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Abstract: In this paper, we are concerned with the problem of approximating a solution of an ill-posed
biparabolic problem in the abstract setting. In order to overcome the instability of the original problem,
we propose a modified quasi-boundary value method to construct approximate stable solutions for the
original ill-posed boundary value problem. Finally, some other convergence results including some explicit
convergence rates are also established under a priori bound assumptions on the exact solution. Moreover,
numerical tests are presented to illustrate the accuracy and efficiency of this method.
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1 Formulation of the problem

Throughout this paper H denotes a complex separable Hilbert space endowed with the inner product (., .)
and the norm |.||, L(H) stands for the Banach algebra of bounded linear operators on H.

Let A : D(A) ¢ H — H be a positive, self-adjoint operator with compact resolvent, so that A has an
orthonormal basis of eigenvectors (¢, ) c H with real eigenvalues (\,) c Ry, i.e.,

1,ifi=j

A¢n = Anopn,n e N*, (¢i,¢j)5ij{o ifis)

O<v<A1 <A <A3<..., lim )\, =00,

VheH, h= Zhn¢n, hn:<h’¢n>'
n=1

In this paper, we consider the following inverse source problem of determining the unknown source term
u(0) = f and the temperature distribution u(t) for 0 < t < T, of the following biparabolic problem

B*u = (% +A)2u(t) =u(t) + 2Au'(t) + A%u(t) =0,0< t < T,
@
u(T) =g, u'(0) =0,

where 0 < T < oo and g is a given H-valued function.
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To our knowledge, the literature devoted to this class of problems is quite scarce, except the papers [1-6].
The study of this case is caused not only by theoretical interest, but also by practical necessity. In particular,
the biparabolic model is used in mathematical modeling to describe specials features of the dynamics of
deformable water-saturated porous media during their filtration consolidation subject to applied loads [7—
9l.

It is well-known that the classical heat equation does not accurately describe the conduction of heat
[10, 11]. Numerous models have been proposed for better describing this phenomenon. Among them, we
can cite the biparabolic model proposed in [12], the fractional biparabolic model [13], for a more adequate
mathematical description of heat and diffusion processes than the classical heat equation. For physical
motivation and other models we refer the reader to [14-21].

This work is a continuity of the work developed recently by Lakhdari and Boussetila [2], where the
strategy of regularization which will be used is completely different that used in [2]. Our new strategy is
motivated by the simplicity of the method, as well as the numerical results obtained, which are better
compared to those obtained using a variant of an iterative regularization [2]. More precisely, we propose an
improved modified quasi-boundary-value method with two parameters « > 0 and r > 0, where the parameter
a is introduced to filter the high frequencies, and the second parameter r to include the regularity of the
solution of the original problem. The advantage of the multi-parameter regularization is such that it gives
more freedom in attaining order optimal accuracy [22-29].

The quasi-boundary value method, also called non-local auxiliary boundary condition, introduced and
developed by Showalter [30, 31], is a regularization technique by replacing the final condition or boundary
condition by a nonlocal condition such that the perturbed problem is well-posed.

The main advantage of the quasi-boundary-value method is that it gives a well-posed problem, where the
differential equation has not been changed, only the boundary values have been modified. Therefore, we can
exploit various numerical methods to approach the problem in question, for arbitrary geometry [0, T] x (2,
where (2is a sub-set of R", n > 1.

This method has been used to solve some ill-posed problems for parabolic, hyperbolic and elliptic
equations; for more details, see [22, 32-44] and the references therein.

2 lll-posedness of the problem and a conditional stability result

We point out here some results established in [2].
Let use consider the following well-posed problem.

2
B*w = (% +A) w(t) = w”(t) + 2Aw'(t) + A’w(t) =0,0<t< T,

w(0) =¢, w'(0) =0,
where ¢ €e D(A).

