Open Math. 2018; 16: 1-8

Open Mathematics

Research Article

A. Zuevsky*

Algebraic proofs for shallow water bi-Hamiltonian systems for three cocycle of the semi-direct product of Kac-Moody and Virasoro Lie algebras

https://doi.org/10.1515/math-2018-0002 Received November 30, 2016; accepted January 4, 2018.

Abstract: We prove new theorems related to the construction of the shallow water bi-Hamiltonian systems associated to the semi-direct product of Virasoro and affine Kac–Moody Lie algebras. We discuss associated Verma modules, coadjoint orbits, Casimir functions, and bi-Hamiltonian systems.

Keywords: Affine Kac-Moody Lie algebras, Bi-Hamiltonian systems, Verma modules, Coadjoint orbits

MSC: 17B69, 17B08, 70G60, 82C23

1 Introduction: The semi-direct product of Virasoro algebra with the Kac-Moody algebra

This paper is a continuation of the paper [1] where we studied bi-Hamiltonian systems associated to the three-cocycle extension of the algebra of diffeomorphisms on a circle. In this note we show that certain natural problems (classification of Verma modules, classification of coadjoint orbits, determination of Casimir functions) [2–5] for the central extensions of the Lie algebra $Vect(S^1) \ltimes \mathcal{LG}$ reduce to the equivalent problems for Virasoro and affine Kac–Moody algebras (which are central extensions of $Vect(S^1)$ and \mathcal{LG} respectively). Let G be a Lie group and \mathcal{G} its Lie algebra. The group $Diff(S^1)$ of diffeomorphisms of the circle is included in the group of automorphisms of the Loop group LG of smooth maps from S^1 to G. For any pairs $(\phi, \psi) \in Diff(S^1)^2$ and $(g,h) \in LG^2$ the composition law of the group $Diff(S^1) \ltimes \mathcal{LG}$ is

$$(\phi, a) \cdot (\psi, b) = (\phi \circ \psi, a.b \circ \phi^{-1}).$$

The Lie algebra of $Diff(S^1) \ltimes LG$ is the semi-direct product $Vect(S^1) \ltimes LG$ of the Lie algebras $Vect(S^1)$ and LG. Let G be a Lie algebra and $\langle ., . \rangle$ a non-degenerated invariant bilinear form. $Vect(S^1)$ is the Lie algebra of vector fields on the circle and LG the loop algebra (i.e., the Lie algebra of smooth maps from S^1 to G), $Vect(S^1)_{\mathbb{C}}$ is the Lie algebra over \mathbb{C} generated by the elements L_n , $n \in \mathbb{Z}$ with the relations

$$[L_m, L_n] = (n-m)L_{n+m}$$
.

We denote by $\mathcal{LG}_{\mathbb{C}}$ the Lie algebra over \mathbb{C} generated by the elements $g_n, n \in \mathbb{Z}, g \in \mathcal{G}$ where $(\lambda g + \mu h)_n$ is identified with $\lambda g_n + \mu h_n$ with the relations

$$[g_n, h_m] = [g, h]_{n+m}$$
.

^{*}Corresponding Author: A. Zuevsky: Institute of Mathemtics, Czech Academy of Sciences, Prague, Czech Republic, E-mail: zuevsky@yahoo.com

The semi-direct product of $Vect(S^1)$ with \mathcal{LG} is as a vector space isomorphic to $C^{\infty}(S^1, \mathbb{R}) \oplus C^{\infty}(S^1, \mathcal{G})$ [6]. The Lie bracket of $\mathcal{SU}(\mathcal{G})$ has the form

$$[(u,a),(v,b)] = ([.,\partial_t.].u \otimes v, va' - ub' + [a,b]),$$

for any $(u, v) \in C^{\infty}(S^1, \mathbb{R})^2$ and any $(a, b) \in C^{\infty}(S^1, \mathcal{G})^2$, where prime denote derivative with respect to a coordinate on S^1 . The Lie algebra $Vect(S^1) \ltimes \mathcal{LG}$ can be extended with a universal central extension $\mathcal{SU}(\mathcal{G})$ by a two-dimensional vector space. Let us denote by $\mathcal{J}(u) = \int_{S^1} u$. Two independent cocycles are given by

$$\omega_{Vir}((u,a),(v,b)) = \mathcal{J}(u'''v), \qquad \omega_{K-M}((u,a),(v,b)) = \mathcal{J}(\langle a',b\rangle).$$

We denote by (u, a, χ, α) the elements of $\mathcal{SU}(\mathcal{G})$ with $u \in C^{\infty}(S^1, \mathbb{R})$, $a \in C^{\infty}(S^1, \mathcal{G})$ and $(\chi, \alpha) \in \mathbb{R}^2$. The algebra $\mathcal{SU}(\mathcal{G})$ can be also represented as the semi-direct product of Virasoro algebra on the affine Kac–Moody algebra. We denote by c_{Vir} and c_{K-M} the elements (0, 0, 1, 0) and (0, 0, 0, 1) respectively. If $\mathcal{G} = \mathbb{R}$, then the Lie algebra $Vect(S^1) \ltimes \mathcal{L}\mathbb{R}$ has a universal central extension $\widetilde{\mathcal{SU}}(\mathbb{R})$ by a three-dimensional vector space. The third independent cocycle is given by

$$\omega_{sp}((u,a),(v,b)) = \mathcal{J}(ub''-va'').$$

We denote by $(u, a, \chi, \alpha, \gamma, \delta)$ elements of $\widetilde{\mathcal{SU}}(\mathbb{R})$ with $u \in C^{\infty}(S^1, \mathbb{R})$, $a \in C^{\infty}(S^1, \mathcal{G})$, and $(\chi, \alpha, \gamma) \in \mathbb{R}^3$. The Lie bracket of $\widetilde{\mathcal{SU}}(\mathbb{R})$ is given by

$$[(u, a, \phi, \alpha, \gamma), (v, b, \xi, \beta, \delta)] = (uv' - u'v, [a, b] - ub' + va', \mathcal{J}(u'''v), \mathcal{J}(\langle a', b \rangle), \mathcal{J}(ub'' - va'')).$$

