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Abstract: In this contribution a particular plane steady-state channel flow including evaporation effects is
investigated from analytical point of view. The channel is assumed to be horizontal. The motion of two heavy
viscous immiscible fluids is governed by a free boundary value problem for a coupled system of Navier-Stokes
and Stephan equations. The flow domain is unbounded in two directions and the free interface separating
partially both liquids is semi-infinite, i.e. infinite in one direction. The free interface begins in some point Q
where the half-line X'; separating the two parts of the channel in front of Q ends. Existence and uniqueness of
a suitable solution in weighted HOLDER spaces can be proved for small data (i.e. small fluxes) of the problem.
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1 Introduction

In this paper we are concerned with the investigation of a particular free boundary value problem (= BVP)
for a two-fluid non-isothermal channel flow. The infinite channel is assumed to be horizontal and it contains a
partial inner wall (cf. the thin red line X in Figure 1) which is semi-infinite. The flow problem is assumed to be
stationary and 2D. In Figure 1 the blue line denotes the lower channel wall which moves with constant speed
R in x;-direction. The red line X, denotes the upper channel wall that is at rest. Finally, by the cyan curve
I we understand the a priori unknown free interface between the two fluid layers. It has the representation
X2 = @(x1) where the function ¢ has to be found as well as the flow fields for velocity v(x), for the pressure
p(x) and for the temperature 6(x).

Models of the described kind are quite important in many technological and scientific applications. Cor-
responding examples may be found in the field of materials science, particularly in coating and solidification
processes with evaporation or in crystal-growth processes (cf. [1-12]). The investigations of such problems
are performed from technical point of view as well as from analytical and/or numerical point of view. It was
our main objective to obtain statements about the existence and/or uniqueness of free BVP for evaporation
problems.

The flow describes a coupled heat-and mass transfer (Stephan equations). The (positive) fluxes Fp, are
prescribed in each fluid layer Qn(m = 1,2) (cf. Fig. 1). The lower liquid layer is characterized by red
color whereas the upper one is marked by green color. Both liquids are heavy, viscous, heat-conducting,
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incompressible and immiscible. Therefore, the mathematical model can incorporate evaporation effects. The
surface tension o(6) is temperature-depending in a known manner.

Fig. 1. Flow domain of a two-fluid channel flow

BY Vi, nm and Ap (m = 1, 2) we understand the domain-wise (i.e. regional) constant values of the kinematic
viscosity, of the density and of the thermal conductivity, respectively, of the m-th fluid. By h.. we denote the
(asymptotic) position of the free interface I when x; goes to +oc. By n, T, respectively, the unit normal and the
unit tangential vectors with respect to I' are denoted. Their orientation (direction) is the same as for x;, x,. By
g and e; we understand the acceleration and the direction of gravity, respectively. Concerning the interface
tension o we suppose the following linear function of temperature 6

@) =a-bo, @, b > 0)

which is frequently used in the literature. This leads to an effect which is called Benard-Marangoni-effect or
thermo-capillary convection. Finally, the following symbols and abbreviations have been used throughout
this paper: 6;(t) := {x1 = t} N Q;, j = 1, 2} is some cross section of ;. The frictional stress tensor has the
subsequent elements: S = vi(0xVv; +0;vi)  (j, k = 1, 2). The symbol [w(xo)] |r represents the jump of the
field w crossing the interface I' from below to above:

= 1 - 1 ’ F’ Q ’ Q 4
[w(xo)] Ir Jim w(y) - lim i, (o€l yei, xe)

2 Mathematical model

The governing equations (Navier - Stokes & Stephan) of the problem which yield in Q := Q; U Q; read as
follows
WV-V)v-vViv+ % Vp =geg,
V-.-v=0, )]
(v-V)6-1V?6=0.

They are supplied by the boundary conditions at the lower moving wall Zy:
V|):0 =R, Glzo =00=0. (2)

Let us emphasize that the value 0 in Eq. (2) does not represent the absolute temperature but some dimension-
less value which is in fact the difference to some reference temperature related to a characteristic temperature
difference.

The boundary conditions at the walls at rest X;(k = 1, 2) look like:

Vis, =0, 05, = Ok. 3)
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Let us explain that the boundary conditions (3) for k = 1 mean both sides X7 of the partial inner wall X;.
Finally, the conditions at the free interface I' are:

[0]‘F = 0’ [V]lf = O’
ven| = {A%} - [t-S(V)n]|r =0,
d 9 (x1)

S |
A Viegter ow PSR
fsk(t)V'ndX2=Fk. (k=1,2)

(4)

As a consequence one gets the relation: lim,, 5. ¢(x1) = const. = he.
In order to prove the unique solvability of the BVP in appropriate functional spaces the following two-
cycle iteration scheme was applied.

