth of dimension 15.
Let M3 be the closed subvariety of M; defined by the condition that p is contained on a line L contained
in C. Equivalently, a matrix from (1) represents a point in M1; if and only if it lies in the orbit of a matrix of

the form (2 ;). The dimension of My is 12.

Lemma 1.1. The sheaves in M1, are non-trivial extensions
0->0.(-2)>F->0O¢ — 0,

where C’ is a cubic and L is a line.
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Proof. Consider the isomorphism class of F with resolution

10
0 - 20p,(-3) MOPZ(-z)@oPZ —~ F 0. 3)

This gives the commutative diagram with exact rows and columns.

(10) (10)
(wh)
00— 20]1”2(_3) OPZ(_Z) 3} O[pz —F ——70
(%) (%)
0— Op,(-3) h Op, Oc¢: 0
0 0 0

Therefore, F is an extension
0->0L(-2)>F—->0O¢ — 0,

which is nontrivial since F is stable. This proves the required statement. O

Let M1o denote the open complement of M1; in M;.

1.2 Open stratum

The open stratum My is the complement of M; given by the condition hO(S ) = 0, it consists of the
isomorphism classes [£4] of the cokernels £4 of the injective morphisms

A
Op,(-3) ®20p,(-2) = 30p,(-1) (4)
such that the (2 x 2)-minors of the linear part () o} 2 ) of A = (‘%g %} %ﬁ ) are linear independent.
o W1 Wa

1.2.1 M, as a geometric quotient

M is an open subvariety in the geometric quotient B of the variety W* of stable matrices as in (4) (see [8,
Proposition 7.7] for details) by the group

Aut(Opz(—B) @ 20]11)2(—2)) X Aut(3O[p>2(—1)).

Its complement in B is a closed subvariety B’ corresponding to the matrices with zero determinant.

1.2.2 Extensions

If the maximal minors of the linear part of A corresponding to a point [£4 ] in My have a linear common factor,
say I, then det(A) = [- h and &4 is in this case a non-split extension

0> 0L(-2) > &4 > O =0, (5)
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where L = Z(1), C' = Z(h).
The subvariety Mo; of such sheaves is closed in My and locally closed in M. Its boundary coincides with
M11 .

1.2.3 Twisted ideals of 3 points on a quartic

Let Mo denote the open complement of Mo; in Mp. In this case the maximal minors of the linear part of A
are coprime, and the cokernel £, of (4) is a part of the exact sequence

0—-81-0c(1)->0z-0,

where C is a planar quartic curve given by the determinant of A from (4) and Z is the zero dimensional
subscheme of length 3 given by the maximal minors of the linear submatrix of A. Notice that in this case the
subscheme Z does not lie on a line.

1.3 Degenerations to the closed stratum

Proposition 1.2. 1) Every sheafin M is a degeneration of sheaves from Moo. This corresponds to a degeneration
of Z ¢ C, where Z is a zero-dimensional scheme of length 3 not lying on a line and C is a quartic curve, to a flag
Z ¢ C with Z contained in a line L that is not included in C. The limit corresponds to the point in M; described
by the point (L n C) \ Z on the quartic curve C.

2) The sheaves from M given by pairs (C, p) such that p belongs to a line L contained in C, i. e., those from
M1, are also degenerations of sheaves from Mo . This corresponds to degenerations of extensions (5) without
sections to extensions with sections.

The proof follows from the considerations below.

1.3.1 Degenerations along Moo

Fixacurve C c P, of degree 4, C = Z(f), f € I' (P2, Op,(4)). Let Z < C be a zero-dimensional scheme of length
3 contained in aline L = Z(1), l € I'(P2, Op,(1)). Let F = Zz(1) be the twisted ideal sheaf of Z in C so that
there is an exact sequence

0->F —>0c(l)> Oz 0.

Lemma 1.3. In the notations as above, the twisted ideal sheaf F = Zz(1) is semistable if and only if L is not
contained in C.

Proof. Let us construct a locally free resolution of F. Let g € I'(P,, Op,(3)) such that Oy is given by the
resolution
(lg) (71g)
00— O}PZ(—ll) —_— OPZ(—B) ® O]pz(—]_) —_— O[Pz — OZ — 0.

