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Abstract: In this contribution a particular plane steady-state channel �ow including evaporation e�ects is
investigated from analytical point of view. The channel is assumed to be horizontal. The motion of two heavy
viscous immiscible �uids is governed by a free boundary value problem for a coupled system of Navier-Stokes
and Stephan equations. The �ow domain is unbounded in two directions and the free interface separating
partially both liquids is semi-in�nite, i.e. in�nite in one direction. The free interface begins in some point Q
where the half-line Σ1 separating the two parts of the channel in front of Q ends. Existence and uniqueness of
a suitable solution inweightedHÖLDER spaces can be proved for small data (i.e. small �uxes) of the problem.

Keywords: Navier-Stokes equations, Stephan equations, Free boundary value problem, Semi-in�nite inner
channel wall
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1 Introduction
In this paper we are concerned with the investigation of a particular free boundary value problem (= BVP)
for a two-�uid non-isothermal channel �ow. The in�nite channel is assumed to be horizontal and it contains a
partial innerwall (cf. the thin red line Σ1 in Figure 1) which is semi-in�nite. The �owproblem is assumed to be
stationary and 2D. In Figure 1 the blue line denotes the lower channel wall which moves with constant speed
R in x1-direction. The red line Σ2 denotes the upper channel wall that is at rest. Finally, by the cyan curve
Γ we understand the a priori unknown free interface between the two �uid layers. It has the representation
x2 = φ(x1) where the function φ has to be found as well as the �ow �elds for velocity v(x), for the pressure
p(x) and for the temperature θ(x).

Models of the described kind are quite important in many technological and scienti�c applications. Cor-
responding examplesmay be found in the �eld of materials science, particularly in coating and solidi�cation
processes with evaporation or in crystal-growth processes (cf. [1-12]). The investigations of such problems
are performed from technical point of view as well as from analytical and/or numerical point of view. It was
our main objective to obtain statements about the existence and/or uniqueness of free BVP for evaporation
problems.

The �ow describes a coupled heat-and mass transfer (Stephan equations). The (positive) �uxes Fm are
prescribed in each �uid layer Ωm(m = 1, 2) (cf. Fig. 1). The lower liquid layer is characterized by red
color whereas the upper one is marked by green color. Both liquids are heavy, viscous, heat-conducting,
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incompressible and immiscible. Therefore, themathematical model can incorporate evaporation e�ects. The
surface tension σ(θ) is temperature-depending in a known manner.

Fig. 1. Flow domain of a two-fluid channel flow

By νm , ηm and λm (m = 1, 2) we understand the domain-wise (i.e. regional) constant values of the kinematic
viscosity, of the density and of the thermal conductivity, respectively, of the m-th �uid. By h∞ we denote the
(asymptotic) position of the free interface Γ when x1 goes to +∞. By n, τ, respectively, the unit normal and the
unit tangential vectors with respect to Γ are denoted. Their orientation (direction) is the same as for x1, x2. By
g and eg we understand the acceleration and the direction of gravity, respectively. Concerning the interface
tension σ we suppose the following linear function of temperature θ

σ(θ) = â − b̂ θ, (â, b̂ > 0)

which is frequently used in the literature. This leads to an e�ect which is called Benard-Marangoni-e�ect or
thermo-capillary convection. Finally, the following symbols and abbreviations have been used throughout
this paper: δj(t) := {x1 = t} ∩ Ωj , j = 1, 2} is some cross section of Ωj. The frictional stress tensor has the
subsequent elements: Sjk = νη(∂kvj + ∂jvk) (j, k = 1, 2). The symbol

[
w(x0)

]
|Γ represents the jump of the

�eld w crossing the interface Γ from below to above:[
w(x0)

]
|Γ := limy→x0

w(y) − limx→x0
w(x), (x0 ∈ Γ , y ∈ Ω1, x ∈ Ω2),

2 Mathematical model
The governing equations (Navier - Stokes & Stephan) of the problem which yield in Ω := Ω1 ∪ Ω2 read as
follows 

(v ·∇) v − ν∇2v + 1
η ∇p = g eg ,

∇ · v = 0,
(v ·∇) θ − λ∇2θ = 0.

(1)

They are supplied by the boundary conditions at the lower moving wall Σ0:

v|Σ0 = R, θ|Σ0 = θ0 = 0. (2)

Let us emphasize that the value 0 in Eq. (2) does not represent the absolute temperature but some dimension-
less valuewhich is in fact the di�erence to some reference temperature related to a characteristic temperature
di�erence.