In this paper we discuss a few questions. Let us mention the main results. First, in Section 2 we consider Kirillov-Kostant Poisson brackets [7] of the regular dual of the semi-direct product of Virasoro Lie algebra with the Affine Kac-Moody Lie algebra. Let us denote by $SU(\mathcal{G})'$ the subset of $SU(\mathcal{G})$ of elements (u, a, ξ, β) with non-vanishing β . We denote by $(Vect(S^1) \oplus \widehat{\mathcal{LG}})'$ the subset of $Vect(S^1) \oplus \widehat{\mathcal{LG}}$ composed of elements (u, a, ξ, β) with $\beta \neq 0$. Then introduce two new maps $\mathcal{I}(u, a, \xi, \beta)$ from $\mathcal{SU}(\mathcal{G})'$ to $(Vect(S^1) \oplus \widetilde{\mathcal{LG}})'$, and $\widetilde{\mathcal{I}}(u, a, \xi, \beta, \gamma)$ from $\mathcal{SU}(\mathcal{G})$ to $\widetilde{Vect(S^1)} \oplus \widehat{\mathbb{L}R}$. We prove that $\mathcal{I}(u, a, \xi, \beta)$ and $\widetilde{\mathcal{I}}(u, a, \xi, \beta, \gamma)$ are Poisson maps. In Section 3 we discuss coadjoint orbits and Casemir functions for $SU(\mathcal{G})$. Let $\widetilde{\mathcal{H}}$ be a central extension of a Lie algebra \mathcal{H} and \mathcal{H} be a Lie group with Lie algebra is \mathcal{H} . We find explicit form for the coadjoint actions of the groups $Diff(S^1) \ltimes LG$ and $Diff(S^1) \ltimes L\mathbb{R}_+^*$. As a result we obtain the following new theorem. We prove that a coadjoint orbit of $\mathcal{SU}(\mathcal{G})$ is mapped by \mathcal{I} to a coadjoint orbit of $Vect(S^1) \otimes \widetilde{\mathcal{LG}}$ to a coadjoint orbits of $\widetilde{Vect(S^1)}$. We prove that the map $\widetilde{\mathcal{I}}$ sends the coadjoint orbits of $\widetilde{\mathcal{SU}(\mathcal{G})}$ to coadjoint orbits of $\widetilde{Vect(S^1)} \otimes \widetilde{\mathcal{LG}}$. Previously, we determined Casemir functions on $\widetilde{\mathcal{SU}(\mathcal{G})}'$ and $\widetilde{\mathcal{SU}(\mathbb{R})}$. We then prove new propositions concerning the exlicit form of Casemir functions on $\mathcal{SU}(\mathcal{G})$, and in particular on on $\mathcal{SU}(\mathbb{R})$. This paper was partially inspired by the construction of bi-Hamiltonian systems as natural generalization of the classical Korteweg-de Vries equation. [1, 8-11]. It has been showed in [1], that the dispersive water waves system equation [9, 10, 12] is a bi-Hamiltonian system related to the semi-direct product of a Kac-Moody and Virasoro Lie algebras, and the hierarchy for this system was found. In Section 4 some results of [1] are obtained from another point of view. We prove new proposition for pairwise commuting functions under certain brackets. In section 5 we discuss properties of the universal enveloping algebra of $\mathcal{SU}(\mathcal{G})$. In subsection 5.1 we consider a decomposition of the enveloping algebra of a semi-direct product. We introduce the notion of realizability of the action of \mathcal{K} on \mathcal{H} in $\mathcal{U}_{\omega_{\mathcal{H}}}(\mathcal{H})$. Then we show (Theorem 5.1) that the realizability of the action of \mathcal{K} in $\mathcal{U}_{\omega_{\mathcal{H}}}(\mathcal{H})$ leads to the isomorphism

$$\mathcal{U}_{\omega_{\mathcal{K}}',\omega_{\mathcal{U}}'}(\mathcal{K}\ltimes\mathcal{H})\simeq\mathcal{U}_{\omega_{\mathcal{K}}-\alpha}(\mathcal{K})\otimes\mathcal{U}_{\omega_{\mathcal{H}}}(\mathcal{H}).$$

In subsection 5.2 the case of $\mathcal{SU}_{\mathbb{C}}(\mathcal{G})$ is considered. In subsection 5.3 we discuss representations of $\mathcal{SU}(\mathcal{G})$. We prove that positive energy representation V of $\mathcal{SU}_{\mathbb{C}}(\mathcal{G})$ with non-vanishing βId -action of the cocyle c_{K-M} delivers a pair of commuting representations of Virasoro and affine Kac–Moody Lie algebras. This proposition determines whether a $\mathcal{SU}_{\mathbb{C}}(\mathcal{G})$ Verma module is a sub-module of another Verma module of $\mathcal{SU}_{\mathbb{C}}(\mathcal{G})$. We also prove a proposition regarding a linear form over \mathfrak{h} with non-vanishing $\lambda(c_{K-M})$. In this paper we present proofs for corresponding theorems and lemmas.