Since Z = Z(1, g) is contained in C = Z(f), one concludes that f = [h — wg for some w € I'(P,, Op,(1)) and
h e I'(P2, Op,(3)). This gives the following commutative diagram with exact rows and columns.
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0—>Op,(-3) =——=0p,(-3) ——0
(10) (lg)

(#)

0—20p,(-3) —>0Op,(-2)®Op, —F —0

(2)

lh-wg

0 —= Op,(-3) ———— Op,(1) Oc(1) 0
0 Oz 0O;,——0
0 0

Therefore, F possesses a locally free resolution

(F)

0—-20p,(-3) — Op,(-2) ® Op, - F - 0.

In particular, if I and w are linear independent, which is true if and only if f is not divisible by I, this is a
resolution of type (1), hence F is a sheaf from M;.
If I and w are linear dependent, then without loss of generality we can assume that w = 0, which gives
an extension
0-0O¢ —F -0 (-2)-0, C' =2Zh),

and thus a destabilizing subsheaf O of F. This concludes the proof. O

Let H(3, 4) be the flag Hilbert scheme of zero-dimensional schemes of length 3 on plane projective curves
C c P, of degree 4. Let H'(3, 4) ¢ H(3, 4) be the subscheme of those flags Z c C such that Z lies on a linear
component of C. Using the universal family on H(3, 4), one obtains a natural morphism

H(3,4)~H'(3,4) - M,

whose image coincides with M \ Mo;.
Its restriction to the open subvariety Ho (3, 4) of H(3, 4) of flags Z c C c IP; such that Z does not lie on a
line gives an isomorphism
Ho(3,4) - Moo.

Over M; one gets one-dimensional fibres: over an isomorphism class in M1, which is uniquely defined by a
point p € C on a curve of degree 4, the fibre can be identified with the variety of lines through p that are not
contained in C, i. e., with a projective line without up to 4 points.

Remark 1.4. Notice that the subvariety H' (3, 4) is a P3-bundle over PV* xIPS> V*, the fibre over the pair (L, C')
of a line L and a cubic curve C' is the Hilbert scheme LU,

As shown in [9, Theorem 3.3 and Proposition 4.4], the blow-up of H(3, 4) along H' (3, 4) can be blown down
along the fibres L to the blow-up M := Bly, M.
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Fig. 1. Moduli space M = Mym—1 (P2).

1.3.2 Degenerations along My,

For a fixed line L and a fixed cubic curve C’ one can compute Ext! (Oc¢r, OL(-2)) =3 Therefore, using [10]
one gets a projective bundle P over PV* x PS>V* with fibre P, and a universal family of extensions on it
parameterizing the extensions

001 (-2) > F > 0Op >0, LePV*, C ePSV*.

This provides a morphism P — M and describes the degenerations of sheaves from My, to sheaves in M.

2 Description of B

B is a projective bundle associated to a vector bundle of rank 12 over the moduli space N = N(3;2, 3) of
stable (2 x 3) Kronecker modules, i. e., over the GIT-quotient of the space V° of stable (2 x 3)-matrices of
linear forms on P, by Aut(20p,(-2)) x Aut(30p,(-1)).

The projection B — N is induced by

qo 91 92

20 21 2
(zo z ZZ)'_’(wowllwzz .
Wo W1 W3 0

For more details see [8, Proposition 7.7].

2.1 Thebase N

The subvariety N’ c N corresponding to the matrices whose minors have a common linear factor is isomorphic
to P; = PV*, the space of lines in IP,, such that a line corresponds to the common linear factor of the minors
of the corresponding Kronecker module ( 2 & 32 ).

The blow up of N along N’ is isomorphic to the Hilbert scheme H = ]PEBJ of 3 points in P, (cf. [11,
Théoréme 4]). The exceptional divisor H' ¢ H is a IP;-bundle over N’, whose fibre over () € P; is the Hilbert
scheme LPJ of 3 points on L = Z(1). The class in N of a Kronecker module ( ;> 3} #* ) with coprime minors

corresponds to the subscheme of 3 non-collinear points in P, defined by the minors of the matrix.