Theorem 2.1 ([2]). Forany ¢ € D(A), problem (2) admits an unique solution
w e C? (10, +oo[; H) nC" ([0, +oo[; H) nC ([0, +oo[; D(A)) n C* (10, +o0[; D(4)) n C* (10, +o0[; D(47) )
given by
w(t) = R(t:A)¢ = (I+ tA)e ™ = 3 (1+ tan)e ™ (&, n)n. €)

n=1

Remark 2.2. Itis easy to check that

—tA thy

[R(t;A)| = sup(1+tr)e” " <(1+tr1)e 1, (4)
AzM

s

sup |[R(t; A)|| = sup (1 +tr)e” ' =1. (5)
0<t<T 0<t<T
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2.1 Ill-posedness of the problem (1)

Theorem 2.3 ([2]). Let g € H, then the unique formal solution of the problem (1) is given by

_N (L) o,
u() = 3 () 7 g dnon

In this case,
1

1+TX

f=u(0)=3" ™" (g, n)én.

n=1

— 1651

7)

From this representation we see that u(t) is unstable in [0, T[. This follows from the high-frequency

1+th,

”(M"):(un
n

)e(T_t)/\" —> +00, N —> +00.

Remark 2.4.
— Inthe classical backward parabolic problem

vi+Av=0,0<t<T, v(T)=g,

the unique formal solution is given by

v(t) = Zen(t’ An)(g, dn)bn,

where
On(t, An) = e(T_t))\" — +00, N —> +00.

(8)

©)

In this case, the high-frequency 0, (t, \n) is equal to eT=0* gnd the problem is severely ill-posed.

— Inthe case of biparabolic model, we have oy = r46n, where

. ( 1+ thn )
N1+ T
is the relaxation coefficient resulting from the hyperbolic character of the biparabolic model.
Observe that

t 1+t\
—=<r< <1,
T 1+T)\1
and
u(t) = R(t)v(t),
where 14+ 6r
R(t)|| =sup{ran}=r1 = L
IR(0)] = sup{m)} =i = -4

From this remark, we observe that the degree of ill-posedness in the biparabolic model is relaxed
to the classical parabolic case.

2.2 Conditional stability estimate

We would like to have estimates of the form

lul <w(lgl),

for some function ¥ (.) such that ¥(s) — 0ass — 0.

(10)

1)

(12)

compared

Since the problem of determining u(t) from the knowledge of {u(T) = g,u’(0) = 0} is ill-posed, an
estimate such as the above will not be possible unless we restrict the solution u(t) to certain source set M c H.
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In our model, we will see that we can employ the method of logarithmic convexity to identify this source
set:
M, ={w(t) e H:w obeys (1) and |[Aw(0)| < p< oo}. (13)

On the basis {¢n} we introduce the Hilbert scale (H®)scg (resp. (€°)ser) induced by A as follows

H° =D(A%) = {heH: |h|&s = 3 A[(h, ¢n)|* < +00},
n=1

& =D(E™)={heH: |h|g =Y e™M|(h, ¢n)|> < +o0},

n=1

We give here a result of conditional stability. The demonstration is given in the paper [2].

Theorem 2.5. The problem 1is conditionally well-posed on the set
M={w(t) e H:|Aw(0)| < oo}

if and only if
ge€ ={heH:Y &™|(h, ¢n)* < oo}
n=1

Moreover, if u(t) € M,, then we have the following Hélder continuity

lu(t)| <w(lgh) =~ (o) I8l (14)

T-¢
where ~ = (“A—Tl’\l) ",

3 Regularization and error estimates

In this work, we propose a modified quasi-boundary value method (MQBVM) to solve the inverse problem 1,
i.e., replacing the final condition u(T) = g with the functional time nonlocal condition,

aA'u(0)+u(T) =g, (15)
to form an approximate regularized problem
(4 +A)2u(t):u"(t)+2Au’(t)+A2u(t):0, 0<t<T, )
{aAru(O)Jru(T):g, u’ (0) =0, h
where r > 0 is a real parameter and « > O is the regularization parameter.

Remark 3.1. The case r = O, corresponds to the classical quasi-boundary value method.

Denoting by u. (t) the solution of 16. By the separation of variables and the formula (3), we show the well-
posedness of (16), and its solution can be expressed by
= (1+thn)

_ r —tA1 ! A —tAn
ua(t)_(I+tA)[aA +(1+TA)e ] e Y T Ty e (8 dn)n (17

Theorem 3.2. Forall g ¢ D(A) and r > O, the approximate problem 16 admits an unique solution u,, given by

