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Abstract: In this paper, we are concerned with the problem of approximating a solution of an ill-posed
biparabolic problem in the abstract setting. In order to overcome the instability of the original problem,
we propose a modi�ed quasi-boundary value method to construct approximate stable solutions for the
original ill-posed boundary value problem. Finally, some other convergence results including some explicit
convergence rates are also established under a priori bound assumptions on the exact solution. Moreover,
numerical tests are presented to illustrate the accuracy and e�ciency of this method.
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1 Formulation of the problem
Throughout this paper H denotes a complex separable Hilbert space endowed with the inner product ⟨., .⟩
and the norm ∥.∥, L(H) stands for the Banach algebra of bounded linear operators on H.

Let A ∶ D(A) ⊂ H Ð→ H be a positive, self-adjoint operator with compact resolvent, so that A has an
orthonormal basis of eigenvectors (φn) ⊂ H with real eigenvalues (λn) ⊂ R+, i.e.,

Aφn = λnφn , n ∈ N∗, ⟨φi , φj⟩ = δij = {1, if i = j
0, if i ≠ j

,

0 < ν ≤ λ1 ≤ λ2 ≤ λ3 ≤ . . . , lim
n→∞λn = ∞,

∀h ∈ H, h =
∞
∑
n=1

hnφn , hn = ⟨h, φn⟩.

In this paper, we consider the following inverse source problem of determining the unknown source term
u(0) = f and the temperature distribution u(t) for 0 ≤ t < T, of the following biparabolic problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B2u = ( d
dt + A)

2
u(t) = u′′(t) + 2Au′(t) + A2u(t) = 0, 0 < t < T,

u(T) = g, u′(0) = 0,
(1)

where 0 < T < ∞ and g is a given H-valued function.
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To our knowledge, the literature devoted to this class of problems is quite scarce, except the papers [1–6].
The study of this case is caused not only by theoretical interest, but also by practical necessity. In particular,
the biparabolic model is used in mathematical modeling to describe specials features of the dynamics of
deformable water-saturated porous media during their �ltration consolidation subject to applied loads [7–
9].

It is well-known that the classical heat equation does not accurately describe the conduction of heat
[10, 11]. Numerous models have been proposed for better describing this phenomenon. Among them, we
can cite the biparabolic model proposed in [12], the fractional biparabolic model [13], for a more adequate
mathematical description of heat and di�usion processes than the classical heat equation. For physical
motivation and other models we refer the reader to [14–21].

This work is a continuity of the work developed recently by Lakhdari and Boussetila [2], where the
strategy of regularization which will be used is completely di�erent that used in [2]. Our new strategy is
motivated by the simplicity of the method, as well as the numerical results obtained, which are better
compared to those obtained using a variant of an iterative regularization [2]. More precisely, we propose an
improvedmodi�ed quasi-boundary-value method with two parameters α > 0 and r ≥ 0, where the parameter
α is introduced to �lter the high frequencies, and the second parameter r to include the regularity of the
solution of the original problem. The advantage of the multi-parameter regularization is such that it gives
more freedom in attaining order optimal accuracy [22–29].

The quasi-boundary value method, also called non-local auxiliary boundary condition, introduced and
developed by Showalter [30, 31], is a regularization technique by replacing the �nal condition or boundary
condition by a nonlocal condition such that the perturbed problem is well-posed.

Themain advantage of the quasi-boundary-valuemethod is that it gives a well-posed problem, where the
di�erential equation has not been changed, only the boundary values have beenmodi�ed. Therefore, we can
exploit various numerical methods to approach the problem in question, for arbitrary geometry [0, T] × Ω,
whereΩ is a sub-set of Rn, n ≥ 1.

This method has been used to solve some ill-posed problems for parabolic, hyperbolic and elliptic
equations; for more details, see [22, 32–44] and the references therein.

2 Ill-posedness of the problem and a conditional stability result
We point out here some results established in [2].

Let use consider the following well-posed problem.
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B2w = ( d
dt + A)

2
w(t) = w′′(t) + 2Aw′(t) + A2w(t) = 0, 0 < t < T,

w(0) = ξ, w′(0) = 0,
(2)

where ξ ∈ D(A).