2 The Kirillov-Kostant structure of SU(G)

Now we consider Kirillov-Kostant Poisson brackets of the regular dual of the semi-direct product of Virasoro Lie algebra with the Affine Kac–Moody Lie algebra. Let K be a Lie algebra with a non-degenerated bilinear form $\langle .,. \rangle$. A function $f: \mathcal{K} \to \mathbb{R}$ is called regular at $x \in \mathcal{K}$ if there exists an element $\nabla f(x)$ such that

$$f(x + \epsilon a) = f(x) + \epsilon \langle \nabla f(x), a \rangle + o(\epsilon),$$

for any $a \in \mathcal{K}$. For two regular functions $f,g : \mathcal{K} \longrightarrow \mathbb{R}$, we define the Kirillov-Kostant structure as a Poisson structure on K with

$$\{f,g\}(x) = \langle x, \lceil \nabla f(x), \nabla g(x) \rceil \rangle.$$

Then for any $e \in \mathcal{G}$, the second Poisson structure $\{f,g\}_e(x)$ compatible with the Kirillov-Kostant Poisson structure is defined by

$$\{f,g\}_e(x) = \langle e, \lceil \nabla f(x), \nabla g(x) \rceil \rangle.$$

A non-degenerated bilinear form on SU(G) and $\widetilde{Vect(S^1)} \oplus \widetilde{LG}$ is defined by

$$\langle (u_1, a_1, \beta_1, \xi_1), (u_2, a_2, \beta_2, \xi_2) \rangle = \int_{S^1} u_1 u_2 + \int_{S^1} \langle a_1, a_2 \rangle + \xi_1 \xi_2 + \beta_1 \beta_2.$$

We denote by SU(G)' the subset of SU(G) of elements (u, a, ξ, β) with non-vanishing β . Let $u' = u - \frac{\|a\|^2}{2\beta}$ We denote by $(\widetilde{Vect(S^1)} \oplus \widetilde{\mathcal{LG}})'$ the subset of $\widetilde{Vect(S^1)} \oplus \widetilde{\mathcal{LG}}$ composed of elements (u, a, ξ, β) with $\beta \neq 0$. Let us introduce a new map $\mathcal{I}(u, a, \xi, \beta) = (u', a, \xi, \beta)$ from $\mathcal{SU}(\mathcal{G})'$ to $(\widetilde{Vect(S^1)} \oplus \widetilde{\mathcal{LG}})'$. Then for non-vanishing β , let us introduce another new map $\widetilde{\mathcal{I}}(u, a, \xi, \beta, \gamma) = \left(u' - \frac{\gamma}{\beta}a', a, \xi - \frac{\gamma^2}{\beta}, \beta\right)$ from $\mathcal{SU}(\mathcal{G})$ to $\widetilde{Vect(S^1)} \oplus \widetilde{\mathbb{L}R}$. Here we give a proof for the following new theorem:

Theorem 2.1. \mathcal{I} and $\widetilde{\mathcal{I}}$ are Poisson maps.

Proof. For any regular function $f(u, a, \xi, \beta)$ from $\widetilde{Vect(S^1)} \oplus \widetilde{\mathcal{LG}}$ to \mathbb{R} let us define a regular function \widehat{f} from $\mathcal{SU}(\mathcal{G})'$ to \mathbb{R} by $\widehat{f}(u, a, \xi, \beta) = f(u', a, \xi, \beta)$. For $f(u, a, \xi, \beta)$ a function on $\mathcal{SU}(\mathcal{G})$ or $(\widetilde{Vect(S^1)} \oplus \widetilde{\mathcal{LG}})$, let us denote by f_u the function of the variables a and β that we get when we fix u and ξ . Let us denote f_a the function of the variables u and ξ that we get when we fix a and β . With the previous notations, one has for $\beta \neq 0$ for the bracket $\{.,.\}^U = \{.,.\}^{\mathcal{SU}(\mathcal{G})}$

$$\{f,\widehat{g}\}^{U}(u,a,\xi,\beta) = \left[\{f_{u},g_{u}\}^{U} + \{f_{u},g_{a}\}^{U} + \{f_{a},g_{u}\}^{U} + \{f_{a},g_{a}\}^{U}\right](u,a,\xi,\beta),$$

and for the bracket $\{.,.\}^{VLG} = \{.,.\}^{\widetilde{Vect(S^1)} \oplus \widetilde{LG}}$ we have

$$\{f,g\}^{VLG}(u,a,\xi,\beta) = \{f_u,g_u\}^{VLG} + \{f_a,g_a\}^{VLG}.$$

Then the map π_1 from $SU(\mathcal{G})$ onto $\widetilde{Vect(S^1)}$ which sends (u, a, ξ, β) onto (u', ξ) is a Poisson morphism. The map π_2 from $SU(\mathcal{G})$ onto \widetilde{LG} which sends (u, a, ξ, β) to (a, β) is a Poisson morphism. For any regular function f on $\widetilde{Vect}(S^1)$ and any regular function g on $\widetilde{\mathcal{LG}}$ we have

$$\{\pi_1^* f, \pi_2^* g\}_U = 0.$$

Indeed, for i = 1, 2, $\left(\delta_a - \frac{a}{\beta}\delta_u\right)f_i(\widehat{u}, \xi) = 0$. We have:

$$\{f_{1}(\widehat{u},\xi),f_{2}(\widehat{u},\xi)\}_{\xi,\beta}^{U}(u,a,\xi,\beta) = \mathcal{J}([\xi(\delta f_{1,u}(\widehat{u}),\xi)_{xxx}\delta f_{2,u}(\widehat{u},\xi) + 2(\delta f_{1,u}(\widehat{u},\xi))_{x}\delta f_{2,u}(\widehat{u},\xi) u + \delta f_{1,u}(\widehat{u},\xi)u_{x}\delta f_{2,u}(\widehat{u},\xi) - \beta^{-1}(\delta f_{1,u}(\widehat{u},\xi)_{x}) \| a \|^{2}\delta f_{2,u}(\widehat{u},\xi) - \langle (\delta f_{1,u}(\widehat{u})a/\beta,\xi)_{x},\delta f_{2,u}(\widehat{u},\xi) \rangle + \beta^{-1}\langle (\delta f_{1,u}(\widehat{u})a,\xi)_{x},\delta f_{2,u}(\widehat{u},\xi) \rangle].$$