2.2 Thefibresof B - N
2.2.1 Fibresover N\ N’

A fibre over a point from N \ N’ can be seen as the space of plane quartics through the corresponding
subscheme of 3 non-collinear points. Indeed, consider a point from N \ N’ given by a Kronecker module
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W h w2 ) with coprime minors do, d1, d». The fibre over such a point consists of the orbits of injective

matrices

do 91 92

Z0 z1 z2 |, qo,q1,q2 €SV,

Wo W1 W2
under the group action of

Aut(O]pZ(—3) @ 20]}»2(—2)) X Aut(3O[p>2 (—1)).
If two matrices
(Ba%) (2%3)

lie in the same orbit of the group action, then their determinants are equal up to a multiplication by a non-zero
constant. Vice versa, if the determinants of two such matrices are equal, g — Q = (go — Qo, g1 — Q1,2 — Q2)

do
lies in the syzygy module of (dl ), which is generated by the rows of (2 it «2 ) by Hilbert-Burch theorem.

This implies that g — Q is a combination of the rows and thus the matrices lie on the same orbit.

2.2.2 Fibres over N’

A fibre over (1) € N’ can be seen as the join J(L*, PS’V*) = P13 of L* = PH°(L, O (1)) = P; and the space of
plane cubic curves IE”(S3 V*) = Py. To see this assume [ = xo, i. e., {xo) is considered as the class of

—X2 0 Xo
X1 —xo0 0)°

Then the fibre over [( 2 _ )] is given by the orbits of matrices

qo(xo, X1, x2) q1(X1,Xx2) q2(X1,X2)
—X2 0 X0 (6)
X1 —Xo 0

and can be identified with the projective space P(2H°(L, O (2)) @ S*V*).
For a linear form w = w(x1, x) such that g2 (x1, x2) = q2(0, x2) + x1 - w, one can write

qi(x1,x2) = q1(x1,x2) = x2- W, Q2(x1,%2) = @2 (x2) +x1- W, g3(x2) = q2(0, x2).
Abusing notations by renaming g; and g5 into g; and g, respectively, rewrite the matrix (6) as

qo(x0, X1,x2) q1(X1,x2) = x2- W q2(X2) + X1 - W
—X2 0 X0
X1 —Xo0 0

Its determinant equals
Xo * (Xo - go(X0, X1, X2) + X1 - q1(X1, X2) + X2 - q2(X2)).
This allows to reinterpret the fibre as the projective space
P(H°(L,Or(1)) @ S’°V*) = J(L*,PS’ V™).

J(L*,P(S>V*)) \ L* is a rank 2 vector bundle over P(S>V*), whose fibre over a cubic curve C’ € PS’V* is
identified with the isomorphism classes of the extensions (5) from Mo; with fixed L and C’. This corresponds
to the projective plane joining C’ with L* inside the join J(L*, P(S’V*)).
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Fig. 2. The fibre of B over L ¢ N'.

L J(L*,P(S3V*))

N

C/
P(S3V*)

The points of J(L*, P(S>V*)) \ L* parameterize the extensions (5) from Mo; with fixed L.

2.3 Description of B’

B’ is a union of lines L* from each fibre over N’ (as explained above). It is isomorphic to the tautological
P;-bundle over N’ = P
{(L,p)eP; xP,|LeP;,pelL}. @)

Equivalently (cf. [6, p. 36]), B’ is isomorphic to the projective bundle associated to the tangent bundle TP;.
The fibre P; of B’ over, say, line L = Z(xo) ¢ P, can be identified with the space of classes of matrices (4)
with zero determinant
0 —x2-wx1-w
-x2 O xo |, w=x1+8x2, (v,6)€Pq. (8)
X1 —Xo0 0

2.4 Side remark: the Poincaré polynomial of M

The understanding of B and B’ provides an easy way to compute the Poincaré polynomial P(M) of M. We
present here the computation as a side remark. The following is a direct consequence of [8, Proposition 7.7],
where a description of B is given, and [6, p. 36], where the complement B’ is described. Our computation is
slightly more straightforward than the ones from [9, Corollary 5.2] and [12, Theorem 5.2]. Notice that P(M)
has been also computed using a torus action on M in [13, Theorem 1.1].