Theorem 2.1 ([2]). For any ξ ∈ D(A), problem (2) admits an unique solution

w ∈ C2 (]0,+∞[;H) ∩ C1 ([0,+∞[;H) ∩ C ([0,+∞[;D(A)) ∩ C1 (]0,+∞[;D(A)) ∩ C2 (]0,+∞[;D(A2))

given by

w(t) = R(t;A)ξ = (I + tA)e−tAξ =
∞
∑
n=1

(1 + tλn)e−tλn⟨ξ, φn⟩φn . (3)

Remark 2.2. It is easy to check that

∥R(t;A)∥ = sup
λ≥λ1

(1 + tλ)e−tλ ≤ (1 + tλ1)e−tλ1 , (4)

sup
0≤t≤T

∥R(t;A)∥ = sup
0≤t≤T

(1 + tλ1)e−tλ1 = 1. (5)
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2.1 Ill-posedness of the problem (1)

Theorem 2.3 ([2]). Let g ∈ H, then the unique formal solution of the problem (1) is given by

u(t) =
∞
∑
n=1

( 1 + tλn
1 + Tλn

) e(T−t)λn⟨g, φn⟩φn . (6)

In this case,
f = u(0) =

∞
∑
n=1

1
1 + Tλn

eTλn⟨g, φn⟩φn . (7)

From this representation we see that u(t) is unstable in [0, T[. This follows from the high-frequency

σ(t, λn) = ( 1 + tλn
1 + Tλn

) e(T−t)λn Ð→ +∞, n Ð→ +∞.

Remark 2.4.
– In the classical backward parabolic problem

vt + Av = 0, 0 < t < T, v(T) = g, (8)

the unique formal solution is given by

v(t) =
∞
∑
n=1

θn(t, λn)⟨g, φn⟩φn , (9)

where
θn(t, λn) = e(T−t)λn Ð→ +∞, n Ð→ +∞.

In this case, the high-frequency θn(t, λn) is equal to e(T−t)λn and the problem is severely ill-posed.
– In the case of biparabolic model, we have σn = rnθn, where

rn = ( 1 + tλn
1 + Tλn

) ,

is the relaxation coe�cient resulting from the hyperbolic character of the biparabolic model.
Observe that

t
T
≤ rn ≤

1 + tλ1
1 + Tλ1

≤ 1, (10)

and
u(t) = R(t)v(t), (11)

where
∥R(t)∥ = sup

n≥1
{rn} = r1 =

1 + tλ1
1 + Tλ1

. (12)

From this remark, we observe that the degree of ill-posedness in the biparabolic model is relaxed compared
to the classical parabolic case.

2.2 Conditional stability estimate

We would like to have estimates of the form

∥u(t)∥ ≤ Ψ(∥g∥),

for some function Ψ(.) such that Ψ(s) Ð→ 0 as s Ð→ 0.
Since the problem of determining u(t) from the knowledge of {u(T) = g, u′(0) = 0} is ill-posed, an

estimate suchas the abovewill not bepossibleunlesswe restrict the solution u(t) to certain source setM⊂ H.
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In our model, we will see that we can employ the method of logarithmic convexity to identify this source
set:

Mρ = {w(t) ∈ H ∶ w obeys (1) and ∥Aw(0)∥ ≤ ρ < ∞}. (13)

On the basis {φn} we introduce the Hilbert scale (Hs)s∈R (resp. (Es)s∈R) induced by A as follows

Hs = D(As) = {h ∈ H ∶ ∥h∥2Hs =
∞
∑
n=1

λ
2s
n ∣⟨h, φn⟩∣2 < +∞},

Es = D(esTA) = {h ∈ H ∶ ∥h∥2Es =
∞
∑
n=1

e2Tsλn ∣⟨h, φn⟩∣2 < +∞},

We give here a result of conditional stability. The demonstration is given in the paper [2].

Theorem 2.5. The problem 1 is conditionally well-posed on the set

M = {w(t) ∈ H ∶ ∥Aw(0)∥ < ∞}

if and only if

g ∈ E1 = {h ∈ H ∶
∞
∑
n=1

e2Tλn ∣(h, φn)∣2 < ∞}.

Moreover, if u(t) ∈ Mρ, then we have the following Hölder continuity

∥u(t)∥ ≤ Ψ(∥g∥) = γ (ρ
T−t
T ) ∥g∥

t
T , (14)

where γ = ( 1+Tλ1
λ1

)
T−t
T .

3 Regularization and error estimates
In this work, we propose a modi�ed quasi-boundary value method (MQBVM) to solve the inverse problem 1,
i.e., replacing the �nal condition u(T) = g with the functional time nonlocal condition,

αAru (0) + u (T) = g, (15)

to form an approximate regularized problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

( d
dt + A)2 u (t) = u′′ (t) + 2Au′ (t) + A2u (t) = 0, 0 < t < T,

αAru (0) + u (T) = g, u′ (0) = 0,
(16)

where r > 0 is a real parameter and α > 0 is the regularization parameter.

Remark 3.1. The case r = 0, corresponds to the classical quasi-boundary value method.