This gives

$$\{f_1(\widehat{u},\xi),f_2(\widehat{u},\xi)\}_{\xi,\beta}^U(u,a) = \mathcal{J}(\xi[(\delta f_{1,u}(\widehat{u},\xi))_{xxx}\delta f_{2,u}(\widehat{u},\xi)])\}$$

$$+2(\delta f_{1,u}(\widehat{u},\xi))_x\delta f_{2,u}(\widehat{u},\xi)(\widehat{u},\xi)+\delta f_{1,u}(\widehat{u},\xi)(\widehat{u})_x\delta f_{2,u}(\widehat{u},\xi)]),$$

and

$$\{f_1(\widehat{u},\xi),f_2(\widehat{u},\xi)\}_{\varepsilon,\beta}^U(u,a)=\{f_1,f_2\}_{\varepsilon}^{Vir}(\widehat{u},\xi).$$

Let $g_i(a, \beta)$, i = 1, 2 be two regular functions on the affine Kac–Moody algebra. One notes that $\delta g_{1,u} = \delta g_{2,u} = 0$. Therefore,

$$\{g_1,g_2\}_{\xi,\beta}^U(u,a)=\beta\mathcal{J}(\langle dx(\delta g_{1,a}(a,\beta)),\delta g_{2,a}(a,\beta)\rangle+\langle [a,\delta g_{1,a}(a,\beta)],\delta g_{2,a}(a,\beta)\rangle).$$

Then,

$$\{g_1,g_2\}^U(u,a,\xi,\beta)=\{f,g\}^{\widetilde{LG}}(a,\beta).$$

We have:

$$\{f(\widehat{u},\xi),g(a,\beta)\}^{U} = \mathcal{J}(\langle (\delta f_{u}(\widehat{u})_{x} a,\xi),\delta g,a(a,\beta)\rangle -\beta dx(\delta f_{u}(\widehat{u},\xi)a),\delta g_{a}(a,\beta)\rangle + [a,\delta f_{u}a],\delta g_{a}\rangle).$$

The sum of the first two terms is equal to 0. The last term is $\mathcal{J}(\delta f_u\langle [a,a],\delta g_a\rangle)$, and is equal to zero. One can proceed similarly for $\widetilde{\mathcal{I}}$.

3 Coadjoint orbits Casimir functions and for $\mathcal{SU}(\mathcal{G})$

Let $\widetilde{\mathcal{H}}$ be a central extension of a Lie algebra \mathcal{H} , and H be a Lie group with Lie algebra is \mathcal{H} . Then H acts on $\widetilde{\mathcal{H}}^{\star}$ by the coadjoint action along coadjoint orbits.

Proposition 3.1. The coadjoint actions of the groups $Diff(S^1) \ltimes LG$ and $Diff(S^1) \ltimes L\mathbb{R}_+^*$ are given by

$$Ad^{*}(\phi,g)^{-1}(u,a,\xi,\beta) = \left((u \circ \phi)\phi^{'2} + \xi S(\phi) + \langle g^{-1}g',a\rangle\phi^{'2} \right.$$

$$+ \frac{1}{2}\beta \|g^{-1}g'\|^{2}, \phi'Ad(g^{-1})a \circ \phi + \beta g^{-1}g',\xi,\beta \right),$$

$$\left((u \circ \phi)\phi^{'2} + \xi S(\phi) + \langle g'g^{-1},a\rangle\phi^{'2} + \frac{1}{2}\beta(g'g^{-1})^{2} + \gamma g''g^{-1},$$

$$\phi'Ad(g^{-1})a \circ \phi + \beta g^{-1}g' - \gamma g''g^{-1},\xi,\beta,\gamma \right).$$

The classification of coadjoint orbits of $Vect(S^1) \times \mathcal{LG}$ can be known from the classification of coadjoint orbits of the Virasoro and affine Kac-moody algebra. Here we obtain the following new

Theorem 3.2. A coadjoint orbit of SU(G) is mapped by \mathcal{I} to a coadjoint orbit of $\widetilde{Vect(S^1)} \otimes \widetilde{\mathcal{LG}}$ to a coadjoint orbits of $\widetilde{Vect(S^1)}$.

In other words, this means that if $\beta_1 \neq 0$, the elements $(u_1, a_1, \xi_1, \beta_1)$ and $(u_1, a_1, \xi_2, \beta_2)$ are in the same coadjoint orbit if and only if: $\xi_1 = \xi_2$, $\beta_1 = \beta_2$, (a_1, β_1) and (a_2, β_2) are on the same coadjoint orbit of $\widetilde{\mathcal{LG}}$, $(u_1 - \frac{\|a_1\|}{2\beta_1})$, ξ_1) and $(u_2 - \frac{\|a_2\|}{2\beta_2})$, ξ_2) are elements of the same coadjoint orbit of $\widetilde{Vect(S^1)}$.

Proof. For any $\phi \in Diff(S^1)$, there exists $h \in LG$ such that

$$hah^{-1} + \beta \frac{\partial h(x)}{\partial x} \cdot h^{-1} = a \circ \phi \cdot \phi'.$$

By direct computation we check that

$$\mathcal{I}(Ad^*(\phi, g)(u, a, \xi, \beta) = (Ad^*(\phi, g.h)\mathcal{I}(u, a, \xi, \beta).$$

This implies Theorem 3.2.

Proposition 3.3. The map $\widetilde{\mathcal{I}}$ sends the coadjoint orbits of $\widetilde{\mathcal{SU}(\mathcal{G})}$ to coadjoint orbits of $\widetilde{\mathcal{Vect}(S^1)} \otimes \widetilde{\mathcal{LG}}$.

In other words, this means that if $\beta_1 \neq 0$ the elements $(u_1, a_1, \xi_1, \beta_1, \gamma_1)$ and $(u_1, a_1, \xi_2, \beta_2, \gamma_2)$ are in the same coadjoint orbit if and only if $\gamma_1 = \gamma_2$, $\xi_1 = \xi_2$, $\beta_1 = \beta_2$, (a_1, β_1) and (a_2, β_2) are on the same coadjoint orbit of $\widetilde{\mathcal{LG}}$, $(u_1 - \frac{a_1^2}{2\beta}, \xi_1 - \frac{\gamma_1^2}{\beta_1})$ and $(u_2 - \frac{a_2^2}{2\beta}, \xi_2 - \frac{\gamma_2^2}{\beta_2})$ are elements of the same coadjoint orbit of $\widetilde{Vect(S^1)}$. In

Proposition 3.4. If the elements $(u_1, a_1, \xi_1, \beta_1, \gamma_1)$ and $(u_1, a_1, \xi_2, \beta_2\gamma_2)$ are in the same coadjoint orbit then $\gamma_1 = \gamma_2$, $(a_1^2 + \gamma_1 a_1', \gamma_1)$ and $(a_2^2 + \gamma_2 a_2', \gamma_2)$ are in the same coadjoint orbit of the Virasoro Lie algebra.

