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Abstract: In this paper, the weighted multilinear p-adic Hardy operators are introduced, and their sharp
bounds are obtained on the product of p-adic Lebesgue spaces, and the product of p-adic central Morrey
spaces, the product of p-adic Morrey spaces, respectively. Moreover, we establish the boundedness of com-
mutators of the weighted multilinear p-adic Hardy operators on the product of p-adic central Morrey spaces.
However, it’s worth mentioning that these results are different from that on Euclidean spaces due to the
special structure of the p-adic fields.
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1 Introduction

In recent years, p-adic analysis has gathered a lot of attention by its applications in many aspects of
mathematical physics, such as quantum mechanics, the probability theory and the dynamical systems [1,2].
On the other hand, it plays a crucial role in pseudo-differential equations, wavelet theory and harmonic
analysis, etc. (see [3-7,10]).

For a prime number p, let Q, be the field of p-adic numbers. It is defined as the completion of the field of
rational numbers Q, with respect to the non-Archimedean p-adic norm |- |,. This norm is defined as follows:
|0|p = O; if any non-zero rational number x is represented as x = p” 7, where v is an integer and the integers
m, n are indivisible by p, then |x|, = p~”. It’s not hard to see that the norm satisfies the following properties:

Ixylp = Xlplylp, [x+Ylp < max{[x|p, |y[p}-

Moreover, if [x|p # |y|p, then |x + y|p = max{|x|p, |y|p}. It is well known that Q) is a typical model of non-
Archimedean local fields. From the standard p-adic analysis, we know that any non-zero element x of Q, can
be uniquely represented as a canonical form x = p”(xo + X1p + x2p + --+), where x; € {0,1,...,p — 1} and
Xo *+ 0, we then have |x|p = p™7. Let Zp = {x € Qp : |x|p < 1} be the class of all p-adic integrals in Q, and
denote Zj = Zp\{0}.

The space Qy consists of elements x = (x1, X2,...,Xn), Where x; € Qp, i =1, 2,..., n. The p-adic norm
on Qy is

IX|p == max{|xilp}, xeQp.
1<i<n
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Denote by B,(a) = {x € Qp : [x — a|p < p”}, the ball with center at a ¢ Qp and radius p”, and by
Sy(a) = {x € Qp : |x—al, = p7} the sphere with center at a ¢ Qy and radius p”, v € Z. It is clear that
Sy(a) =By(a) ~ By-1(a), and we set B, (0) = By and S4(0) = S,.

Since Qj, is a locally compact commutative group with respect to addition, it follows from the standard
analysis that there exists a Haar measure dx on Qy, which is unique up to a positive constant factor and is
translation invariant, i.e., d(x + a) = dx. We normalize the measure dx such that

[ ax=1BoO)lu - 1,
Bo(0)
where |B|y denotes the Haar measure of a measure subset B of Q. By simple calculation, we can obtain that
By(@)lu=p"", [Sy(@)lu=p""(1-p").
The classical Hardy operator # is defined by

HF(x) = % [ rwae, x>o,
(0]

where the function f is a nonnegative integrable function on R*. A celebrated integral inequality, due to

Hardy [8], states that
q

q-1
holds for 1 < g < o0, and the constant factor q%'l is the best value and it is the norm of the operator #, that is,

1Hf | za(rey < Ifllza(m+ys

1H | Lo rey—La(rry = ﬁ

N-dimensional Hardy operator was introduced by Christ and Grafakos in [9] as follows:

HF(x) 1= — [ fwat, xer's oy,

Onlx|m
LY

where (2, is the volume of the unit ball in R". The norm of  on LY(R") was evaluated and found to be equal
to that of the classical Hardy operator.
In 2012, Fu et al. [10] defined the n-dimensional p-adic Hardy operator as follows:
1
—_— f(t)dt, xeQy~ {0},
IB(O, [x[p) | P

[tlp<[xlp

HPf(x) =

where f is a nonnegative measurable function on Qjp, B(0, |x|,) is a ball in Q) with center at 0 ¢ Q, and
radius |x|p, and they proved the sharp estimate of the p-adic Hardy operator on Lebesgue spaces with power
weights.