[[‘(0) RN _Q(O)] RN (V(O),p(o), 9(0)) AN [[‘(1) RN Q(l)]

=W, pW oWy 5 W 5 W] 5 R p® ghy 5 2

This scheme was introduced by V.V. Pukhnachev and V.A. Solonnikov about 45 years ago (cf. e.g. [13, 14] or
[15]). The two-cycle iteration scheme was also applied in the papers [14, 15] and by the author in [9, 16]. In the
references [11, 17, 18] other methods are used to handle different free BVP.

The scheme (5) is very senseful in cases where the free boundary is semi-infinite. In a first cycle the three
flow fields v, p, 6 are computed in a flow domain with fixed boundaries neglecting one of the boundary
conditions - mostly the normal stress condition (4)s, i.e. the 5th equation in (4). This first cycle is then
divided into several steps: The linear problem with fixed boundary containing the corresponding estimates
for the solution, a model problem at the separation point Q for the determination of the weight functions, the
regularity of the solutions at infinity and then the nonlinear problem with fixed boundary.

In a second stage the neglected boundary condition is used in order to compute a new shape of the free
boundary (and simultaneously a new shape of the entire flow domain). This equation is usually

K(x1) 1=~ [-p00 + m- S,
where K(x;) denotes the curvature of I' in x; and it is equal to the left-hand side of Eq. (4)s. In both cycles a
related linear problem is solved and the continuous dependence of the solutions on the boundary data is also
proved. Then BANACH's fixed point argument related to some contraction operator 28 shows the remaining
parts for small data.

3 Function spaces

First of all we define some weighted HOLDER spaces. Let B be an arbitrary domainin R?> and N ¢ B a manifold
of dimension 7 < 2 . Define further gy (x) := dist(x, N). By 8 = (81, B2) we understand a multiindex, and |r] is
the integer part of r. Then by C"(B)(r > 0, non-integer) we mean the well-known HOLDER space with a finite
norm |u \g). Now we obtain the subsequent weighted HOLDER space E‘; (B, N) of functions with the finite norm

Bu(x) — DP
\lllm(B v " § sup Ql‘g"S(X)IDﬁu(xM + E sup 0i°(x) sup Mm()’)‘
GO (e xeBw |Bl=Lr) *SBW yl<tont XY

(6)

Let us remark that the weight functions in (6) represent some kind of power functions with respect to the
distance from the singularity points. For (r > s > 0;r, s non-integer) we get the space C;(B, N) having the
norm

- _ DB _DB
e =+ Y sup of D uC+ - sup g0 sup PHOZDAOL g

s<|pl<r¥EBW IBI-Lr) XEBW peyl<ionty X =yl
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The spaces C5(B; U B;, N) represent the natural generalization of the last ones to the case of two separate
subdomains B; as we have.
Furthermore, C3(Q,T) is the set of functions v vanishing for |x| > 1 and satisfying the boundary
conditions
V|5 =0 G=0,1,2), v-n|r- =0, [Vlir = 0.

Also, J3(Q,T) :={v € C5’(Q,I), divv = 0} and we need the solenoidal spaces with DIRICHLET - norm like
D(Q) := C3(Q,T) and H(Q) := J&(Q, T). The DIRICHLET norm is then defined by

2 2
e liml e = [ (S0 .
) i,j=1
By Cgo(Q,I') we understand the set of scalar fields 6(x) vanishing for [x| > 1and 6|y, = 0( =
0,1,2), [6] llr= 0. The symbol Dy(Q) is an abbreviation for the set C;fO(Q, I'). The spaces to which the
solution belongs are of the subsequent type. First, define some subdomains of the infinite channel (with
m=1,2),ie. I°={x; €R,0<x3 <2}, I'={x3eR,x5>1}, Q% = {x € Qm, |x1| < 2}, Q=
{x € Qm,|x1>1}, QO = {x, |x1 <-1}.
Finally, the weighted HOLDER spaces containing the generalized solutions, are

C.2(Qm) = {u(x), ulgo € CHQM, Q), exp(zx1)u(¥)|g; € C'(Qh), exp(-zx1)u(®)|q, € C'(Qm)}.
They are essentially used throughout this paper and their norms are given by
lulGZ gi= lulcrao,0) + |exp(zx1)u\g):n + \exp(—le)u|gz,n, (8)
The weight functions here in formula (8) are exponential functions and they decay at the infinities. As above,
we obtain for our double channel C; ,(Q) := Cg .(Q; U Q,, Q).