Proof. We have:
$$Ad(\phi, g)(a_1^2 + \gamma_1 a_1') = (a_1^2 + \gamma_1 a_1') \circ \phi + \gamma_1 S(\phi)$$
.

Previously, we determined Casemir functions on $\widetilde{\mathcal{SU}(\mathcal{G})}'$ and $\widetilde{\mathcal{SU}(\mathbb{R})}$. We gave the following proposition:

Proposition 3.5. Let C_{Vir} , C_{K-M} C_A be Casimir functions for Virasoro, affine Kac-Moody, and the Heisenberg Lie algebras A correspondingly. Let $S_p\mathcal{U}(\mathcal{G})$, $\widetilde{S_p\mathcal{U}(\mathbb{R})}$ be Poisson submanifolds of $S\mathcal{U}(\mathcal{G})$ and $\widetilde{S\mathcal{U}(\mathbb{R})}$ defined by $\xi = 0$. Then the functions $C_{Vir}(u', \xi)$, $c(u, a, \beta, \xi) = C_{K-M}(a, \beta)$, and $\int_{S^1} |u'|^{1/2}$, are Casimir functions on $\widetilde{SU(\mathcal{G})}'$. In particular, the functions $c_{\mathcal{A}}(u, a, \beta, \xi) = C_{\mathcal{A}}(a, \beta)$, $C_{Vir}(u' - \frac{\gamma^2}{\beta}a', \xi)$, and $\int_{S^1} |u' - \frac{\gamma^2}{\beta}a'|^{1/2}$, are *Casimir functions on* $\widetilde{\mathcal{SU}(\mathbb{R})}'$.

4 Bi-hamiltonian dispersive water waves systems associated to SU(G)

It has been showed in [1], that the dispersive water waves system equation [9, 10, 12] is a bi-Hamiltonian system related to the semi-direct product of a Kac-Moody and Virasoro Lie algebras, and the hierarchy for this system was found. In this section some results of [1] are obtained from another point of view. We obtain new

Proposition 4.1. The functions $\left\{\phi_1\left(A(u+B\frac{da}{dx}+C)\right)|\lambda\in\mathbb{R}\right\}$ commute pairwise for the Sugawara $\{.,.\}_{Sug}'$ and e-braket $\{.,.\}_e$ with e = (1,0,0,2,0), and $A = \left(\xi - \frac{\gamma}{\beta - 2\lambda}\right)^{-2}$, $B = -\frac{\gamma}{\beta - 2\lambda}$, $C = -\frac{\|a\|^2}{2\beta - 4\lambda} - \lambda$.

The function $\lambda \mapsto \phi_1 \left(A(u + B \frac{da}{dx} + C) \right)$ has an asymptotic development. The coefficients of this development form a hierarchy. The first term of this development is $\int_{S^1} u$, and the second one is $\int_{S^1} (u^2 + \gamma u + ||a||^2)$. A linear combination of these two terms gives the Hamiltonian of equations $H(u, a) = \int_{S^1} (u^2 + ||a||^2)$. Let $\{\phi_i, i \in I\}$ be a set of Casimir functions and $e \in \mathcal{G}$. Define $x_\chi = x - \chi e$, for some $\chi \in \mathbb{R}$.

Lemma 4.2. For any $(i,j) \in I^2$ and any $(\lambda,\mu) \in \mathbb{R}^2$ we have $\{\phi_i(x_\lambda), \phi_i(x_\mu)\} = \{\phi_i(x_\lambda), \phi_i(x_\mu)\}_e = 0$.

Lemma 4.3. Suppose $\phi_i(x_\lambda)$ can be expanded in terms of inverse powers of λ with some extra function $f(\lambda)$, and modes $F_{i,k}(x)$, i.e.,

$$\phi_i(x_\lambda) = f(\lambda) \sum_{k \in \mathbb{P}} \lambda^{-k} F_{i,k}(x),$$

then $\{F_{i,k+1},f\}_e = \{F_{i,k},f\}_0$. We can choose e so that the Hamiltonian $H(x) = \frac{1}{2}\langle x,x\rangle$ commute with these functions.

Lemma 4.4. If an element $e \in \mathcal{G}$ satisfies two conditions: (i) $ad^*(e)e = 0$; (ii) for any $u \in \mathcal{G}$, $ad^*(u)e$ belongs to the tangent space to the coadjoint orbit of u (i.e., for any $u \in \mathcal{G}$ there exists $v \in \mathcal{G}$ such that $ad^*(u)e =$ $ad^*(v)u$), then the functions $\phi(a-\lambda e)$ commute with the Hamiltonian of the geodesics $H(a)=\frac{1}{2}\parallel a\parallel^2$ with respect to the brackets $\{.,.\}_0$ and $\{.,.\}_e$.