(1+thn)
+(1+Txp)e T

-1 +o00
Uq (t) = (I+tA) [ozAr +(1+TA) e_TA] eg=%" — e gntn, gn=1(g ¢n) (18)
n=1 n
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Moreover, the following inequality holds

sup [ua (t)] < [ua (0)] < C3x(a) (8], (19)
0<t<T
where
———, 0<r<1,
K(Oé) = ar h’;(g) (20)
0y, 21,
afln(1)]

and C3 =max (C1, C3), C1 = (rT) , Cy =1

Proof. We compute
2

+oo —tA
2 (1 + t)\n) e n 2
Uq (t =
e 0 = 3| S0
Putting
G(n)=(1+t)e ™ <supG(an) = (1+tr)e ™ <1, 1)
n>1
d
" H(\w) = ! 22
YT AN+ (L4 Tap) e T
Our goal here is to prove that
) %1, O<r<1,
sup H(\) =k (a) = " (&) 9 (23)
Az afim(H” "=
Indeed, we have
(1+thn) e 1 N
H(\) = < =H((\n).
(An) adh + (1+Thp) e TA = o)l + (1 + Thp) e T2 (An)
Now to estimate (), we proceed as follows
sup H (\) < max {A, B}, where
A>)\
A=supH()),
ASA* ~
B=supH()\),
A>A*
N=4£In(d), O0<a<l.
For 0 < v < X\ < \*, we have
) < 1 . T
YT A+ Ta) e ™ 14T,
We denote s = T\, and the function .
e
s) = .
f( ) 1+s
The function attains its maximum at \*,
TA* TA* T(+1n(1))
~ e e e \1r o
sup H()\) = < = .
e e S e P Y ENTYEY)
Hence, we get .
sup H(\) <€ —————. (24)
ASA* ar ln (E)

If A > \*, we can write

~ 1 1/1\ 1/1Y
") = <=(2) <2 (=
) a)\’+(1+T>\)e—T/\_a(>\) _a(/\*)
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which implies that
r
N 1 1 . 1
sup H(A)s(l(l)) = (D) —— - (25)

Az)* al\ xln

Putting Cl = (I’T)r, Cz =7, C3 = max(C1, Cz).
eIfO<r<1andO < a< 1, weobserve that

[ailiu)][a[lnl(;)]’]1:1[1111(%;)%’ 1
()

=55 =7(a) — +o0, asa — 0.

lin})y () = +00 = fore = 1, Jap such as a < ap = v (a) > € = 1. Then, for « sufficiently small, we have
o—>

1 S 1
orIn(z) an(3)]"

Therefore,
max (4, B) = Cg%.
otIn(2)

eIfr>1and0 < a< 1, wehave lin})y(a):0:>fors:1, Jap such that a < ap = v () < ¢ = 1. Then, for
a—

(26)

« sufficiently small, we have
1 1

arin(z) " afn(3)]”

and thus 1
max (A, B) = C3 - @7
a[ln(3)]
From (26) and (27), we obtain the desired estimate:
sup [ua (8)] < [ua (0)[ < C3x(a) 8],
0<t<T
where
%1, 0<r<1,
k(a) = O"hi(z) 1 O
a7 "2
Theorem 3.3. Ifu (0) € Hand u(0) € D(A), i.e., |[u(0)| + ||[Au(0)| < oo, then we have
OS<lt1<PT{||u () —ua (O] + A (u(t) -ua ()]} < (28)

{[u(0) —ua (0)] + A (u(0) - ua (0))[} -0, asa >0

Remark 3.4. We recall here that

[u(0)| + |Au(0)| < 0o < g e €.

Proof. We have

oo

u(0) = )

n=1

eTAn (g’ ¢n>¢"’

1
1+Thy
+o00 1

0) =
1a(0) = 2 T Ty e

n=1

(g’ ¢ﬂ)¢n’
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and 2
too [a)\;eT/\"]
0) - ua(0)|? = 2,
Hu( ) u ( )H nZ=:1 (1+TAn) (Oé)\;+(1+ T)\n)e_TA") |gn|
From this equality we can write
toof (1 + t)\n) (T-OX (1 + t)\n) —tA 2 2
t _ o t 2 — AN ng n o_ n
() -ua (OF = 32| (g o +(1mn)e,me g0l
_ 2
reo[ (L4 tan) [(eAn+ (1 + TAn) e ™) e™ — (1+ Thn)] ey
“&| (1+ TAn) (aX, + (1+ TAn) e Trv) sl
_ 2
el eewlene™] T
w2t | L+ Ton) (@A + (1+ Thn) e ) "
+oo [ [a/\LeT’\“] 2 5
<
24| ) (X + (1+ Th) e ) 8l