Denoting by uα (t) the solution of 16. By the separation of variables and the formula (3), we show the well-
posedness of (16), and its solution can be expressed by

uα (t) = (I + tA) [αAr + (1 + TA) e−TA]
−1

e−tAg =
+∞
∑
n=1

(1 + tλn)
αλrn + (1 + Tλn) e−Tλn

e−tλn ⟨g, φn⟩φn (17)

Theorem 3.2. For all g ∈ D(A) and r > 0, the approximate problem 16 admits an unique solution uα given by

uα (t) = (I + tA) [αAr + (1 + TA) e−TA]
−1

e−tAg =
+∞
∑
n=1

(1 + tλn)
αλrn + (1 + Tλn) e−Tλn

e−tλngnφn , gn = ⟨g, φn⟩ (18)
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Moreover, the following inequality holds

sup
0≤t≤T

∥uα (t)∥ ≤ ∥uα (0)∥ ≤ C3κ (α) ∥g∥ , (19)

where

κ (α) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
α

1
r ln( 1

α
)
, 0 < r < 1,

1
α[ln( 1

α
)]r , r ≥ 1,

(20)

and C3 = max (C1, C2) , C1 = (rT)r , C2 = r.

Proof. We compute

∥uα (t)∥2 =
+∞
∑
n=1

[ (1 + tλn) e−tλn

αλrn + (1 + Tλn) e−Tλn
]
2

∣gn ∣2

Putting
G (λn) = (1 + tλn) e−tλn ≤ sup

n≥1
G (λn) = (1 + tλ1) e−tλ1 ≤ 1, (21)

and
H̃ (λn) =

1
αλrn + (1 + Tλn) e−Tλn

. (22)

Our goal here is to prove that

sup
λ≥λ1

H̃ (λ) = κ (α) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
α

1
r ln( 1

α
)
, 0 < r < 1,

1
α[ln( 1

α
)]r , r ≥ 1,

(23)

Indeed, we have

H (λn) =
(1 + tλn) e−tλn

αλrn + (1 + Tλn) e−Tλn
≤ 1
αλrn + (1 + Tλn) e−Tλn

= H̃ (λn) .

Now to estimate H̃ (λ), we proceed as follows

sup
λ≥λ1

H̃ (λ) ≤ max{A, B} , where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A = sup
λ≤λ∗

H̃ (λ) ,

B = sup
λ≥λ∗

H̃ (λ) ,

λ∗ = 1
Tr ln ( 1

α) , 0 < α < 1.

For 0 < ν ≤ λ ≤ λ∗, we have

H̃ (λn) ≤
1

(1 + Tλn) e−Tλn
= eTλn

1 + Tλn
We denote s = Tλn and the function

f (s) = es

1 + s
.

The function attains its maximum at λ∗,

sup
λ≤λ∗

H̃ (λ) = eTλ
∗

1 + Tλ∗
≤ eTλ

∗

Tλ∗
= eT(

1
Tr ln( 1

α
))

T ( 1
Tr ln ( 1

α))
.

Hence, we get
sup
λ≤λ∗

H̃ (λ) ≤ r
α

1
r ln ( 1

α)
. (24)

If λ ≥ λ∗, we can write
H̃ (λ) = 1

αλr + (1 + Tλ) e−Tλ ≤ 1
α

(1
λ
)
r
≤ 1
α

( 1
λ∗

)
r
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which implies that

sup
λ≥λ∗

H̃ (λ) ≤ 1
α

⎛
⎝

1
1
Tr ln ( 1

α)
⎞
⎠

r

= (rT)r 1
α [ln ( 1

α)]
r . (25)

Putting C1 = (rT)r, C2 = r, C3 = max (C1, C2).
● If 0 < r < 1 and 0 < α < 1, we observe that

⎡⎢⎢⎢⎢⎣

1
α

1
r ln ( 1

α)

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

1
α [ln ( 1

α)]
r

⎤⎥⎥⎥⎥⎦

−1

=
α [ln ( 1

α)]
r

α
1
r ln ( 1

α)

= α
r−1
r [ln(1

α
)]

r−1

= 1
α

1−r
r [ln ( 1

α)]
1−r = γ (α) Ð→ +∞, as αÐ→ 0.

lim
α→0

γ (α) = +∞Ô⇒ for ε = 1, ∃α0 such as α ≤ α0 ⇒ γ (α) ≥ ε = 1. Then, for α su�ciently small, we have

1
α

1
r ln ( 1

α)
≥ 1
α [ln ( 1

α)]
r .

Therefore,
max (A, B) = C3

1
α

1
r ln ( 1

α)
. (26)

● If r ≥ 1 and 0 < α < 1, we have lim
α→0

γ (α) = 0Ô⇒ for ε = 1, ∃α0 such that α ≤ α0 ⇒ γ (α) ≤ ε = 1. Then, for
α su�ciently small, we have

1
α

1
r ln ( 1

α)
≤ 1
α [ln ( 1

α)]
r ,

and thus
max (A, B) = C3

1
α [ln ( 1

α)]
r . (27)

From (26) and (27), we obtain the desired estimate:

sup
0≤t≤T

∥uα (t)∥ ≤ ∥uα (0)∥ ≤ C3κ (α) ∥g∥ ,

where

κ (α) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
α

1
r ln( 1

α
)
, 0 < r < 1,

1
α[ln( 1

α
)]r , r ≥ 1.