In 1984, Carton-Lebrun and Fosset [11] defined the weighted Hardy average operator ., by

Ho(F) (%) ::ff(tx)go(t)dt, X eR",
0

where ¢ : [0,1] - [0, o0) is a function, and showed the boundedness of H, on Lebesgue and BMO(R")
spaces. Evidently the operator /. deeply depends on the nonnegative function ¢. For example, whenn = 1
and ¢(x) = 1 for x € [0, 1], the operator H,, is just reduced to the classical Hardy operator.

In 2006, Rim and Lee [13] defined the weighted p-adic Hardy operator 7%, by

HN() = [ FEoe(dt, xeq),
Zy

where ¢ is a nonnegative function defined on Z,, and gave the characterization of function ¢ for which #%,
is bounded on L7(Qy), 1 < g < oo, they also obtained the corresponding operator norm.

Morrey [12] introduced the L4 (R™) spaces to study the local behavior of solutions to second order elliptic
partial differential equations. The p-adic Morrey space is defined as follows.
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Definition 1.1 ([13]). Let 1 < q < oo and X > —1/q. The p-adic Morrey space [lq”\((@;’) is defined by

LYNQp) ={f € L, (Qp) : If | 2o (ay) < 0}

where L y
q
lewap= sup (g [ IFOO1) " < oo
L82(Qp) ae@gﬁez(wﬂa)u)\qB() )
~y(a

Remark 1.2. Itis clear that L7~ *9(Q}) = L9(Q}), £L7°(Q}) = L= (Q}).

In 2017, Wu and Fu [14] proved sufficient and necessary conditions of weighted functions, for which the
weighted p-adic Hardy operators are bounded on p-adic central Morrey spaces.
The p-adic central Morrey space is defined as follows.

Definition 1.3. Let A e R and 1 < q < oo . The p-adic central Morrey space Bq”\((@g) is defined by

1 1/q
Hf”quA(Q;) = sug (W [ |f(X)|q) < 00,
ye v 7,

where B = B(0). It is clear that B%4 (Qp) = LY(Qp), when X < —1/q, the space B**(Qp) reduces to {0},
therefore, we can only consider the case A > -1/q.If 1 < g1 < g2 < oo, by Holder’s inequality

B (@) € B (Qp)

for X eR.

Definition 1.4 ([10]). Let 1 < g < o0. A function f € L (Qp) is said to be CMO?(Qy), if

loc

If] = su (; / If(x) - f |qu)1/q
S AV NO PRV o |

where

1
fBW(O):7|B7(O)|H f f(x)dx.

B.(0)

The study of multilinear averaging operators is traced to the multilinear singular integral operator theory [15],
and motivated not only the generalization of the theory of linear ones but also their natural appearance in
analysis. For a more complete account on multilinear opeartors, we refer to [16-19] and the references therein.

In this paper, we consider the multilinear version of weighted p-adic Hardy operators in the p-adic fields.
Firstly, we introduce the weighted multilinear p-adic Hardy operators as follows.

Definition 1.5. Let m € N, x € Qy, and ¢ be a nonnegative integrable function on Zy, x Z,, x---x Z. The weighted
multilinear p-adic Hardy operator Hfo,m is defined as

- m — —
W) = [ T,
(zpm =1
where f = (fi,...,fm), £ := (t1, ..., tm), dt := dt1--dtm, and f; (i = 1,..., m) are measurable functions on
Qp. Whenm =1, ’Hi)m is reduced to the weighted p-adic Hardy operators HY,.