The boundary conditions at the walls at rest Σk(k = 1, 2) look like:

v|Σk = 0, θ|Σk = θk . (3)
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Let us explain that the boundary conditions (3) for k = 1 mean both sides Σ±1 of the partial inner wall Σ1.
Finally, the conditions at the free interface Γ are:

[θ]|Γ = 0, [v]|Γ = 0,
v · n|Γ− =

[
λ ∂θ
∂n

]∣∣∣
Γ
, [τ · S(v) n]|Γ = 0,

d
dx1

φ′(x1)√
1+φ′(x1)2 = 1

σ(θ) [−p + n · S(v) n]|Γ ,∫
δk(t) v · n dx2 = Fk . (k = 1, 2)

(4)

As a consequence one gets the relation: limx1→+∞ φ(x1) = const. = h∞.
In order to prove the unique solvability of the BVP in appropriate functional spaces the following two-

cycle iteration scheme was applied.

[Γ(0) −→ Ω(0)] −→ (v(0), p(0), θ(0)) −→ [Γ(1) −→ Ω(1)]

−→ (v(1), p(1), θ(1)) −→ . . . −→ [Γ(k) −→ Ω(k)] −→ (v(k), p(k), θ(k)) → . . .
(5)

This scheme was introduced by V.V. Pukhnachev and V.A. Solonnikov about 45 years ago (cf. e.g. [13, 14] or
[15]). The two-cycle iteration schemewas also applied in the papers [14, 15] and by the author in [9, 16]. In the
references [11, 17, 18] other methods are used to handle di�erent free BVP.

The scheme (5) is very senseful in cases where the free boundary is semi-in�nite. In a �rst cycle the three
�ow �elds v, p, θ are computed in a �ow domain with �xed boundaries neglecting one of the boundary
conditions - mostly the normal stress condition (4)5, i.e. the 5th equation in (4). This �rst cycle is then
divided into several steps: The linear problem with �xed boundary containing the corresponding estimates
for the solution, a model problem at the separation point Q for the determination of the weight functions, the
regularity of the solutions at in�nity and then the nonlinear problem with �xed boundary.

In a second stage the neglected boundary condition is used in order to compute a new shape of the free
boundary (and simultaneously a new shape of the entire �ow domain). This equation is usually

K(x1) := 1
σ(θ) [−p(x) + n · S(v)n]|Γ ,

where K(x1) denotes the curvature of Γ in x1 and it is equal to the left-hand side of Eq. (4)5. In both cycles a
related linear problem is solved and the continuous dependence of the solutions on the boundary data is also
proved. Then BANACH‘s �xed point argument related to some contraction operator B shows the remaining
parts for small data.

3 Function spaces
First of all we de�ne someweightedHÖLDER spaces. Let B be an arbitrary domain inR2 andN ⊂ B̄ amanifold
of dimension n̄ < 2 . De�ne further ϱN(x) := dist(x, N). By β = (β1, β2) we understand amultiindex, and brc is
the integer part of r. Then by Cr(B)(r > 0, non-integer) we mean the well-known HÖLDER space with a �nite
norm |u|(r)B . Nowwe obtain the subsequentweightedHÖLDER space

◦
C
r
s(B, N) of functionswith the �nite norm

|u|◦
C
r
s(B,N)

=
∑
|β|<r

sup
x∈B\N

ϱ|β|−sN (x)|Dβu(x)| +
∑

|β|=brc

sup
x∈B\N

ϱr−sN (x) sup
|x−y|< 1

2 ϱN (x)

|Dβu(x) − Dβu(y)|
|x − y|r−brc

. (6)

Let us remark that the weight functions in (6) represent some kind of power functions with respect to the
distance from the singularity points. For (r > s > 0; r, s non-integer) we get the space Crs(B, N) having the
norm

|u|Crs(B,N) := |u|(s)B +
∑
s<|β|<r

sup
x∈B\N

ϱ|β|−sN (x)|Dβu(x)| +
∑

|β|=brc

sup
x∈B\N

ϱr−sN (x) sup
|x−y|< 1

2 ϱN (x)

|Dβu(x) − Dβu(y)|
|x − y|r−brc

. (7)
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The spaces Crs(B1 ∪ B2, N) represent the natural generalization of the last ones to the case of two separate
subdomains Bk as we have.