At the end, for functions of one real variable we deal with the space Cj ,(R}) supplied with the norm
£ 155 = Fleyao,) + I Gr) explzxn) -

4 On the Basic Flow for Large x;

In this section we are interested in getting an approriate starting (or initial) solution for the iteration
scheme (5). For this purpose, and under the assumptions

ovy 060

v, =0, er =0, er =
we calculate for given values Fi, F», R, 6y = 0, 81, 8, and associated rheological parameters the flow fields
and values v(x), p(x), 8(x), po, he, 8 . The value 6. which has not been defined before describes the
(asymptotic) value of the temperature 6 at the free interface when x; goes to +oo. Let us emphasize that the
assumptions guarantee solution fields that are uniform and unidirectional (not depending on main-stream
direction x1).

Under the assumptions (9) the governing Egs. (1) take the subsequent reduced form:

0, 9

yvly, 4 L 0P _ op __ avlp-
vV V1+’1 ox =0, T ng, AV-60=0,

where the second equation replaces the continuity Eq. (1), Now it is possible to divide the original problem
into three independent problems for the flow fields. Let us start with the problem for velocities v:

2.(1)

dv _ aptl) dzvm _ ap<2)
Vin Tx% = o’ Van2 Tx% = o’
V(ll)(o) =R, V(12)(1) =0, ( )
10
(1) _ @ ' _ av?
V1 ‘xzzh.,° = V1 |x2:hwa Vlnl dxlz = VZrIZ dxlz )
X2=heo X2=Hoo

Jomvile)dx, = Fi, [} vi()dx; = Fs.
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For the pressure p one obtains the following equations

ap(l) _ ap(ZJ _
o2 _rll 8, X —rlz g, (11)
(1) (2)
p |X2=hDQ = p |Xz=heo'
Finally, the problem for temperature 0 reads

a6 _ a6 _

A o, A 0,

8W,0 = 60 = 0, 0P|,-1 = 05, 12)
6] e do® _ . de?

0 x,=n. = 07 |xp=nes M1 G o " A2 Go o

In Egs. (10), (11), (12) the superscripts (k), (k = 1,2) or (+) denote the corresponding fluid layer and the
subregion x; > 1. The solutions of these three (independent) problems are of NUSSELT type (cf. also [19])
and allow the representation

0.5a1x% +b1x; + R, 0<x; < he
v(l")(xz): 152 T F1t2 h
oo 2

0.5a,(x3 - 1) + by(x - 1), <1’ (13)

Vi) =0,  po=avimi =awana, 1= vin)/(vana),

X2
<X

The coefficients in (13) are given by

F; - Rhe F,
a1=[—3 H _3r(1—h§°}’ a, =ray,
Fi - Rhe F,
bl = |:(2+hoo) hgo +h°°r(1—h§° :| s b2 =rb1.

Note, that the values h.. and pg are already known for these expressions (see Eq. (16) below). That is why it
follows e = (A20h0)/[A1(1 - heo) + Ay hoo] and for the complete temperature and pressure fields one obtains

)
= 0<x; < he
0W(x,) = { h- X2, S X2 s n
02) {9m+%xz—ﬂz_h9:hw,hw<xz<1, (14)
() = J PoX1~M18X2 + k, 15)
p {p0x1 - 1N28(x2 = hoo) = N18hee + k,

Since the associated linear problem is completely decomposed, we got the same polynomial equation for the
determination of the value h as in the former paper [17].

0 =r(r- 1)Rh% + [-4r(r - DR - r(r - 1)F; - (r - 1)F,| h,
+ [r(6r - 5)R + 2r(2r - 3)F1 - 2rF;] hd, + [2r(-2r + 1)R (16)
+3r(-2r + 3)Fy + 3rF>]h% + [rzR +47(r —= 1)F1 ] heo - r’F;.

In [17] the subsequent two lemmas were proved.
Lemma 4.1. If F1F, > 0, then Eq. (16) has at least one root h.. within the open interval ]0, 1].
Lemma 4.2. IfF1F, > 0, then Eq. (16) has at most three different roots h.. €]0, 1[.