Theorem 3.3. If u (0) ∈ H and u(0) ∈ D(A), i.e., ∥u(0)∥ + ∥Au(0)∥ < ∞, then we have

sup
0≤t≤T

{∥u (t) − uα (t)∥ + ∥A (u (t) − uα (t))∥} ≤ (28)

{∥u (0) − uα (0)∥ + ∥A (u (0) − uα (0))∥} → 0, as α→ 0

Remark 3.4. We recall here that

∥u(0)∥ + ∥Au(0)∥ < ∞⇐⇒ g ∈ E1.

Proof. We have

u(0) =
∞
∑
n=1

1
1 + Tλn

eTλn⟨g, φn⟩φn ,

uα(0) =
+∞
∑
n=1

1
αλrn + (1 + Tλn) e−Tλn

⟨g, φn⟩φn ,
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and

∥u(0) − uα(0)∥2 =
+∞
∑
n=1

⎡⎢⎢⎢⎢⎣

[αλrneTλn]
(1 + Tλn) (αλrn + (1 + Tλn) e−Tλn)

⎤⎥⎥⎥⎥⎦

2

∣gn ∣2 .

From this equality we can write

∥u (t) − uα (t)∥2 =
+∞
∑
n=1

[ (1 + tλn)
(1 + Tλn)

e(T−t)λn − (1 + tλn)
αλrn + (1 + Tλn) e−Tλn

e−tλn]
2

∣gn ∣2

=
+∞
∑
n=1

⎡⎢⎢⎢⎢⎣

(1 + tλn) [(αλrn + (1 + Tλn) e−Tλn) eTλn − (1 + Tλn)]
(1 + Tλn) (αλrn + (1 + Tλn) e−Tλn) e−tλn

⎤⎥⎥⎥⎥⎦

2

∣gn ∣2

=
+∞
∑
n=1

⎡⎢⎢⎢⎢⎣

(1 + tλn) [αλrneTλn]
(1 + Tλn) (αλrn + (1 + Tλn) e−Tλn) e

−tλn

⎤⎥⎥⎥⎥⎦

2

∣gn ∣2

≤
+∞
∑
n=1

⎡⎢⎢⎢⎢⎣

[αλrneTλn]
(1 + Tλn) (αλrn + (1 + Tλn) e−Tλn)

⎤⎥⎥⎥⎥⎦

2

∣gn ∣2

= ∥u (0) − uα (0)∥2 ,

and

∥A (u (t) − uα (t))∥2 =
+∞
∑
n=1

[λn (
(1 + tλn)
(1 + Tλn)

e(T−t)λn − (1 + tλn)
αλrn + (1 + Tλn) e−Tλn

e−tλn)]
2

∣gn ∣2

=
+∞
∑
n=1

⎡⎢⎢⎢⎢⎣

λn (1 + tλn) [αλrneTλn]
(1 + Tλn) (αλrn + (1 + Tλn) e−Tλn) e

−tλn

⎤⎥⎥⎥⎥⎦

2

∣gn ∣2

≤
+∞
∑
n=1

⎡⎢⎢⎢⎢⎣

λn [αλrneTλn]
(1 + Tλn) (αλrn + (1 + Tλn) e−Tλn)

⎤⎥⎥⎥⎥⎦

2

∣gn ∣2

= ∥A (u (0) − uα (0))∥2 ,

thus we get

sup
0≤t≤T

{∥u (t) − uα (t)∥ + ∥A (u (t) − uα (t))∥} ≤ {∥u (0) − uα (0)∥ + ∥A (u (0) − uα (0))∥} .

Now, we show that
{∥u (0) − uα (0)∥ + ∥A (u (0) − uα (0))∥} → 0, as α→ 0.

We have

u (0) = (I + TA)−1 eTAg =
+∞
∑
n=1

eTλn

(1 + Tλn)
⟨g, φn⟩φn ,

and

uα (0) = [αAr + (I + TA) e−TA]
−1

g =
+∞
∑
n=1

1
αλrn + (1 + Tλn) e−Tλn

⟨g, φn⟩φn ,

then we get

∥u (0) − uα (0)∥2 =
+∞
∑
n=1

( αλrneTλn

[αλrn + (1 + Tλn) e−Tλn] (1 + Tλn)
)
2

∣gn ∣2

=
+∞
∑
n=1

( αλrn
αλrn + (1 + Tλn) e−Tλn

)
2

[ eTλn

(1 + Tλn)
]
2

∣gn ∣2

=
+∞
∑
n=1

( αλrn
αλrn + (1 + Tλn) e−Tλn

)
2

∣un (0)∣2
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=
+∞
∑
n=1

(F̃ (λn))
2 ∣un (0)∣2 ,

where
F̃ (λn) =

αλrn
αλrn + (1 + Tλn) e−Tλn

.