Furthermore, C∞0 (Ω, Γ) is the set of functions v vanishing for |x| � 1 and satisfying the boundary
conditions

v|Σj = 0 (j = 0, 1, 2), v · n|Γ− = 0, [v]|Γ = 0.

Also, J∞0 (Ω, Γ) := {v ∈ C∞0 (Ω, Γ), div v = 0} and we need the solenoidal spaces with DIRICHLET - norm like
D(Ω) := C∞0 (Ω, Γ) and H(Ω) := J∞0 (Ω, Γ). The DIRICHLET norm is then de�ned by

|| ux ||2Ω:=|| ux ||2L2(Ω)=
∫
Ω

2∑
i,j=1

(
∂ui
∂xj

)2
dx.

By C∞θ,0(Ω, Γ) we understand the set of scalar �elds θ(x) vanishing for |x| � 1 and θ|Σj = 0 (j =
0, 1, 2), [θ] ||Γ= 0. The symbol Dθ(Ω) is an abbreviation for the set C∞θ,0(Ω, Γ). The spaces to which the
solution belongs are of the subsequent type. First, de�ne some subdomains of the in�nite channel (with
m = 1, 2), i.e. I0 = {x1 ∈ R, 0 < x1 < 2}, I+ = {x1 ∈ R, x1 > 1}, Ω0

m = {x ∈ Ωm , |x1| < 2}, Ω+
m =

{x ∈ Ωm , |x1 > 1}, Ω−m = {x, |x1 < −1}.
Finally, the weighted HÖLDER spaces containing the generalized solutions, are

Crs,z(Ωm) = {u(x), u|Ω0
m
∈ Crs(Ω0

m , Q), exp(zx1)u(x)|Ω+
m
∈ Cr(Ω+

m), exp(−zx1)u(x)|Ω−m ∈ C
r(Ω−m)}.

They are essentially used throughout this paper and their norms are given by

|| u ||r,zΩm ,s:= |u|Crs(Ω0
m ,Q) + | exp(zx1)u|(r)Ω+

m
+ | exp(−zx1)u|(r)Ω−m . (8)

The weight functions here in formula (8) are exponential functions and they decay at the in�nities. As above,
we obtain for our double channel Crs,z(Ω) := Crs,z(Ω1 ∪ Ω2, Q).

At the end, for functions of one real variable we deal with the space Crs,z(R1
+) supplied with the norm

|| f ||r,zR1
+ ,s

= |f |Crs(I0 ,0) + |f (x1) exp(zx1)|(r)I+ .

4 On the Basic Flow for Large x1
In this section we are interested in getting an approriate starting (or initial) solution for the iteration
scheme (5). For this purpose, and under the assumptions

v2 ≡ 0, ∂v1
∂x1
≡ 0, ∂θ

∂x1
≡ 0, (9)

we calculate for given values F1, F2, R, θ0 = 0, θ1, θ2 and associated rheological parameters the �ow �elds
and values v(x), p(x), θ(x), p0, h∞, θ∞ . The value θ∞ which has not been de�ned before describes the
(asymptotic) value of the temperature θ at the free interface when x1 goes to +∞. Let us emphasize that the
assumptions guarantee solution �elds that are uniform and unidirectional (not depending on main-stream
direction x1).

Under the assumptions (9) the governing Eqs. (1) take the subsequent reduced form:

−ν∇2 v1 + 1
η
∂p
∂x1

= 0, ∂p
∂x2

= −η g, −λ∇2 θ = 0,

where the second equation replaces the continuity Eq. (1)2 Now it is possible to divide the original problem
into three independent problems for the �ow �elds. Let us start with the problem for velocities v:

ν1η1
d2v(1)

1
dx2

2
= ∂p(1)

∂x1
, ν2η2

d2v(2)
1

dx2
2

= ∂p(2)

∂x1
,

v(1)
1 (0) = R, v(2)

1 (1) = 0,

v(1)
1 |x2=h∞ = v(2)

1 |x2=h∞ , ν1η1
dv(1)

1
dx2

∣∣∣∣
x2=h∞

= ν2η2
dv(2)

1
dx2

∣∣∣∣
x2=h∞

,∫ h∞
0 v1(x2) dx2 = F1,

∫ 1
h∞ v1(x2) dx2 = F2.