Recall that the Poincaré polynomial P(X)[t] € Z[t] of a topological space X is defined by P(X)(t) =
Yiso dim H (X, Q) - t'. Recall that the virtual Poincaré polynomial is a unique map P, (-)(t) from algebraic
varieties to Z[ ¢] that gives a ring homomorphism from the Grothendieck ring of varieties over to Z[¢] such that
P,(X)(t) = P(X)(t) for smooth projective varieties X. In particular, this means that P, (X) = P,(Y)+P,(X\Y)
if Y is a closed subvariety of X and P, (X1 x X3) = Py(X1) - Py(X>). The latter property implies that the virtual
Poincaré polynomial of a locally trivial fibration over X with fibre Y equals to the product P, (X) - P,(Y).

Proposition 2.1. The Poincaré polynomial of M equals 1 + 2t + 6t* + 10t° + 14¢% + 15¢1° + 162 + 16t +
16t1° + 1618 + 16620 + 16122 + 1562 + 147 + 10628 + 670 + 2632 + 4,

Proof. Since M is a smooth projective variety, P(M) = P,(M). Since M is a closed subvariety in M and Mo is
its open complement, since B’ is a closed subvariety in B and its complement B \ B’ is isomorphic to Mo, we
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obtain
Py(M) = Py(Mo) + Py(M1), Py(B) = Py(BAB') + Py(B), Py(Mo) = Py(B\B').

Therefore, P,(M) = P,(Mo) + Py(M1) = P,(B ~B') + P,(M;) = P,(B) - P,(B") + P,(M1). Since B is a
projective bundle over N with fibre P11, one gets P,(B) = Py(N) - P,(IP11). Similarly, since B’ is a P1-bundle
over N’ = P, and the universal quartic M; is a P13-bundle over IP,, we obtain P,(B’) = P,(P,) - P,(PP1) and
Py(My) = Py(PP;) - Py(P13). Therefore,

Py(M) = Py(N) - Py(P11) - Py(P2) - Py(P1) + Py (P3) - Py(Py3)

By [14, page 90] the (virtual) Poincaré polynomial of H is P,(H) = P(H) = 1+ 2t* + 5t* + 6t° + 5¢5 + 2¢10 + 12,
As H is ablow-up of N at N’ by [11, Théoréme 4], one gets P,(N) = P,(N\N')+P,(N') = P,(H\H')+P,(N') =
P,(H) - Py(H") + P,(N') = P,(H) — P,(P,) - P,(P3) + P,(IP;) because H’ is a IP;-bundle over N’'. Using this

and P(P,) = %, we get the result. O

2.5 Local charts around B’

Lemma 2.2. Let L € N’ be the class of the Kronecker module

-X2 0 Xo

X1 —x0 0)°
Then there is an open neighbourhood of L that can be identified with an open neighbourhood U of zero in the
affine space ° via themap ® 2 U - N,

(e, B,a,b,c,d) [(_XZ X1 Xo )] ’

X1 —Xo +axi + bxy dx»

with Xo = xo + ax1 + 8x2, which establishes a local section of the quotient V° — N.
Proof. In some open neighbourhood U of zero in ® the morphism

UV, (a6 a b, c,d) o (—Xz cx1 %o )

X1 —Xo +axy + bxy dx;

is well-defined. Notice that two Kronecker modules of the form
—X2 CX1 X0
X1 —Xo +axy + bxy dx
can lie in the same orbit of the group action if and only if the matrices are equal. Therefore, the morphism

(o Bra,b, ¢, d) o> [(—XZ cx Xo )]

X1 —Xo +axi + bxy dx>
is injective. O
Remark 2.3. By abuse of notation we identify U with its image in N.

Lemma 2.4. N'is cutoutin U by the equationsa=b =c=d = 0.

. . -X3 cxq Xo
Proof. The maximal minors of ( X1 —Xotaxs+bx, dx, ) are
CdX1X2 +)_(0()_(0—aX1—bX2), —dX%—)_(oxl, Xz()_(o—aX1—bX2)—CX%.