We assume that u(0) ∈ H.

u(0) ∈ H ⇐⇒
+∞
∑
n=1

( eTλn

1 + Tλn
)
2

∣gn ∣2 =
+∞
∑
n=1

∣un (0)∣2 = ∥u (0)∥2 < +∞

For ε > 0, we choose N > 0 such that
+∞
∑
n=N

( eTλn

1+Tλn
)
2
∣gn ∣2 ≤ ε2

2 . Thus

∥u (0) − uα (0)∥2 =
N
∑
n=1

(F̃ (λ))2 ∣un (0)∣2 +
+∞
∑
n=N

(F̃ (λn))
2 ∣un (0)∣2 . (29)

We observe that F̃ (λn) = αλr
n

αλr
n+(1+Tλn)e−Tλn ≤ 1, then we can write

+∞
∑
n=N

[F̃ (λn)]
2 ∣un (0)∣2 ≤

+∞
∑
n=N

∣un (0)∣2 ≤
ε2

2 .

The other quantity can be estimated as follows

N
∑
n=1

( αλrneTλn

[αλrn + (1 + Tλn) e−Tλn] (1 + Tλn)
)
2

∣gn ∣2 =
N
∑
n=1

[ αλrn
[αλrn + (1 + Tλn) e−Tλn]]

2

∣un (0)∣2

=
N
∑
n=1

[F̃ (λn)]
2 ∣un (0)∣2

≤ [ sup
1≤n≤N

F̃ (λn)]
2 N
∑
n=1

∣un (0)∣2 .

It is clear that
F̃ (λn) =

αλrn
αλrn + (1 + Tλn) e−Tλn

≤ αλrn
(1 + Tλn) e−Tλn

≤ αλrneTλn

1 + Tλn
,

and λn ≤ λN implies that
F̃ (λn) ≤

αλrn
(1 + Tλn)

eTλn ≤ αλrN eTλN .

It follows that
sup
1≤n≤N

F̃ (λn) ≤ αλrN eTλN ,

and consequently
N
∑
n=1

(F̃ (λn))
2 ∣un(0)∣2 ≤ [αλrN eTλN ]

2
∥u (0)∥2 .

If we choose the parameter α such that αλrN eTλN ∥u (0)∥ ≤ ε√
2
, we obtain

∥u (0) − uα (0)∥2 ≤ [αλrN eTλN ]
2
∥u (0)∥2 + ε

2

2

≤ ε2

2 + ε
2

2 = ε2.

Which shows that
uα (0) → u (0) , as α→ 0.

To complete the proof, it remains to show that

∥A (u (0) − uα (0)) ∥ → 0, as α→ 0.
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We compute

∥A (u (0) − uα (0))∥2 =
+∞
∑
n=1

( αλr+1n eTλn

[αλrn + (1 + Tλn) e−Tλn] (1 + Tλn)
)
2

∣gn ∣2

=
+∞
∑
n=N

[F̃ (λn)]
2 ∣λnun (0)∣2 .

We have

u(0) ∈ D(A) ⇐⇒ ∥Au (0)∥2 =
+∞
∑
n=1

( λne
Tλn

1 + Tλn
)
2

∣gn ∣2 < +∞.

For ε > 0, we choose N > 0 such that

+∞
∑
n=N

∣λnun (0)∣2 =
+∞
∑
n=N

( λne
Tλn

1 + Tλn
)
2

∣gn ∣2 <
ε2

2 .

Then, we can write
+∞
∑
n=N

(F̃ (λn))
2 ∣λnun (0)∣2 ≤

+∞
∑
n=N

∣λnun (0)∣2 ≤
ε2

2 .

and
N
∑
n=1

(F̃ (λn))
2 ∣λnun (0)∣2 ≤ sup

1≤n≤N
[F̃ (λn)]

N
∑
n=1

∣λnun (0)∣2

≤ [αλrN eTλN ]
2
∥Au (0)∥2 .

If we choose the parameter α such that [αλrN eTλN ] ∥Au (0)∥ ≤ ε√
2
, we get

∥A (u (0) − uα (0))∥2 ≤ [αλrN eTλN ]
2
∥Au (0)∥2 + ε

2

2

≤ ε2

2 + ε
2

2 = ε
2.

Which shows that
A (u (0) − uα (0)) → 0, as α→ 0.