(10)
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For the pressure p one obtains the following equations{
∂p(1)

∂x2
= −η1 g, ∂p(2)

∂x2
= −η2 g,

p(1)|x2=h∞ = p(2)|x2=h∞ .
(11)

Finally, the problem for temperature θ reads
d2θ(1)

dx2
2

= 0, d2θ(2)

dx2
2

= 0,
θ(1)|x2=0 = θ0 = 0, θ(2)|x2=1 = θ2,
θ(1)|x2=h∞ = θ(2)|x2=h∞ , λ1

dθ(1)

dx2

∣∣∣
x2=h∞

= λ2
dθ(2)

dx2

∣∣∣
x2=h∞

,
(12)

In Eqs. (10), (11), (12) the superscripts (k), (k = 1, 2) or (+) denote the corresponding �uid layer and the
subregion x1 > 1. The solutions of these three (independent) problems are of NUSSELT type (cf. also [19])
and allow the representation v(+)

1 (x2) =
{

0.5a1x2
2 + b1x2 + R, 0 6 x2 6 h∞

0.5a2(x2
2 − 1) + b2(x2 − 1), h∞ 6 x2 6 1

,

v(+)
2 (x2) ≡ 0, p0 = a1ν1η1 = a2ν2η2, r = (ν1η1)/(ν2η2),

(13)

The coe�cients in (13) are given by

a1 =
[
−3F1 − Rh∞

h2∞
− 3 F2

r(1 − h2∞)

]
, a2 = r a1,

b1 =
[

(2 + h∞)F1 − Rh∞
h2∞

+ h∞
F2

r(1 − h2∞)

]
, b2 = r b1.

Note, that the values h∞ and p0 are already known for these expressions (see Eq. (16) below). That is why it
follows θ∞ = (λ2θ2h∞)/[λ1(1−h∞) + λ2h∞] and for the complete temperature and pressure �elds one obtains

θ(+)(x2) =
{

θ∞
h∞ x2, 0 6 x2 6 h∞
θ∞ + θ2−θ∞

1−h∞ x2 − θ2−θ∞
1−h∞ h∞, h∞ 6 x2 6 1,

(14)

p(+)(x) =
{
p0x1 − η1gx2 + k,
p0x1 − η2g(x2 − h∞) − η1gh∞ + k,

(15)

Since the associated linear problem is completely decomposed, we got the same polynomial equation for the
determination of the value h∞ as in the former paper [17].

0 = r(r − 1)Rh5
∞ +

[
−4r(r − 1)R − r(r − 1)F1 − (r − 1)F2

]
h4
∞

+
[
r(6r − 5)R + 2r(2r − 3)F1 − 2rF2

]
h3
∞ + [2r(−2r + 1)R

+3r(−2r + 3)F1 + 3rF2]h2
∞ +

[
r2R + 4r(r − 1)F1

]
h∞ − r2F1.

(16)

In [17] the subsequent two lemmas were proved.

Lemma 4.1. If F1F2 > 0, then Eq. (16) has at least one root h∞ within the open interval ]0, 1[.

Lemma 4.2. If F1F2 > 0, then Eq. (16) has at most three di�erent roots h∞ ∈]0, 1[.

Note that in the subregion Ω(−) := Ω(−)
1 ∪ Ω

(−)
2 , i.e. for x1 6 −1, the corresponding problems are even simpler

due to the fact that there is no free boundary. In order not to repeat simple things we restrict the presentation
to the basic solution v(−), p(−), θ(−) in the double - channel which can also be determined very simple by
straightforward calculations in the left part Ω− of the (double) - channel. The corresponding velocities and
temperatures do not depend on x1. In Ω−1 one obtains

v(−)
1 (x2) =

(
3R
h2

1
− 6F1

h3
1

)
x2

2 +
(
− 4R
h1

+ 6F1
h2

1

)
x2 + R,

v(−)
2 (x) ≡ 0, θ(−)(x2) = x2θ1

h1
,

p(−)(x) = 2ν1η1

(
3R
h2

1
− 6F1

h3
1

)
x1 − η1gx2 + k1.

(17)
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In Ω−2 one gets, respectively,
v(−)

1 (x2) = − 6F2
(1−h1)3 x2

2 + 6(1+h1)F2
(1−h1)3 x2 − 6h1F2

(1−h1)3 ,
v(−)

2 (x) ≡ 0, θ(−)(x2) = θ1 + (x2−h1)
(1−h1) (θ2 − θ1),

p(−)(x) = − 12ν2η2F2
(1−h1)3 x1 − η2gx2 + k2.