Clearly these minors have a common linear factor if a, b, ¢, d vanish. On the other hand the conditionc = d = 0
is necessary to ensure the reducibility of these quadratic forms. If ¢ = d = 0, the conditions a = b = 0 are
necessary for the minors to have a common factor. O
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Lemma 2.5. The restriction of B to U is a trivial P11-bundle. Identifying P11 with the projective space
P(S’V* @ 2 Span(x}, x1x2,X3)),
i. e., a point in Py, is identified with the class of the triple of quadratic forms
(qo(xo0, X1, X2), g1(X1, X2), 42(X1, X2)),
one can identify U x P11, and hence B|y, with the classes of matrices

CIo(Xo,X1,X2) CI1(X1,X2) LIZ(Xl,Xz)
—X2 CX1 Xo . (9)
X1 —Xo + axi +bX2 dXz

Assuming one of the coefficients of qo, q1, g2 equal to 1, we get local charts of the form Ux' and local sections

of the quotient W° — B,

Proof. 1t is enough to notice that as in (6) one can get rid of x¢ in the expressions of g; and g-. O

Charts B(~) and B(4)

In order to get charts around [A] € B’,
0 —x2-wx1-w
A=|l-x, O Xo |, W=9x1+dx2, (v,6)€Py,
X1 —)_(0 0
rewrite (9), similarly to what we already did with (6) in 2.2.2, in the form
qo(X0, x1,%2) q1(x1,X2) = x2-W q2(X2) + X1 - W

—X2 CX1 )_(0 . (10)
X1 —Xo + axi + bx; dx;

Putting v = 1 or § = 1, we get charts around B’, each isomorphic to U x x'°. Denote them by B(~) and
B(§) respectively. Their coordinates are those of U together with § respectively v and the coefficients of g;,
i=0,1,2.

The equations of B’ are those of N' in U, i.e.,a = b = ¢ = d = 0, and the conditions imposed by vanishing
of go, q1, q>.

Remark 2.6. Notice that these equations generate the ideal given by the vanishing of the determinant of (10).

3 Description of M

Consider the blow-up B = Blg B. Let D denote its exceptional divisor.

Theorem 3.1. B is isomorphic to the blow-up M := Bly, M. The exceptional divisor of M corresponds to D under
this isomorphism. The fibres of the morphism D — M over the point of M, represented by a point p on a quartic
curve C is identified with the projective line of lines in P, passing through p.

3.1 Arather intuitive explanation

Before rigorously proving this, let us explain how to arrive to Theorem 3.1 and see it just by looking at
the geometric data involved. What follows in not completely rigorous but provides, in our opinion, a nice
geometric picture.
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Blowing up B along B’ substitutes B’ by the projective normal bundle of B’. So a point of B’ represented
by a line L ¢ P; and a point p € L, which is encoded by some (w) € PH°(L, ©1(1)), is substituted by the
projective space Dy, of the normal space T(; ,y B/ T(; ,) B’ to B at (L, p).

As B is a projective bundle over N, and B’ is a P;-bundle over N’, the normal space is a direct sum of the
normal spaces along the base and along the fibre. Therefore, D; ) is the join of the corresponding projective
spaces: of P; = L] (normal projective space to N’ in Nat L € N') and Py = P(S>V*) (normal projective space
toL* in J(L*,P(S’V*)) atp € L = L*; notice that the normal projective bundle of L* ¢ J(L*, P(S’V*)), i. e.,
Py c P4, is trivial).

The fibre J(L*,P(S’V*)) of B — N over L € N’ is substituted under the blow-up by the fibre that consists
of two components: the first component is the blow-up of J(L*, P(S>V*)) along L*, the second one is a
projective bundle over L* with the fibre P13 = J(LP!, P(S>V*)), the components intersect along L* x P(S> V*).

Fig. 3. The fibre of B over L € N'.

y 4
p /
p /
/
L3l
P(S3V*)

P(S3V*)

The space LPlis naturally identified with the projective space of cubic forms on L* whereas P(S>V*) is clearly
the space of cubic curves on IP,.