In conclusion,

sup
0≤t≤T

{∥u (t) − uα (t)∥ + ∥A (u (t) − uα (t))∥} ≤ (30)

{∥u (0) − uα (0)∥ + ∥A (u (0) − uα (0))∥} → 0,α→ 0

Theorem 3.5. If u(0) ∈ D(A(θ+1)) such that ∥A(θ+1)u(0)∥ ≤ Eθ, and 1 ≤ r ≤ θ, then we have the following
estimate

sup
0≤t≤T

{∥u (t) − uα (t)∥ + ∥A (u (t) − uα (t))∥} ≤ (31)

{∥u (0) − uα (0)∥ + ∥A (u (0) − uα (0))∥} ≤
⎡⎢⎢⎢⎢⎣

C5
ln ( C4

α )

⎤⎥⎥⎥⎥⎦

θ

Eθ

Proof. We have

∥u (0) − uα (0)∥2 =
+∞
∑
n=1

⎛
⎝

αλrneTλnλ
−(θ+1)
n λ

(θ+1)
n

[αλrn + (1 + Tλn) e−Tλn] (1 + Tλn)
⎞
⎠

2

∣gn ∣2

=
+∞
∑
n=1

⎛
⎝

αλrnλ
−(θ+1)
n

[αλrn + (1 + Tλn) e−Tλn]
⎞
⎠

2
⎛
⎝
λ
(θ+1)
n eTλn

1 + Tλn
⎞
⎠

2

∣gn ∣2



1658 | K. Besma et al.

=
+∞
∑
n=1

⎛
⎝

αλ
−(θ+1)
n

[α + (1 + Tλn)λ−rn e−Tλn]
⎞
⎠

2
⎛
⎝
λ
(θ+1)
n eTλn

1 + Tλn
⎞
⎠

2

∣gn ∣2

=
+∞
∑
n=1

(αĜα (λn))
2 ∣λ(θ+1)n un (0)∣

2
,

where

Ĝα (λn) =
λ
−(θ+1)
n

[α + (1 + Tλn)λ−rn e−Tλn] =
1

λn [αλθn + (1 + Tλn)λθ−rn e−Tλn]
.

If r ≤ θ, then

Ĝα (λn) ≤
1

λ1 [αλθn + (1 + Tλn)λθ−r1 e−Tλn]

= 1

λθ+1−r1 [ α
λθ−r
1
λθn + (1 + Tλn) e−Tλn]

= 1
λθ+1−r1

H̃β(λn),

where β = α
λθ−r
1

. Now by (23), we conclude that

sup
n≥1

1

λθ+1−r1 [ α
λθ−r
1
λθn + (1 + Tλn) e−Tλn]

= 1
λθ+1−r1

sup
λ≥λ1

H̃β(λn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ−θ1 [λ1− 1
θ

1 ]
r

α
1
θ ln(λθ−r

1
α

)
, 0 < θ < 1,

λ−11

α[ln(λθ−r
1
α

)]
θ , θ ≥ 1.

(32)

If θ ≥ 1, we can write

∥u (0) − uα (0)∥2 ≤
+∞
∑
n=1

(αĜα (λn))
2 ∣λ(θ+1)n un (0)∣

2
(33)

≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ−11

[ln(λ
θ−r
1
α )]

θ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

2
+∞
∑
n=1

∣λθ+1n un (0)∣
2

(34)

≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ−11

[ln(λ
θ−r
1
α )]

θ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

2

∥A(θ+1)u(0)∥
2
, (35)

and

∥A (u (0) − uα (0))∥2 =
+∞
∑
n=1

( αλrnλ
−θ
n

[αλrn + (1 + Tλn) e−Tλn])
2

(λθ+1n
eTλn

(1 + Tλn)
)
2

∣gn ∣2

≤
+∞
∑
n=1

⎛
⎝

α

[αλθn + (1 + Tλn)λθ−rn e−Tλn]
⎞
⎠

2

∣λθ+1n un (0)∣
2

≤
+∞
∑
n=1

⎛
⎜⎜⎜
⎝

α

λθ−r1 [ α
λθ−r
1
λθn + (1 + Tλn) e−Tλn]

⎞
⎟⎟⎟
⎠

2

∣λθ+1n un (0)∣
2

≤ α
⎛
⎜⎜⎜
⎝
sup
n≥1

1

λθ−r1 [ α
λθ−r
1
λθn + (1 + Tλn) e−Tλn]

⎞
⎟⎟⎟
⎠

2
+∞
∑
n=1

∣λθ+1n un (0)∣
2
.
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By virtue of (23), we obtain

∥A (u (0) − uα (0))∥2 ≤ 1

[ln(λ
θ−r
1
α )]

2θ ∥Aθ+1u (0)∥
2
. (36)

Combining (33) and (36), we obtain

sup
0≤t≤T

{∥u (t) − uα (t)∥ + ∥A (u (t) − uα (t))∥} ≤ (37)

{∥u (0) − uα (0)∥ + ∥A (u (0) − uα (0))∥} ≤ 1

[ln(λ
θ−r
1
α )]

θ
(λ−11 + 1) ∥Aθ+1u (0)∥

≤ C5
[ln ( C4

α )]θ
Eθ , (38)

where C4 = λθ−r1 and C5 = λ−11 + 1.