= u(0) - ua (0)]%,

and
2 A +tA)  (1-p)x (1+t\n) o] 2
A t) —uq (t 2 n| ——= "— "
14 (6) - o ()] ;Ln((“m)e e swr=cei il | N
r 2
[ masan[ae™] T
S (14 Tan) (@A, + (1+ Thp) e~ T) :
+oo [ An [axpe™] 2
< |gn|2
= (1+ TAn) (Xl + (1 + Thp) e~ TAn)
= |A (u(0) - ua (0)*,
thus we get

Sup {u () = ua (O + A (u () = ua ()]} < {[u(0) ~ ua (0} + A (u (0) ~ ua (0))]}

Now, we show that
{lu(0) —ua (0)] +[A (u(0) - ua (0))[} - 0, asa 0.

We have
1 TA el
u(0)=(I+TA)~ Z(1+T/\n (g, ¢n) Pns
and
a1l = 1
0(0)=|ad" + (I +TA)e ™ = , ,
Ua (0) = [ad” + (I+ T e ™| g = 3 i s (8 0n) o
then we get

oz)\;,e”" 2| ‘2
AN, + (Lt Than) e ™) (1+ Thg) ) "

1(0) - ua (O)]? f([

+

8

M+ g

a\, 2 el 2| |2
N+ (1+Taye™ ) |1+ | &

ady g
2
1(a>\’ T (1+ TAn) e ™ ) jun (0)]

n
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+oo > 5
= > (F(w) [un (0)I7,
n=1
where .
F()\n) B alp

adl + (1+Thp) e T
We assume that u(0) € H.

TAn 2 +o00

e

u<0>eH<=>Z(1 . ) 8al” = 3 lun () = [ (0)]? < +o0
n=1

For ¢ > 0, we choose N > 0 such that Z (1+T/\ ) lgn|” < 5 . Thus

N o 5 too 5
[u(0) ~ua (0)* = 3 (F(N) " lun (O)F + 3= (F (An))" Jun (O)F - 29)
n=1 n=N
We observe that F' (\n) = WA)M < 1, then we can write
too 2 ) +o0 ) 52
> [FOn)] [un (0)° < 37 [un (0] <5
n=N n=N

The other quantity can be estimated as follows

aXe T 2 N aAl 2 ,
Z( [aX, + (1 + Thy) e T ](1+T)\n)) gl nzl[ [aN, + (1 + Thy) e T ]] [un (0)]

N
= S E O] [un (0)

[Sup F(Ow) ] ZIUn ).

1<n<N

=
[u

It is clear that
a\) a\, a\, el An

F(X\n) = < s
(An) aX,+ (1+Thg)e T = (1+T)\,,)e A = 1+ Ty

and )\, < \y implies that
a\)

)S TAn
(1+Thn)

F(n e™ <arye

It follows that

sup F (M) < aXy e™
1<n<N

and consequently
N 2
Z(F(An) Jun(0)[* < [w;,ew] Ju (o))

If we choose the parameter o such that e\l ™" |u (0)| < == 5 we obtain

2
J(0) - a (0)] < [axiy €™ Ju (0))* + 5
2

€ 2
—+
2

< =g,

N | O

Which shows that
Uy (0) > u(0), asa — 0.

To complete the proof, it remains to show that

|[A(u(0)-uq(0))] -0, asa— 0.
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We compute
>\r+1 TAn 2 5
HA (u (0) Un (0))H Z([a)\’+(1+T)\n)e‘T>‘ ](1+T)\n)) ‘gi’l|
i[F ()\n ] |>\n11n (0)|2 .
We have

2t ape™ : 2
0)eD(A Au(0)|” = —_— .
u(0) €D(A) = [Au(0)* = 35 (20 ) el < o0

For € > 0, we choose N > 0 such that

+o0 +o00 TAr \2 2
)\ne n 2 g

Anttn (0)) = < —=.
n;l nn (0)] r;v(““n) gl <5

Then, we can write

+oo 5 2 52
> (FOw) attn O < 3 Jotn (0)F < 5
n=N n=N

and

N N
> (F(n))” [Antn (O) < sup [FOw)] 2, Pt O

n=1

2
<[ark e™ ] Jau (o).

If we choose the parameter a such that [a\y e™¥] |Au (0)] < =5, we get

2 52

4 (u(0) - e (0))]” < [ €™ ] JAu (0)) +
62 52 2
< — — = .
=35 2 €

Which shows that
A(u(0)-uq(0)) >0, asa— 0.