Note that in the subregion Q) := Q(l’) u _Q(Z’), i.e. for x; < -1, the corresponding problems are even simpler
due to the fact that there is no free boundary. In order not to repeat simple things we restrict the presentation
to the basic solution v(‘), p(‘), 6“) in the double - channel which can also be determined very simple by
straightforward calculations in the left part Q- of the (double) - channel. The corresponding velocities and
temperatures do not depend on x;. In Q] one obtains

v (xp) = (% - %‘) X3 + (—% + %) X2 +R,

v =0, 60(xz) = %%, a7

pOXx) = 2vim (% - %) X1 - 118%2 + ky.
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In Q; one gets, respectively,
VD 00) =~ + Sl i, — S

V({)(X) =0, 69 (xz) = 6, + Y=l (g, - 6,), (18)

(1-h1)
pPx) = _%Xl - n28x2 + ka.

It is well-known that the pressure p can be determined only up to an additive constant in channel flows
(cf. k1, k; in formulae (17), (18)).

5 The free interface equation

Eq. (16) coincides with equation (A.13) from [17] for horizontal channels. Recall that the final thickness heo
is a function of F1, F,, R and of the rheological parameters of the fluids. It can have up to three different
values in the open interval ]0, 1[ for the same parameter set (cf. [17]). Furthermore, by (p(*) (x1) we denote the
infinitely differentiable solution of the following free BVP.

{ d o) "%"Zggo(xl) _ _711,;\712 gheo,

a1 ()
©(0) = hy, limy, 5400 @(X1) = Moo

(19)

which can be obtained from the 5-th condition (4)s of (4) by setting v = 0, p = const., 6 = 0 as the initial
solution for F; = F, = R = 0 = 6, = 0. Let & = £(x1) be a smooth cut-off function vanishing for |x;| < 1 and
being equal to 1 for |x;| > 2. Finally, assume that ; > 1, is satisfied. This makes physically sense.

Now, the difference function w(x;) := (@(x1) - go(*)(xl)) is equivalent to exp(-+/g(n1 — n2)/a x1) as x; >
+o0, For the unknown function w(x;) we get a two-point BVP like BVP (8.8) from [20] subtracting Eq. (19) from
Eq. (4)s. A difference to BVP (8.8) consists in the following. We have to replace 1 by g(n:1 - n2)/a everywhere
and, furthermore, we have to introduce the operator 0 by

), . b0 _ 0(0)-0(6)
Yo YT o)

The remaining part of the proof of the main theorem is a slightly modified repetition of the proof of Theorem
8.1in [20]. First of all, one has to study the dependence of the solution to the nonlinear auxiliary problem with
fixed boundary on small variations of the boundary. After getting the corresponding estimates one applies
BANACH’s fixed point principle to the subsequent operator equation. Instead of the operator Eq. (8.10) from
[20] we have to study the following one:

(20)

w=TVw+3P0w+3%0) =: Bw

with 6 given in (20) and the other parts taken from [20]. Since %0 is a contraction operator for small 8,
we can conclude as in [20] that B is a contraction operator in the ball || w II%ﬁsﬁ < €. Consequently, we have
proved the main result of this paper.

6 Results

Let us formulate the main result of this contribution. A sketch of the proof has been given before. A very
detailed application of this method can be found in the thesis [16] as well as in the article [20].

Theorem 6.1. There exist positive real numbers 3,z < min(zo, \/1/a) l such that for arbitrary s €]0, 5[, z €
10, z[ and for sufficiently small values (|F1|, |F2|, |R|, |61|, |02]) and for values h.. fulfilling the condition

/ 2a
heo —hy| < 4| ———
| i gn—-n2)
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the complete mathematical model has a unique solution {v, p, 0, ¢} which can be represented in the form
v =Ex )V + 00V v w, o) = W) + wlx),

p= 5(_X1)p(_) + f(xl)p“) +q; 0= 5(—)(1)9(_) + §(X1)9(+) + Yo,

where & is the cut-off function described above, w9, p(’), 69)) is the basic exact solution given by (17), (18)
in both channels on left-hand side. The function go(*) is the solution to the free BVP (19). Moreover, 9y, w ¢
C37(Q),q € €31 ,(Q°UQY), Vg e C, ,(Q) and w € C3E5 ,(R}) hold.

s-1,z s-2,z 1+s,z

Remark 6.2. If Eq. (16) has more than one real root h.. between 0 and 1 then the statements of Theorem 6.1
remain true in the neighbourhood of each value.
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