We conclude this paper by constructing a family of regularizing operators for the problem 1.

De�nition 3.6. A family {Rα(t), α > 0, t ∈ [0, T]} ⊂ L(H) is called a family of regularizing operators for
the problem (1) if for each solution u(t), 0 ≤ t ≤ T of (1) with �nal element g, and for any η > 0, there exists
α(η) > 0, such that

α(η) → 0, η → 0, (39)
∥Rα(η)(t)gη − u(t)∥ → 0, η → 0, (40)

for each t ∈ [0, T] provided that gη satis�es ∥gη − g∥ ≤ η.

De�ne Rα(t) = (I + tA) [αAr + (1 + TA) e−TA]−1 e−tA. It is clear that Rα(t) ∈ L(H) (see (19)). In the following
we will show that Rα(t) is a family of regularizing operators for the problem 1.

Theorem 3.7. Under the assumption g ∈ E1, the condition (40) holds.

Proof. We have

∆α(t) = ∥Rα(t)gη − u(t)∥ ≤ ∥Rα(t)(gη − g)∥ + ∥Rα(t)g − u(t)∥ = ∆1(t) +∆2(t),

where

∆1(t) = ∥Rα(t)(gη − g)∥ ≤ κ(α)η,
∆2(t) = ∥Rα(t)g − u(t)∥.

We observe that

∆1(t) ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

η

α
1
r ln( 1

α
)
, 0 < r < 1,

η

α[ln( 1
α
)]r , r ≥ 1.

Choose α = η r
2 if 0 < r < 1, and α = √

η if r ≥ 1, it follows

∆1(t) ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
η

ln( 1
η1/r )

, 0 < r < 1,
√
η

[ln( 1√
η
)]r , r ≥ 1,

Ð→ 0, as η Ð→ 0. (41)

Now, by Theorem 3.3 we have

∆2(t) = ∥uα(η)(t) − u(t)∥ → 0, as η Ð→ 0, (42)

uniformly in t. Combining (41) and (42) we obtain

sup
0≤t≤T

∥Rα(t)gη − u(t)∥ Ð→ 0, as η Ð→ 0.

This shows that Rα(t) is a family of regularizing operators for the problem 1.
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4 Numerical results
In this sectionwe give a two-dimensional numerical test to show the feasibility and e�ciency of the proposed
method. Numerical experiments where carried out using MATLAB.

We consider the following inverse problem
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( ∂
∂t −

∂2
∂x2 )

2
u(x, t) = 0, x ∈ (0, π), t ∈ (0, 1),

u(0, t) = u(π, t) = 0, t ∈ (0, 1),
u(x, 1) = g(x), ut(x, 0) = 0, x ∈ [0, π],

(43)

where f(x) = u(x, 0) is the unknown initial condition and u(x, 1) = g(x) is the �nal condition.
It is well known that the operator

A = − ∂2

∂x2
, D(A) = H1

0(0, π) ∩ H2(0, π) ⊂ H = L2(0, π),

is positive, self-adjoint with compact resolvent (A is diagonalizable).
The eigenpairs (λn , φn) of A are

λn = n2, φn(x) =
√

2
π
sin(nx), n ∈ N∗.

In this case, the formula (7) takes the form

f(x) = u(x, 0) = 2
π

+∞
∑
n=1

1
1 + n2

en
2 ⎛
⎜
⎝

π

∫
0

g(x) sin(nx)dx
⎞
⎟
⎠
sin(nx). (44)

In the following, we consider an example which has an exact expression of solutions (u(x, t), f(x)).

Example. If u(x, 0) = φ1(x) =
√

2
π sin(x), then the function

u(x, t) =
∞
∑
n=1

(1 + tλn)e−tλn⟨φ1, φn⟩φn(x) = (1 + tλ1)e−tλ1φ1(x) =
√

2
π
(1 + tλ1)e−tλ1 sin(x)

is the exact solution of the problem (43). Consequently, the data function is g(x) = u(x, 1) =
√

2
π
2
e sin(x).