5 The universal enveloping algebra of SU(G)

When $\mathcal{H} = \sum_{k \in \mathbb{Z}} \mathcal{H}_k$ has a structure of graded algebra, its universal enveloping algebra \mathcal{UH} is also naturally endowed with a structure of a graded Lie algebra. Indeed, the weight of a product $h_1, \ldots, h_n \in \mathcal{UH}$ of homogeneous elements is defined to be the sum of the weights of the elements h_i , $i = 1, \ldots, n$. The universal enveloping algebra \mathcal{UH} admits a filtration $\mathcal{UH} = \bigcup_{i=0}^{\infty} F_k$ where F_k is the vector space generated by the products of at most k elements of \mathcal{H} . The generalized enveloping algebra is the algebra of the elements of the form $\sum_{k \leq n} u_k$ where u_k is an element of weight k of \mathcal{UH} . The product of two such elements is defined by:

$$\sum_{k=-\leq n} u_k \cdot \sum_{k\leq m} v_k = \sum_{k\in\mathbb{Z}} w_k,$$

where $w_k = \sum_{i \in \mathbb{Z}} u_i \cdot v_{k_i}$ which is a finite sum. Let $\omega_1, \ldots, \omega_n$ be two-cocycles on the Lie algebra \mathcal{H} , let $\widetilde{\mathcal{H}}$ be the central extension associated with and let e_1, \ldots, e_n be the central elements associated with these cocycles.

The modified generalized enveloping algebra $\mathcal{U}^{\mathcal{H}}_{\omega_1,\dots,\omega_n}$ is defined to be the quotient of the generalized enveloping algebra of $\widetilde{\mathcal{H}}$ by the ideal generated by the elements $\{e_1-1,\dots,e_n-1\}$. We denote again by 1 the neutral element of $\mathcal{U}^{\mathcal{G}}_{\lambda}$. The algebra $\mathcal{U}^{\mathcal{H}}_{\omega_1,\dots,\omega_n}$ is by construction a graded algebra and a filtered algebra. We denote by F_n , $n \in \mathbb{N}$ its filtration. Let us recall shortly the main properties of the modified generalized enveloping algebra. Let V is be a module over $\widetilde{\mathcal{H}}$ such that for any $v \in V$, there exists $n_0 \in \mathbb{Z}$ such that for any $n > n_0$ and any $n \in \mathbb{H}$ we have $n \in \mathbb{H}$ we have $n \in \mathbb{H}$. Such modules are called representations of positive energy, and $n \in \mathbb{H}$ anticommutator provides a structure of Lie algebra on $n \in \mathbb{H}$. Such modules are named modules of positive energy. The anticommutator provides a structure of Lie algebra on $n \in \mathbb{H}$. For this bracket $n \in \mathbb{H}$ is a Lie sub-algebra isomorphic to the central extension of $n \in \mathbb{H}$ by the cocycle $n \in \mathbb{H}$ by the denote by $n \in \mathbb{H}$ be the natural inclusion of $n \in \mathbb{H}$ into $n \in \mathbb{H}$ given by this identification.

5.1 Decomposition of the enveloping algebra of a semi-direct product

In some very particular cases, the modified generalized enveloping algebra of a semi-direct product $\mathcal{K} \ltimes \mathcal{H}$ of two Lie algebras is isomorphic to the tensor product of some modified generalized enveloping algebras of \mathcal{K} and of \mathcal{H} . Let $\widetilde{\mathcal{H}}$ be the central extension of \mathcal{H} with the two-cocycle $\omega_{\mathcal{H}}$. Denote by \cdot the action of the Lie algebra \mathcal{K} on the Lie algebra $\widetilde{\mathcal{H}}$. Let us introduce the semi-direct product $\mathcal{K} \ltimes \widetilde{\mathcal{H}}$ which is a central extension of $\mathcal{K} \ltimes \mathcal{H}$ by a two-cocycle $\omega'_{\mathcal{H}}$ with

$$\omega_{\mathcal{H}}'((0,h_1),(0,h_2)) = \omega_{\mathcal{H}}(h_1,h_2).$$

A two-cocycle $\omega_{\mathcal{K}}$ on \mathcal{K} defines also a two-cocycle $\omega_{\mathcal{K}}'$ by

$$\omega_{\mathcal{K}}'((g_1,h_1),(g_2,h_2)) = \omega_{\mathcal{K}}(g_1,g_2),$$

of $\mathcal{K} \ltimes \mathcal{H}$. Let I be the natural inclusion of $\widetilde{\mathcal{H}}$ into $\mathcal{U}_{\omega_{\mathcal{H}}}(\mathcal{H})$ and J be the natural inclusion of $\widetilde{\mathcal{H}}$ into $\mathcal{U}_{\omega'_{\mathcal{T}},\omega'_{\mathcal{H}}}(\mathcal{K} \ltimes \mathcal{H})$.

We call the action of \mathcal{K} on \mathcal{H} realizable in $\mathcal{U}_{\omega_{\mathcal{H}}}(\mathcal{H})$ when there exists a map $F: \mathcal{K} \to \mathcal{U}_{\omega_{\mathcal{H}}}(\mathcal{H})$ and a two-cocycle α on \mathcal{K} such that for any pair (g_1, g_2) in \mathcal{K}^2

$$F([g_1,g_2]) = [F(g_1),F(g_2)] + \alpha(g_1,g_2)1,$$

and the map F satisfies the *compatibility condition*, i.e., for any $g \in \mathcal{K}$ and $h \in \widetilde{\mathcal{H}}$ with the anti–commutator $[F(g), I(h)] = I(g \cdot h)$, of the algebra $\mathcal{U}_{\omega_{\mathcal{H}}}(\mathcal{H})$.

Theorem 5.1. *If the action of* K *is realizable in* $U_{\omega_H}(H)$ *then*

$$\mathcal{U}_{\omega_{\kappa}',\omega_{\mathcal{U}}'}(\mathcal{K}\ltimes\mathcal{H})\simeq\mathcal{U}_{\omega_{\kappa}-\alpha}(\mathcal{K})\otimes\mathcal{U}_{\omega_{\mathcal{H}}}(\mathcal{H}).$$