In conclusion,
OilgT{l\u(t) —Ua ()] + A (u(t) —ua ()]} < (30)

{4 (0) —ua (0)] + A (u(0) - ua (0))[} - 0,a >0 N

Theorem 3.5. If u(0) € D(AY*V) such that HA(OH)u(O)H < Eg,and 1 < r < 6, then we have the following
estimate

Sup {[ju () ~ua (] + A4 (u () ~ua ()]} < G

0
{|u(0)—ua(0)+||A(u(0)—ua(0))}gl Cs ]Ee

In (%)

Proof. We have

oo r o TApy—(0+1) | (0+1) 2
1(0) ~ua (0))2 = ¥ W€ An g’
S\ e+ (1 + Tan) e TA] (1 + Thn)

2 2
) o0 a/\;l/\;(eﬂ) )\E,OH)GT/\" |g |2
S\ [N, + (1 + Thn) e T 1+Th, "

+




1658 —— K.Besmaetal.

ME I

DE GRUYTER OPEN

+
8

)\-(9+1) 2 £ (0+1) 5T, 2 ,
n

a+(1+Txp) N\,"e + Thn

o+ (+ Taage ™) ) (T1em, )

—~ 2
= (aGa ()\n)) Un
n=1
where
G ) = A0+ i 1
T o (T Ta) ATe ™ T Ay [aM + (1+ Tan) A Te T ]’
Ifr <6, then
—~ 1
Go (M) <
o)< [aA] + (1 + TAn) A€ TN ]
1 -
= = H ()\ )
0+1— B n)s
Ag#1-r [Ae A+ (1+ TAg) e ] AT
where 3 = /\9 -. Now by (23), we conclude that
1 ~
sup = 5 Sup Hg(An) =
nx1 )\?Jrlfr |:/\9 T)\G + (1 + Thn )e—TA ] Al A2\
,\;9[,\1'%]’
0<0<1,

If 6 > 1, we can write

1 (0) - ua (0)]7 < f (aGa (M)’

and

+

A (u(0) - ua (0))” =

=

2
+ oo a 2
< un (0
n=1([aA2 +(1+ TAn)/\ﬁ"eT’\n]) n( )‘
2
+o0o 2
< < A (0)
n=1| A0-r [,\?,A0+(1+T)\n)e—“n]
2
1 tee 2
<alsup > /\g”un(o)‘ .

2
)\;9+1)un (O)|

At

+o0o
St S

iR
(6%
ALt HA(9+1)

()]

2
X (0)|

IA

TA
f+1 €

oo OfArA_e 2 . 2 ,
n‘n
A
=1([a/\51+(1+T>\n)e“n]) ( n (1+T)\n)) |gnl

n>1 A?—r[}\e YAQ +(1+ T)\n)e TAn ] n=1

(32

(33)

(34)

(35)
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By virtue of (23), we obtain

1A (0) ~ta () < ————[[a”u (o). G36)

Combining (33) and (36), we obtain

sup {Ju(6) = ua (O] +]4 (u(6) - ua ()]} < (37)
{1(0) ~ e (O] + |4 ((0) ~ e )]} € ————— (3" + 1) [ 4" u (0)]
(%))
Cs
< Ey, (38)
()
where C4 = A" and Cs = A7 + 1. O

We conclude this paper by constructing a family of regularizing operators for the problem 1.

Definition 3.6. A family {Ro(t), a > 0, t € [0, T]} c L(H) is called a family of regularizing operators for
the problem (1) if for each solution u(t), 0 < t < T of (1) with final element g, and for any n > 0, there exists
a(n) > 0, such that

04(77) -0, -0, (39)
|Ra (6)8n —u(t)| -0, -0, (40)
foreach t € [0, T] provided that g, satisfies | g, — g|| < 7.

Define R (t) = (I +tA) [@A" + (1 + TA) e*m]_1 e A Ttis clear that R, (t) € L(H) (see (19)). In the following
we will show that R (t) is a family of regularizing operators for the problem 1.

Theorem 3.7. Under the assumption g € ¢, the condition (40) holds.

Proof. We have
Aa(t) = [Ra(t)gn —u(t)] < [Ra(t)(8n —8)[ + |Ra(t)g —u(t)| = Ar(t) + A2(8),
where

Ai(t) = [Ra(t)(gn = )| < w(e)n,
Ax(t) = |Ra(t)g - u(t)].