The outline of the paper is as follows. In Section 2, we furnish sharp estimate of weighted multilinear p-adic
Hardy operator on the product of p-adic Lebesgue spaces, and then the result is extended to the product of
p-adic central Morrey spaces, the product of p-adic Morrey spaces, respectively. In Section 3, we present the
boundedness of commutators of the weighted multilinear p-adic Hardy operators.
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2 Sharp estimates of weighted multilinear p-adic Hardy operator

We begin with the following sharp boundedness of Hfa,m on the product of p-adic Lebesgue spaces.

Theorem2.1. Let1 < q,g;i < o0,i=1,...,m and% = ,711 ot qi,,.' Then H%, ,,, is bounded from L7 (Qjp) x
L%(Qp) x -+ x LI"(Qp) to LI(Qp) if and only if
m . - —
A = f \til," ¥ o (7)d < oo. (1)

Joi=1
)

Moreover,
p
[He,m | Lo (Qu)xL92 (Q1) x---xLam (Q1)—La(Qn) = Am.

Proof. Without loss of generality, we consider only the situation when m = 2. Actually, a similar procedure
works for all m € N.
Suppose that (1) holds. Using Minkowski’s inequality yields

H Gl = ([ | [ Aoneoe, b)dndo|'ax) "

@ (Z)

1/q
< f (f|f1(t1x)fz(tzx)|qu) o(t1, t2)dt dt>.
@) @

By Holder’s inequality with % = = + -, we see that

1.1
a4’

E ) 1/qi
o)l < [ TT( [ It ax) e, t)dtdts
(Z;)Z i=1 Q;’,

S(ﬁ”ﬁhﬂ(@;)) / (H|tx|pn/q’) (t1, t2)dtrdts.

(Z;)Z i=1
Thus, 7—[1;, , maps the product of p-adic Lebesgue spaces L7 (Qy) x L% (Qj) to L(Qy) and

p
15 211201 (@pyxLe @pyx—Lacay) < Az &)
To see the necessity, forany 0 <& < 1 and |¢], > 1, we take

O, i 1)
£ (%) { g ks G)

Ixilp ™ ", |xilp > 1.

An elementary calculation gives that

1-p™"
12 0o oy = 12 1L ) = 1_pea

Consequently, we have

IH2, > (F15 3) e can

fIXI_" e / f ™ e “o(tr, )dtrdts )’ dx}

|x| —|t1‘P<1 \x\ —‘t2|p<1

Qe

z{ f |x|;,”*"25 f f Its |7ﬁ77|t2|p‘“ go(tl,tz)dtldtz) dx}

xlp>1 S\tl\p<1 §|f2|p<1
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n T q 1/q
2{ [ Ix[," qza( f _[ Lot |pq1 "tz |pq1 <P(t1,tz)dt1dtz) dx}
[X|p>lelp |s\ <|ta]p<1 2 sltalp<1
,L,ﬁ o 1/q
f / talp ™ |t2|p W(tl,tz)dhdtz)( f Ix|;" qzedx)
Ty Slfalp<t 2 <ltzly<t Iy 2lely

n _10¢

([ b heh et t)dtde) e 11 -

i=1
\I <|t1]p< 1 |p <|t]p<1

Therefore,

_L_E
f f 6,7 )" et t)dtdt < - ‘ =
|‘ —Itllp p ‘tZ‘P
Now take e = p™%, k = 1,2, --. Then lelp = p* > 1. Letting k approach to oo, then ¢ approaches to 0 and
kay
lel,™ = p o approaches to 1. Then by Fatou’s Lemma, we obtain
[ 165" 6 e b, ) dtads < oo.
Z; I

and

I 15,2 o (@pyxze: @nyx—La(ap) 2 Az (4)
Combining (2) and (4) then finishes the proof. O

Next, we extend the result in Theorem 2.1 to the product of p-adic central Morrey spaces.