Proof. Let $\mathcal{U}_g = \{\widehat{g} | g \in \mathcal{K}\}$ with be the unitary subalgebra of $\mathcal{U}_{\omega_{\mathcal{K}}',\omega_{\mathcal{H}}'}(\mathcal{K} \ltimes \mathcal{H})$ generated by the elements $\widehat{g} = g - F(g)$, and $\mathcal{U}_j = \{j(h), h \in \widetilde{\mathcal{H}}\}$ be the unitary subalgebra of $\mathcal{U}_{\omega_{\mathcal{K}}',\omega_{\mathcal{H}}'}(\mathcal{K} \ltimes \mathcal{H})$. For any (g,h) this implies that the generators of \mathcal{U}_g and \mathcal{U}_j commute, i.e., $[\widehat{g},j(h)] = 0$. The subalgebras \mathcal{U}_g and \mathcal{U}_j therefore commute. The subalgebra \mathcal{U}_g is isomorphic to $\mathcal{U}_{\omega_{\mathcal{K}}-\alpha}(\mathcal{K})$. Let us check that the generators $\{\widehat{g}|g\in\mathcal{K}\}$ of this algebra satisfy the relations of the generators of $\mathcal{U}_{\omega_{\mathcal{K}}-\alpha}(\mathcal{K})$:

$$[\widehat{g}_1,\widehat{g}_2] = [g_1,g_2] + \omega_{\mathcal{K}}(g_1,g_2)1 + [F(g_1),F(g_2)] - [F(g_1),g_2] - [g_1,F(g_2)].$$

Since $F(g_1)$ is an element of \mathcal{U}_j and since the algebras \mathcal{U}_g and \mathcal{U}_j commute $[F(g_1), g_2] = [F(g_1), F(g_2)]$ and $[g_1, F(g_2)] = [F(g_1), F(g_2)]$. Therefore:

$$[\widehat{g}_1,\widehat{g}_2] = [g_1,g_2] + \omega_{\mathcal{K}}(g_1,g_2)1 - [F(g_1),F(g_2)],$$

and finally

$$[\widehat{g}_1, \widehat{g}_2] = [g_1, g_2] - F([g_1, g_2]) + (\omega_{\mathcal{K}}(g_1, g_2) - \alpha(g_1, g_2))1.$$

The subalgebra \mathcal{U}_j is obviously isomorphic to $\mathcal{U}_{\omega_{\mathcal{H}}}(\mathcal{H})$. The generalized modified enveloping algebra $\mathcal{U}_{\omega'_{\mathcal{K}}+\omega'_{\mathcal{H}}}(\mathcal{K}\ltimes\mathcal{H})$ is therefore isomorphic to the tensor product over \mathbb{C} of $\mathcal{U}_{\omega_{\mathcal{K}}-\alpha}(\mathcal{K})$ with $\mathcal{U}_{\omega_{\mathcal{H}}}(\mathcal{H})$.

5.2 The case of $SU_{\mathbb{C}}(\mathcal{G})$

Let \mathcal{G} be a simple complex Lie algebra and C_{φ} its dual Coxeter number. Introduce the $\{K_1, \ldots, K_n\}$ a basis of \mathcal{G} , and the dual basis $\{K_1^*, \ldots, K_n^*\}$ with respect to the Killing form $\langle ., . \rangle$. We apply Theorem 5.1 for $\mathcal{K} = Vect(S^1)$, $\mathcal{H} = \mathcal{L}\mathcal{G}$, $\omega_{\mathcal{K}} = \xi \omega_{Vir}$, and $\omega_{\mathcal{H}} = \beta \omega_{K-M}$. In this case, $\omega_{\mathcal{H}}' = \beta \omega_{K-M}$. For $\eta = \beta + C_{\varphi} \neq 0$, the Sugawara construction, delivers a map $F : Vect(S^1)_{\mathbb{C}} \to \mathcal{U}_{\omega_{\mathcal{G}}}(\mathcal{L}\mathcal{G}_{\mathbb{C}})$ defined by

$$(\beta + \eta)F(L_n) = K \cdot K^*,$$

where

$$K \cdot K^* = \sum_{i \in \mathbb{Z}, j=1,...,n} : (K_j)_i (K_j^*)_{n-i} :,$$

(here dots denote the normal ordering), i.e., the action of $Vect(S^1)$ is realizable in $\mathcal{U}_{\beta\omega_{K-M}}(\mathcal{LG})$, with $\alpha = \beta\omega_{Vir}/12\eta$. Thus we obtain

Proposition 5.2. *If* $\eta \neq 0$, then $\mathcal{U}_{\xi\omega_{Vir},\beta\omega_{K-M}}(\mathcal{SU}_{\mathbb{C}}\mathcal{G}) \simeq \mathcal{U}_{\beta\omega_{K-M}}(Vect(S^1)_{\mathbb{C}(\xi-\alpha)}) \otimes \mathcal{U}(\mathcal{LG})$.

The Lie algebra $Vect_{\mathbb{C}}(S^1)$ acts on the Heisenberg algebra by

$$L_n.a_m = ma_{n+m} + \delta_{n,-m}m^2c_{K-M}.$$

In this case, on has $\omega'_{\mathcal{H}} = \beta \omega_{\mathcal{H}} + \gamma \omega_{sp}$. The map $F : Vect(S^1)_{\mathbb{C}} \to \widetilde{\mathcal{SU}_{\mathbb{C}}(\mathbb{C})}$ defined by

$$\beta F(L_n) = \frac{1}{2} \sum_{i \in \mathbb{Z}} : a_i a_{n-i} : + \gamma a_n,$$

for a cocycle $\widehat{\alpha} = (\alpha + \gamma^2 \beta^{-1}) \omega_{Vir}$. For $\widetilde{\mathcal{SU}_{\mathbb{C}}(\mathcal{C})}$ we obtain

Proposition 5.3. *For* $\beta \neq 0$, *we have*

$$\mathcal{U}_{\xi\omega_{Vir},\beta\omega_{K-M},\gamma\omega_{sp}}(\widetilde{\mathcal{SU}_{\mathbb{C}}(\mathbb{C})})\simeq \mathcal{U}_{\theta\omega_{Vir}}(Vect(S^1)_{\mathbb{C}})\otimes \mathcal{U}_{\omega_{K-M}}(\mathcal{LG}),$$

with
$$\theta = \xi - \gamma^2/\beta - 1/12$$
.