By using the central di�erencewith step length h = π
N+1 to approximate the �rst derivative ux and the second

derivative uxx, we can get the following semi-discret problem (ordinary di�erential equation):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( d
dt −Ah)

2 u(xi , t) = 0, xi = ih, i = 1, . . . N, t ∈ (0, 1),
u(x0 = 0, t) = u(xN+1 = π, t) = 0, t ∈ (0, 1),
u(xi , 0) = g(xi), ut(xi , 0) = 0, xi = ih, i = 1, . . . N,

(45)

where Ah is the discretisation matrix stemming from the operator A = − d2
dx2 :

Ah =
1
h2

Tridiag(−1, 2,−1) ∈ MN(R)

is a symmetric, positive de�nite matrix. We assume that it is �ne enough so that the discretization errors are
small compared to the uncertainty δ of the data; this means that Ah is a good approximation of the di�erential
operator A = − d2

dx2 , whose unboundedness is re�ected in a large norm of Ah. The eigenpairs (µk , ek) of Ah are
given by

µk = 4(N + 1
π

)
2
sin2 ( kπ

2(N + 1)) , ek = (sin( jkπ
N + 1))

N

j=1
, k = 1 . . . N .

Adding a random distributed perturbation (obtained by the Matlab command randn) to each data function, we
obtain the vector gδ:

gδ = g + εrandn(size(g)),
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where ε indicates the noise level of the measurement data and the function "randn(.)" generates arrays of
randomnumberswhose elements are normally distributedwithmean0, varianceσ2 = 1, and standarddeviation
σ = 1. "randn(size(g))" returns an array of random entries that is the same size as g. The bound on the
measurement error δ can be measured in the sense of Root Mean Square Error (RMSE) according to

δ = ∥gδ − g∥∗ = ( 1
N

N
∑
i=1

(g(xi) − gδ(xi))
2
)
1/2

.

The discret approximation of (18) takes the form

uδα(xj , 0) = fα,δ(xj) = (αAr
h + (IN +Ah)e−Ah)−1gδ(xj), j = 1 . . . N, (46)

where IN is the identity matrix.
In our numerical computations we always take N = 40 and consider only the cases when ε = 0.001, 0.01.

The regularization parameter (α, r) is chosen in the following way: for any �xed r ∈ {0, 1, 2, 3}, we try to �nd
a satisfactory error by varying the second parameter α = εs with step length s = 0.1. We note α0 one of the
best choice which gives this result. Now, for α = α0 �xed, we try to �nd an acceptable error by varying the �rst
parameter r = 0, 1, 2, 3 in order to obtain the best possible convergence rate. It is important to note that this
choice is of heuristic nature and the multiparameter discrepancy principle is quite scarce in the literature.

The relative error RE(f) is given by

RE(f) = ∥fα,δ − f∥∗
∥f∥∗

.

Conclusion and discussion
Numerical results are shown in Figures 1-8 and Tables 1-2.

Fig. 1. ε (noise level) =0.001, α (regularization parameter)=0.015849, r (relaxation parameter)=0

In this paper, we have proposed an improved two-parameter regularization method (MQBVM) to solve an ill-
posed biparabolic problem. The convergence and stability estimates have been obtained under a priori bound
assumptions for the exact solution. Finally, some numerical tests show that our proposed regularization
method is e�ective and stable.
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Fig. 2. ε (noise level) =0.001, α (regularization parameter)=0.015849,r (relaxation parameter)=1

Fig. 3. ε (noise level) =0.001, α (regularization parameter)=0.015849,r (relaxation parameter)=2

Table 1. The absolute errors Era for �xed α and for various value of r

N ε α r RE
40 0.001 0.015849 0 0.0920
40 0.001 0.015849 1 0.0035
40 0.001 0.015849 2 0.0019
40 0.001 0.015849 3 0.0003501
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Fig. 4. ε (noise level) =0.001, α (regularization parameter)=0.015849,r (relaxation parameter)=3

Fig. 5. ε (noise level) =0.01, α (regularization parameter)=0.025119, r (relaxation parameter)=0

Table 2. The absolute errors Era for �xed α and for various value of r

N ε α r RE
40 0.01 0.025119 0 0.1707
40 0.01 0.025119 1 0.0103
40 0.01 0.025119 2 0.0070
40 0.01 0.025119 3 0.0061

According to the numerical tests, we observe the following regularizing e�ect:
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Fig. 6. ε (noise level) =0.01, α (regularization parameter)=0.025119, r (relaxation parameter)=1

Fig. 7. ε (noise level) =0.01, α (regularization parameter)=0.025119, r (relaxation parameter)=2

● In the case r = 0, ε = 0.001 and α = 0.015849 (resp. r = 0, ε = 0.01 and α = 0.025119), the
approximate solution is far from the exact solution. But for the case r = 1, 2, 3, we observe that the solution
becomes precise and very near to the exact solution (in particular for r = 2, 3).
This shows that our approach has a nice regularizing e�ect and gives a better approximationwith comparison
to the classical QBV-method.

Acknowledgement: The authors thank the referees for their constructive comments which improved this
paper.
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Fig. 8. ε (noise level) =0.01, α (regularization parameter)=0.025119, r (relaxation parameter)=3
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