(18)

It is well-known that the pressure p can be determined only up to an additive constant in channel �ows
(cf. k1, k2 in formulae (17), (18)).

5 The free interface equation
Eq. (16) coincides with equation (A.13) from [17] for horizontal channels. Recall that the �nal thickness h∞
is a function of F1, F2, R and of the rheological parameters of the �uids. It can have up to three di�erent
values in the open interval ]0, 1[ for the same parameter set (cf. [17]). Furthermore, by φ(+)(x1) we denote the
in�nitely di�erentiable solution of the following free BVP.{

d
dx1

φ′(x1)√
1+φ′(x1)2 −

η1−η2
â gφ(x1) = − η1−η2

â gh∞,

φ(0) = h1, limx1→+∞ φ(x1) = h∞.
(19)

which can be obtained from the 5-th condition (4)5 of (4) by setting v = 0, p = const., θ = 0 as the initial
solution for F1 = F2 = R = θ0 = θ2 = 0. Let ξ = ξ (x1) be a smooth cut-o� function vanishing for |x1| 6 1 and
being equal to 1 for |x1| > 2. Finally, assume that η1 > η2 is satis�ed. This makes physically sense.

Now, the di�erence function ω(x1) := (φ(x1) − φ(+)(x1)) is equivalent to exp(−
√
g(η1 − η2)/â x1) as x1 →

+∞. For the unknown functionω(x1) we get a two-point BVP like BVP (8.8) from [20] subtracting Eq. (19) from
Eq. (4)5. A di�erence to BVP (8.8) consists in the following. We have to replace β1 by g(η1 − η2)/â everywhere
and, furthermore, we have to introduce the operator T(3) by

T(3)ω := b̂ θ
σ(θ) ω = σ(0) − σ(θ)

σ(θ) ω. (20)

The remaining part of the proof of the main theorem is a slightly modi�ed repetition of the proof of Theorem
8.1 in [20]. First of all, one has to study the dependence of the solution to the nonlinear auxiliary problemwith
�xed boundary on small variations of the boundary. After getting the corresponding estimates one applies
BANACH’s �xed point principle to the subsequent operator equation. Instead of the operator Eq. (8.10) from
[20] we have to study the following one:

ω = L(T(1)ω + T(2)ω + T(3)ω) =: Bω

with T(3) given in (20) and the other parts taken from [20]. Since T(3) is a contraction operator for small θ,
we can conclude as in [20] thatB is a contraction operator in the ball || ω ||3+s,z

R1
+ ,1+s< ε. Consequently, we have

proved the main result of this paper.

6 Results
Let us formulate the main result of this contribution. A sketch of the proof has been given before. A very
detailed application of this method can be found in the thesis [16] as well as in the article [20].

Theorem 6.1. There exist positive real numbers s̄, z̄ 6 min(z0,
√

1/â) l such that for arbitrary s ∈]0, s̄[, z ∈
]0, z̄[ and for su�ciently small values (|F1|, |F2|, |R|, |θ1|, |θ2|) and for values h∞ ful�lling the condition

|h∞ − h1| <

√
2â

g(η1 − η2)
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the complete mathematical model has a unique solution {v, p, θ, φ} which can be represented in the form

v = ξ (−x1)v(−) + ξ (x1)v(+) + w, φ(x1) = φ(+)(x1) + ω(x1),

p = ξ (−x1)p(−) + ξ (x1)p(+) + q; θ = ξ (−x1)θ(−) + ξ (x1)θ(+) + ϑ0,

where ξ is the cut-o� function described above, (v(−), p(−), θ(−)) is the basic exact solution given by (17), (18)
in both channels on left-hand side. The function φ(+) is the solution to the free BVP (19). Moreover, ϑ0,w ∈
Cs+2
s,z (Ω), q ∈ Cs+1

s−1,z(Ω0 ∪ Ω+), ∇q ∈ Css−2,z(Ω) and ω ∈ C3+s
1+s,z(R1

+) hold.

Remark 6.2. If Eq. (16) has more than one real root h∞ between 0 and 1 then the statements of Theorem 6.1
remain true in the neighbourhood of each value.
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