5.3 Representations of SU(G)

Proposition 5.4. A positive energy representation V of $SU_{\mathbb{C}}(\mathcal{G})$ with non-vanishing βId -action of the cocyle c_{K-M} brings about a pair of commuting representations of Virasoro and affine Kac–Moody Lie algebras.

This proposition determines whether a $\mathcal{SU}_{\mathbb{C}}(\mathcal{G})$ Verma module is a sub-module of another Verma module of $\mathcal{SU}_{\mathbb{C}}(\mathcal{G})$. Let \mathfrak{h} be a Cartan algebra of \mathcal{G} with a basis $\{h_1,\ldots,h_k\}$. The Lie subalgebra \mathfrak{k} of $\mathcal{SU}_{\mathbb{C}}(\mathcal{G})$ is generated by the elements $\{c_{Vir},c_{K-M},u_0,(h_1)_0,\ldots,(h_k)_0\}$. A Verma module $V_{\lambda}(\mathcal{SU}_{\mathbb{C}}(\mathcal{G}))$ of $\mathcal{SU}_{\mathbb{C}}(\mathcal{G})$ is associated to any linear form $\lambda\in\mathfrak{h}^*$. Verma modules $V_{\nu}^{Vir},V_{\mu}^{K-M}$, are associated to linear forms ν,μ over the spaces generated by c_{Vir} and u_0,c_{K-M} and $\{(h_1)_0,\ldots,(h_k)_0\}$ correspondingly. For any $\lambda\in\mathfrak{k}^*$, the Verma module $V_{\lambda}(\mathcal{SU}_{\mathbb{C}}(\mathcal{G}))$ is a positive energy representation. Thus, $V_{\lambda}(\mathcal{SU}_{\mathbb{C}}(\mathcal{G}))$ is Virasoro and affine Kac–Moody algebra module. The generator e of $V_{\lambda}(\mathcal{SU}_{\mathbb{C}}(\mathcal{G}))$ brings about a Verma module V_{ν}^{Vir} for Virasoro algebra. It generates also a Verma module V_{ν}^{Vir} for the affine Kac–Moody algebra. The linear form ν satisfies $\nu(u_0)e=\lambda(u_0-F(u_0))e$, i.e.,

$$(u_0 - (\beta + \eta)^{-1}K \cdot K^*e = \nu(u_0)e.$$

Suppose the action of a Casimir element of \mathcal{G} is given by acts by $D(\lambda)Id$ for $D(\lambda) \in \mathbb{C}$. We then have

$$(u_0 - (\beta + \eta)^{-1}K \cdot K^* \cdot e = (u_0 - (\beta + \eta)^{-1} \sum_{j=1, n} : (K_j)_0(K_j^*)_0 :).e,$$

 $(\lambda(u_0) - \frac{D(\lambda)}{2\eta})e$. This implies $\nu(u_0) = \lambda(u_0) - \frac{D(\lambda)}{2\eta}$. The other values of μ and ν can be computed by the same method.

Proposition 5.5. Let λ be a linear form over \mathfrak{h} with non-vanishing $\lambda(c_{K-M})$. Then

$$V_{\lambda}(\mathcal{SU}_{\mathbb{C}}(\mathcal{G})) \simeq V_{\nu}^{Vir} \otimes V_{\mathbb{C}}^{K-M} \mu$$

where $\mu(e_i) = \lambda(e_i)$, i = 1, ..., n, defines μ , $\mu(c_{K-M}) = \lambda(c_{K-M})$, and $\nu(c_{Vir}) = \lambda(c_{Vir}) - \frac{\beta}{12\eta}$ defines ν , $\nu(u_0) = \lambda(u_0) - \frac{D(\lambda)}{2\eta}$.

References

- [1] Zuevsky A., Hamiltonian structures on coadjoint orbits of semidirect product $G = Diff_+(S^1) \ltimes C^{\infty}(S^1, \mathbb{R})$. Czechoslovak J. Phys., 2004, 54, no. 11, 1399-1406
- [2] Arnold V.I., Mathematical methods of classical mechanics, 1978, Springer
- [3] Kirillov A., Infinite dimensional Lie groups; their orbits, invariants and representations. The geometry of moments, Lecture Notes in Math., 1982, Vol. 970, 101-123
- [4] Segal G., The geometry of the KdV equation, Int. J. of Modern Phys., 1991, Vol. 6, No. 16, 2859-2869
- [5] Witten E., Coadjoint orbits of the Virasoro Group, Comm. in Math. Phys., 1998, v. 114, 1-53
- [6] Ovsienko V., Roger C., Generalizations of Virasoro group and Virasoro algebra through extensions by modules of tensor densities on S^1 , 1998, Indag. Math. (N.S.) 9, no. 2, 277-288
- [7] Enriquez B., Khoroshkin S., Radul A., Rosly A., Rubtzov V. Poisson-Lie aspects of classical W-algebras. The interplay between differential geometry and differential equations, 1995, Amer. Math. Soc. Transl. Ser. 2, 167, Adv. Math. Sci., 24, Amer. Math. Soc., Providence, RI, 37-59
- [8] Das A., Integrable models, 1989, World Scientific Publishing
- [9] Harnad J., Kupershmidt B.A., Sympletic geometries on $T^*\widetilde{G}$, Hamiltonian group actions and integrable systems, 1995, J. Geom. Phys., 16, no. 2, 168-206
- [10] Kupershmidt B.A., Mathematics of dispersive water waves, Commun. Math. Phys., 1985, v. 99, No.1, 51-73
- [11] Reiman A. G., Semenov-Tyan-Shanskii M. A., Hamiltonian structure of equations of Kadomtsev-Petviashvili type. (Russian. English summary) Differential geometry, Lie groups and mechanics, VI. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1984, 133, 212-227
- [12] Vishik S.M., Dolzhansky F.V., Analogues of the Euler-Poisson equations and magnetic hydrodynamics connected to Lie groups. Reports of the Academy of Science of the USSR, 1978, vol. 238, No. 5 (in Russian).