Assume L = Z(xo) such that {xo, x1, X2} is a basis of V* = HO(IP’Z, Op,(1)). Identifying x1 and x, with
their images in H°(L, O (1)), {x1, x»} is a basis of H’(L, O1(1)).

We conclude that the join of LB)and PS? V* can be identified with the projective space corresponding to
the vector space

{X-xoh+ X -wg | h(x0,X1,%2) € V¥, g(x1,x2) e H(L, O (3)), (A, X) €1,

i. e., the space of planar quartic curves through the point p = Z(xo, w).

So the exceptional divisor of the blow-up Blg B is a projective bundle with fibre over (L, p) being
interpreted as the space of quartic curves through p. This way we obtain a map from the exceptional divisor
to the universal quartic M. Its fibre over a pair p ¢ C is identified with the space of lines L ¢ P; through p,
i. e., with a projective line. Contracting the exceptional divisor along these lines one gets M. The contraction
is possible by [15-17], which can be seen as follows.

The fibre of D — M; over a pair p € C may be identified with the fibre B}, over p € P, of the map B’ — PP,
given by the projection to the second factor (cf. (7)). Every two points (L, p) and (L', p) of B, c B’ are
substituted by the projective spaces J(LPJ, P(S>V*)) and J(L'P), P(S>V*)) respectively, each of which is
naturally identified with the space of quartics through p. Assume without loss of generality p = (0, 0, 1).

The fibre B, in this case is identified with the space of lines in P, through p, i. e., with the projective line
in N’ = P; = PV* consisting of classes of linear forms axo + 8x1, {a, 3) € P1. The fibre has a standard covering
IB%;,,O = {xo0 + Bx1}, IB%;,,I = {axo + X1}, which is induced by the standard covering of ;. The elements of the
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fibre corresponding to the points of B, ; are the equivalence classes of matrices

0 X1+ X2 —X1 X1
Ao =] -x2 0 Xo + Bx1
x1 —(Xo+pBx1) O

The elements of the fibre corresponding to the points of B, ; are the equivalence classes of matrices

0 X0 * X2 —X0 * X0
A1 =|—X2 0 aXo + X1
xo —(axo +x1) 0

In this way, we have chosen, so to say, the normal forms for the representatives of the points in the fibre IB%I',.
For 8 = o™, i. e., on the intersection of IB%;,,O and IB%;,J, these matrices are equivalent. One computes that
gA1h = Ay for matrices

o’ a2X0 - aX1 azxz 1 0 0
g=|o0 1 0|, h=|lat-a? 0
0 0 —a 0 0 ot

with determinants
detg = —a4, deth = —a>.

Consider the automorphism W* 5 we , A+ gAh. Then
det(.ﬁ(A1 +Bl)) =a'det(A1 +B1). (11)

From (11) it follows that the restriction of the ideal sheaf of D to a fibre of the morphisms D — M is
Og, (1). By [15-17], this means that one can blow down D in B along the map D — M;. This gives the blow
down Bl B — M that contracts the exceptional divisor of Bl B along all lines IB%;,.

4 The main result

Now let us properly prove Theorem 3.1 by presenting here the main result of this paper.

4.1 Exceptional divisor D and quartic curves

Notice that the subvariety W’ in W* parameterizing B’ is given by the condition detA = 0. B’ can be seen
as the indeterminacy locus of the rational map B -> PS*V*, [A] ~ (det(A)). This way we realize B as a
subvariety in B x PS*V* (the closure of the graph of B -» PS*V*) and obtain a morphism B — PS*V*.

Lemma 4.1. 1) The restriction of B — PS*V* to D maps a point of D lying over a point p ¢ P, (via the map
D — B’ — P,) to a quartic curve through p, i. e., there is a morphism D — M; ¢ P, x PS*v*.

2) The fibre Dy ) of D — B' over (L, p) € P5 x Py, p € L, is isomorphic via the map B — PS*V* to the linear
subspace in PS?V* of curves through p.

3) The morphism D — M is a P1-bundle over My, its fibre over a point of M1 given by a pair p € C can be
identified with the fibre of B' — P, over p.