Theorem 2.2. Let1<q<qi<oo,%:%+~--+qim,/\:A1+--~+>\mand—1/q,-gAi<0,i:1,...,m.
W If
m N
= [ TTI6 (D < oo. s
@pm

Then, H,  is bounded from B4* (Q} ) x B2 (Q}) x --- x Bim*n (Qp) to B (Qp ) with its operator norm not
more that Am.

(ii) Assume that A\1q1 = -~ = Amqm. In the case the condition (5) is also necessary for the boundedness of
HY, BIA1(QR) x BI2A2(QR) x - x BImAn(QI) - B (QU). Moreover,

» -
H,Hap,m |l a1 na (Qn)xBI2:22 (Q1) -+ x Bam:Am (Q1) »B4A (Q1) = Am.

Proof. By similarity, we only give the proof in the case m = 2.

When -1/g; = \;, i = 1, 2, then Theorem 2.2 is just Theorem 2.1.

Next we consider the case that —-1/q; < \; < 0, i = 1, 2. Let y € Z, t;B = B(0, |ti[,p”) and A; < oo. Since
1/q = 1/q1 +1/q2, by Minkowski’s inequality and Hélder’s inequality, we see that, for all balls B = B(0, p”),

(|B mEr f 0 L (Poofax)

(o [ T oot
(Z;)Z vIH
2

s/H(

@y 1

) 1 ) /g . .
= f |t1|;/\1|t2;)\ H(W[|ﬁ(X)|q'dX) @(t)dt
iD~vy|H

(23)? =1 tB,

B o f (ol ax) " (@) di
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ni A i
< il @ falgen (@) [ 1615V el o (E) .
72
This means that
17452 1121 oy xpona (@) —Ben g < A2 ©)

For the necessity when \1q1 = A2q2, let fi(x) = [x[i* and f>(x) = [x[3** for all x € Qp\{0}, and f1(0) =
f2(0) := 0. Then for any B = B(0, p” ), we have

1 f ) 1/qi
—— o | fito|"dx
\TARET P )
_ (pfn'y(l+/\,vq,~) i /pnkAiqidX)l/Qi
k=—oosk

(1= p AN S k(g )
(a-p™p Xp )
1-p™ 1/ai
- (1 _p—n(miqi)) ’
where the series converge due to \; > —1/g;. Then f; € Bq"”\f((@;). Since A = A\ + Ay and -1/g; < \; < O,
1<g<qgij<oo,i=1,2,wehave

(|B mEr f 2 (Pl dx)
YIH
(. wqf ) [ Il b
(Z3)?
1-p~ /g WAL A g
:(m) f\tllp |ta2]p 2 (D) dt
(%

*"(1+)\1¢11))1/111 (1 _p*"(1+>\2112))1/(12
(1 - pn(+29))1/q

= fa g Q) fe s (@) 2P

< [ 1ty eal e b dt

)
= Ualsnrs @)f2llpee (@) [ 166 oD,
7y
since A\1q1 = \2g>. Then,
A <[ H 5l g (gpywbona (g o () < - @)

Combining (6) and (7) then concludes the proof. This finishes the proof of the Theorem 2.2.
We remark that Theorem 2.2 when m = 1 goes back to [14] Theorem 2.3. O

Next, we give sharp estimate of weighted multilinear p-adic Hardy operator on the product of p-adic Morrey
spaces.

Theorem 2.3. Let1<q<qi<oo,%:%+~-~+qim,/\:)\1+--~+/\mand—1/qi<>\,-<0,i:1,...,m.
I
m N e g
mi= [ TTItG e(DdE < oo. ®
(Z*)"’ i=1

Then, %, , is bounded from LAA(QR) x L9222(QR) x - x LI (QR) to L9 (Q}) with its operator norm
not more that Bp.
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(ii) Assume that \1q1 = --- = Amqm. In the case the condition (8) is also necessary for the boundedness of
HE e L9 (QR) x LI222(Qp) x -+ x LI (QF) - LT (Q}). Moreover,