%”i , 0<r<1,
A(t) <] @7 (E)

We observe that

— . r>1.

o[ln(3)]"
Choose a = n§ ifo<r<1,and a=/7ifr> 1, it follows

VAl , O<r<1,
In( L~
Aq(t) < n(ﬁl/') —0, asnpn—0. (41)
%, r>1,
[in(J5)]
Now, by Theorem 3.3 we have
Az(t) = [uaey(t) —u(t)| -0, asn—0, (42)

uniformly in t. Combining (41) and (42) we obtain

sup |Ra(6)gy - u(t)| — 0, asn — 0.
o<t<T

This shows that R.(t) is a family of regularizing operators for the problem 1. O
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4 Numerical results

In this section we give a two-dimensional numerical test to show the feasibility and efficiency of the proposed
method. Numerical experiments where carried out using MATLAB.
We consider the following inverse problem

(%—aa—;)zu(x,t):o, xe(0,7), te(0,1),
u(0,t) =u(m,t)=0, te(0,1), (43)
u(x,1) =g(x),us(x,0)=0, xe[0,n],

where f(x) = u(x, 0) is the unknown initial condition and u(x, 1) = g(x) is the final condition.
It is well known that the operator

62
ox?’
is positive, self-adjoint with compact resolvent (A is diagonalizable).

The eigenpairs (\n, ¢n) of A are

A=- D(A) = Hy(0, 7) n H>(0,7) c H=L*(0, ),

2 *
An = 1%, én(x) = ;sin(nx), neN".

In this case, the formula (7) takes the form

f(x) =u(x,0) = %io %nzenz (/ g(x) sin(nx)dx) sin(nx). (44)

In the following, we consider an example which has an exact expression of solutions (u(x, t), f(x)).

Example. Ifu(x,0) = ¢1(x) = \/gsin(x), then the function

u(x,t) = i(l + t/\n)e_t’\"(qsl, dn)on(x) = (1 + t)\l)e_&l(pl(x) = \/3(1 + t)\l)e_tAl sin(x)

is the exact solution of the problem (43). Consequently, the data functionis g(x) = u(x, 1) = \/g % sin(x).
By using the central difference with step length h = /5 to approximate the first derivative ux and the second

derivative uxx, we can get the following semi-discret problem (ordinary differential equation):

(% —Ah)z u(x;,t)=0, x;=ih,i=1,...N, te(0,1),
u(xo=0,t) =u(xys1 =m,t) =0, te(0,1), (45)
u(x;,0) = g(x;), usr(xi,0) =0, x;=ih,i=1,...N,

d2

where Ay, is the discretisation matrix stemming from the operator A = — 7

1

T h?2

is a symmetric, positive definite matrix. We assume that it is fine enough so that the discretization errors are

small compared to the uncertainty § of the data; this means that Ay, is a good approximation of the differential
2

operator A = —%, whose unboundedness is reflected in a large norm of Ay. The eigenpairs (uy, ey) of Ay are

given by
N+1\2 ., kn . jkr \\V
Mk—4(T) sSin (2(1\]-‘-1)), ek—(SIH(N+1))j=1, k—l...N.

Adding a random distributed perturbation (obtained by the Matlab command randn) to each data function, we
obtain the vector g5:

Ap Tridiag(-1,2,-1) e My(R)

g‘s = g + erandn(size(g)),
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where ¢ indicates the noise level of the measurement data and the function "randn(.)" generates arrays of
random numbers whose elements are normally distributed with mean O, variance o = 1, and standard deviation
o = 1. "randn(size(g))" returns an array of random entries that is the same size as g. The bound on the
measurement error § can be measured in the sense of Root Mean Square Error (RMSE) according to

s 1 N s ) 1/2
518 gl - (2 (et - 0) )
i=1
The discret approximation of (18) takes the form
uS(x5,0) = f*(x;) = (A + (Iy + Ap)e ™) 'g°(x;), j=1...N, (46)

where Iy is the identity matrix.