Proof. 1) Let [A] e B’ with A asin (8) and let ao, a1, a> be the rows of A. Let B be a tangent vector at A, which
can be identified with a morphism of type (4). Let bo, b1, b, be its rows. Then, since det A = 0,

det(A +tB) = fap-t mod (t°),
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for ) . .
fa,B :det(af) +det(b(f) +det(a?).
a a b

2

Then f, p is a non-zero quartic form if B is normal to W’. One computes

2 2 2
fa.p =X0 Y, Xiboi — w(x1 Y X;ib1i + X2 ), Xib2;)
i=0 i=0 i=0
and thus f4  vanishes at p, which is the common zero point of xo and w.

2) Since the map D(; ) — PS*V* is injective, it is enough to notice that, for a fixed A € W’, every quartic
form through p can be obtained by varying B. This gives a bijection and thus an isomorphism from D ; ,y to
the space of quartics through p.

3) Follows from 1) and 2). O

4.2 Local charts

Let us describe B over B(§) (cf. 2.5). Around points of D lying over [A] € B(4) there are 14 charts. For a fixed
coordinate t of B(¢) different from o, 3, 7, denote the corresponding chart of Blg/p(5) B(d) by B(t). Then
B(t) can be identified with the variety of triples (4, t, B),

0 —x2-(yx1+x2) x1- (X1 +Xx2)

A= —X2 0 Xo ,
X1 —Xo 0
(12)
CIO(XO,Xl,Xz) CI1(X1,X2) CIZ(Xz)
B= 0 cxX1 0 ,
0 ax, + sz dXz

such that the coefficient of B corresponding to t equals 1 and A + ¢ - B belongs to B(§). The blow-up map
B(t) — B(t) is given under this identification by sending a triple (4, t,B) to A+t - B.

4.3 Family of (4m - 1)-sheaves on B

Notice that the cokernel of (4) is isomorphic to the cokernel of

00 O O
0 g0 q1 92
02z0 21 22
0 wog w1 Wy
20p,(-3) @ 30p,(-2) Op,(-2) ® 30p,(-1).
4.3.1 Local construction
Lemma 4.2. Fort = O consider the matrix
00 0 0 00 0O
0 0 —-wx; wxy 0qgo q1 92
0-x2 0 X0 |+t-]0yoy1y2 (13)
0x1 X9 O 02021 22

10 O O 00 0O
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as a morphism 20p, (-3) @ 30p,(-2) — Op,(-2) ®30p,(-1). Then its cokernel is isomorphic to the cokernel
of

X0 X1Y0 + X2Zo X1Y1 + X221 X1Y2 + X222 00O0O0
w qo q1 q>2 00 0O
0 —X2 0 )_(0 +t|0 YoYi1Yy21- (14)
0 X1 —Xo 0 0202122
0 0 X2 —-X1 1000

Proof. Acting by the automorphisms of 20p,(-3) @ 30p,(-2) on the left and by the automorphisms of
Op,(-2) ® 30p,(-1) on the right of (13), we transform this matrix as follows:

0 0 0 0 00 0O 0 0 0 0 00 0O
0 0 —wx; wxy 04do g1 92 w0 —wx; wx, 0490 q1 92
0-x; 0 X |+t-|0yoyiya|~]0-x2 O X |+t:-]0yoy:y:
0 x1 X O 02y 21 25 0 x1 —X O 02zy 21 2>
10 0 0 00 0O 10 0 0 00 0O
00 0 O 00 0O Xo 0 Xox; —Xox1 00 0O
w o0 0 0 04q0 q1 ¢ w O 0 0 0.g0 91 92
~[ O 0 X |4+t O0Oyoyiy: |~] 0-x2 0 X +t-10yoy1y2
0 x1 —% O 02y 21 2, 0 x; =X O 02z 2z 2,
1 0 x2» —x1 00 0O 1 0 x -x 00 0O
X0 0 0 O 0 X1Yo+X2Z0 X1Y1+X221 X1Y2+X222
w 0O 0 O 0 qo q1 9
~| 0-x 0 X |+£-]o0 Yo Y1 V2
0 x5 X O 0 Zo z; z
1.0 x2 —x; 0 0 0 0
t'% 0 0 0 0 X1Yo+X220 X1Y1+X2Z1 X1Y2+X222
t'w 0 0 0 0 q q1 qz
~ 0 -x, 0 x |+]oO tyo ty, tys
0 X1 —Xo O 0 tzo tzy tz,
1 0 x —x1 0 0 0 0
X 0 0 O 0 X1Yo+X220 X1Y1+X221 X1Y2+X222
w o0 0 0 0 4qo q q2
~] 0-x2 0 X [|+]o0 tyo ty1 ty,
0 x; % O 0 tzo tz; tz,
t 0 x —xp 0 0 0 0
Xo X1Yo+X2Zo X1Y1+X2Z1 X1Y2+X222 00 0O
w 4o q1 a2 00 0O
=] o —X2 0 Xo +tl Ovoyiy2 |,
0 X1 —Xo 0 02921 25
0 0 X2 —X1 1000
which concludes the proof. O
Evaluating (14) at t = O gives
Xo X1Yo + X2Zo X1Y1 + X221 X1Y2 + X222
w qo q1 a:
0 —-X2 0 Xo
0 X1 —)_(0 0
0 0 X2 —-X1
Lemma 4.3. The isomorphism class of the cokernel F of
Xo po b1 D2
W qo 41 q2
0 —-X2 0 )_(0
0 X1 —Xo 0
00 X2 —X1
ZOPZ(—3)®3OPZ(—2) OPZ(—2)$3OPZ(—1)
is a sheaf from M1 with resolution
)
w
0-20p,(-3) —— Op,(-2)® Op, > F — 0, (15)

if Xoh —wg # 0 for g = Xopo + X1p1 + X2p2, h = Xoqo + X141 + X2q>.
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Proof. Consider the isomorphism class of F with resolution (15). Then, using the Koszul resolution of Op,,
one concludes that the kernel of the composition of two surjective morphisms

10
0 X
0x
Op,(~2) ® 305, (~1) ~2%, Op,(-2) ® Op, > F

[N

coincides with the image of

0 -x, 0 Xo
0 x; =% O

Xo Po P1 P2
W 4o 41 9
0 0 x; —xq

20p,(-3) ®30p,(-2) Op,(-2) ®30p,(-1),

which concludes the proof. O

For A + tB with A and B as in (12) we obtain the morphism
20]}»2(—3) ® 30]}»2(—2) g O[pz(—Z) ® 3@[@2(—1),

given by the matrix
Xo O cx?+axixy+bxs dxs

W qo q1 q2
0 -x2 tcxa Xo |
0 x1 —Xo+t(axy + bxy) tdx;
t O X2 —X1

which defines by Lemma 4.3 a family of (4m — 1)-sheaves on B(t) and therefore a morphism B(t) — M. This
morphism sends the point of the exceptional divisor represented by (4, 0, B) to the point given by the quartic
curve C = Z(f),

f =Xo0 - (Xoqo(X0, X1, X2) + X1q1(X1, X2) + X242(X2))

2 2
-w- (cx? +axixa + bxi1x; + dx%),

and the point p = Z(xo, w) on C.

4.3.2 Gluing the morphisms B(t) - M

For different charts B(t) and B(t') the corresponding morphisms agree on intersections. Therefore, we
conclude that there exists a morphism B — M. It is an isomorphism outside of D. As already mentioned
in Lemma 4.1, the restriction of this morphism to D gives a ’;-bundle D — M;.

Lemma 4.4. The map B — M is the blow-up Bly, M — M.

Proof. By the universal property of blow-ups, there exists a unique morphism B LA Bly, M over M, which
maps D to the exceptional divisor E of Bly, M and is an isomorphism outside of D. This morphism must be
surjective as its image is irreducible and contains an open set. Its fibres must be connected by the Zariski’s
main theorem. Restricted to D we get a surjective morphism D — E of P;-bundles over M; . Over every point of
M; we have a surjective morphism P; — P; with connected fibres. The only connected subvarieties of IP; are
the subvarieties consisting of one point and IP; itself. The latter can not be a fibre, since this would contradict
the surjectivity. This implies that the map D — E is a bijection. Therefore, ¢ is a bijective morphism and thus
an isomorphism. O

This concludes the proof of Theorem 3.1.
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