In our numerical computations we always take N = 40 and consider only the cases when ¢ = 0.001, 0.01.
The regularization parameter («, r) is chosen in the following way: for any fixed r € {0, 1, 2, 3}, we try to find
a satisfactory error by varying the second parameter o = ¢° with step length s = 0.1. We note oo one of the
best choice which gives this result. Now, for o = ay fixed, we try to find an acceptable error by varying the first
parameter r = 0, 1, 2, 3 in order to obtain the best possible convergence rate. It is important to note that this
choice is of heuristic nature and the multiparameter discrepancy principle is quite scarce in the literature.

The relative error RE(f) is given by
1F*° = £«

REC) =1

Conclusion and discussion
Numerical results are shown in Figures 1-8 and Tables 1-2.

Fig. 1. € (noise level) =0.001, « (regularization parameter)=0.015849, r (relaxation parameter)=0

QBYV regularization method with two parameters (o,r)
1.2
T T T T

—*— excact solution
1 approximate solution

Error: |excact solution — approximate solution|

02 T T T T T

015— —

0.05— —

o i I i i |
0 05 1 15 2 25 3 35

—o— Error: ¢ (noise level) =0.001,u (regularization parameter)=0.015849,r (relaxation parameter):Ol

In this paper, we have proposed an improved two-parameter regularization method (MQBVM) to solve an ill-
posed biparabolic problem. The convergence and stability estimates have been obtained under a priori bound
assumptions for the exact solution. Finally, some numerical tests show that our proposed regularization
method is effective and stable.
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Fig. 2. ¢ (noise level) =0.001, « (regularization parameter)=0.015849,r (relaxation parameter)=1
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Fig. 3. £ (noise level) =0.001, « (regularization parameter)=0.015849,r (relaxation parameter)=2
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| —o— Error: ¢ (noise level) =0.001,0. (regularization parameter)=0.015849,r (relaxation parameter)=1 |

QBV regularization method with two parameters (o.,r)

35
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Table 1. The absolute errors Era for fixed o and for various value of r

0.5 1

1.5

2

25

3

| —o— Error: ¢ (noise level) =0.001,a (regularization parameter)=0.015849,r (relaxation parameter)=2\

N 5 « r RE

40 | 0.001 | 0.015849 | O 0.0920
40 | 0.001 | 0.015849 | 1 0.0035
40 | 0.001 | 0.015849 | 2 0.0019
40 | 0.001 | 0.015849 | 3 | 0.0003501

35
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Fig. 4. ¢ (noise level) =0.001, o (regularization parameter)=0.015849,r (relaxation parameter)=3

QBYV regularization method with two parameters (o,r)
0.8 T : T

—*— excact solution
approximate solution
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[ —o—Error: e (noise level) =0.001,0. (regularization parameter)=0.015849,r (relaxation parameter)=3|

35

Fig. 5. € (noise level) =0.01, « (regularization parameter)=0.025119, r (relaxation parameter)=0

QBYV regularization method with two parameters (o,r)
08 T T T T

—%— excact solution

approximate solution
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Error: |excact solution — approximate solution|
0.25
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o \ I I i I
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| —o— Error: ¢ (noise level) =0.01,a (regularization parameter)=0.12589,r (relaxation parameter)=0|

Table 2. The absolute errors Era for fixed « and for various value of r

| N € a r RE |
40 | 0.01 | 0.025119 | 0 | 0.1707
‘ 40 | 0.01 | 0.025119 | 1 | 0.0103 ‘
40 | 0.01 | 0.025119 | 2 | 0.0070
‘ 40 | 0.01 | 0.025119 | 3 | 0.0061

According to the numerical tests, we observe the following regularizing effect:
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Fig. 6. c (noise level) =0.01, « (regularization parameter)=0.025119, r (relaxation parameter)=1

QBV regularization method with two parameters (o,r)
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Fig. 7.  (noise level) =0.01, o (regularization parameter)=0.025119, r (relaxation parameter)=2

QBYV regularization method with two parameters (o.,r)
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e Inthecaser = 0, = 0.001 and o = 0.015849 (resp.r = 0, = 0.01 and o« = 0.025119), the
approximate solution is far from the exact solution. But for the case r = 1, 2, 3, we observe that the solution
becomes precise and very near to the exact solution (in particular for r = 2, 3).

This shows that our approach has a nice regularizing effect and gives a better approximation with comparison
to the classical QBV-method.

Acknowledgement: The authors thank the referees for their constructive comments which improved this
paper.
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Fig. 8. ¢ (noise level) =0.01, « (regularization parameter)=0.025119, r (relaxation parameter)=3

QBV regularization method with two parameters (o,r)
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