4
[Houml conns opyxcszda @y wexcamm (@g) cor gy = B

Proof. By similarity, we only give the proof in the case m = 2. Suppose 3, < oo. Since 1/q = 1/q1 + 1/q2, by
Minkowski’s inequality and Holder’s inequality, we see that

1 r: 1/q
PN [HE,,(H)(0)d
(|B"/(a)|H )‘qBv(/a) 2 X)

2 1/ o
|B<a)1|HA J Iiottax) "o
¥ i

By(a)

[Vt ax) " iyt
(@

(z2)?
2 1

1+iq;
(Z;)? i=1 |B’Y(a)|H " qB

2
1
= [ 1Bl T (

(Z;)Z i=1 |tiB"/(a)‘H1+)\iqi

A A T
< Uil can @)1l cons (@) [ 16 Il o(B)dE.
(Z3)?

[ reomax) e

tiB (a)

This means that
H’HI;,Z ”quvh (Q;)xng,/\z (Q1)—>B2>(Qr) < Bs. )

For the necessity when A1q1 = A2z, let fi(x) = |x[2™ and f>(x) = [x[3** for all x € Qp\{0}, and f1(0) =
f2(0) := 0. Then for any B = B(a, p”), we need to show that f; ¢ £%*(Q}). Considering the following two
cases.

(D If|al, > p” and x € B~(a), then |x|, = max{|x — alp, |al,} > p”. Since-1/q; < \; < 0, we have
p ¥ p ps |Alp

1 .
ﬁ f ‘le i ldX

|B’Y(a)|H B,Y(LI)
1 -
<——m p Tidx =1.
1+\iq; _[
|B’Y(a)|H B,Y(LI)

(I If |a|p < p” and x € By(a), then |x|, = max{|x - alp, |a|p} < p”. Therefore, x € B, (a). Recall that two balls
in Qy are either disjoint or one is contained in the other [20]. So we have B, (a) = B, thus

1 g
- dx
1+igi [ |X‘p
|B'Y(a)‘H B,Y(a)

1 / nAigi
= o [ Xl ax
|B’Y‘H +Aidi B’Y

__1-p
1 — pn(+Xhig)

From the previous discussion, we can see that f; € L‘,q"’k"((@z). By the similar estimates to the method of
Theorem 2.2, we have
By < “pr,zHL‘,‘IL*I(Q;)XLQZ'AZ(Q;)ﬁﬁqrA(Q;) < 00, (10)

Combining (9) and (10) then yields the desired result. O

We remark that Theorem 2.3 when m = 1 goes back to [14] Theorem 2.1.
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3 Boundedness of commutators of the weighted multilinear p-adic
Hardy operators

Now we introduce the definition for the multilinear version of the commutator of the weighted p-adic Hardy
operators. Let m > 2, and ¢ be a nonnegative integrable function on Zy x Zy x --- x Zp,and b; (i=1,...,m)
be locally integral functions on Q. We define

HEE, [ (ﬁﬂ(tix))(ﬁl(bi(x)—bi(tix)))go(f)df, X € Qp.
zpm =

Then we have the following multilinear result.

Theorem3.1. Let1<g<gi<oo,1<p<oo,-1/q; <X <0,i= 1,...,m,suchthat% = EJ’ +q—+p1+ +p—
A=A+ + A If

m = f [Tlt: <p(t)(1_[logp‘t| )d < co.

I i=1
()

Then HY%, is bounded from B (QQ) x B9 (Q) x---x BT (QR) to B QL) forall b = (by, ba, ..., bm) €
CMOP (Q) x CMO?*(QR) x - x CMOP" (QR).

Proof. By similarity, we only consider the case that m = 2, that is, we assume B, < oo and just need to show
that

1955 (F) e o) < CB2Lf1 porns g 12 leanna gy »
where b = (b1, b,) ¢ CMO”(Qp) x CM0O”*(Qy). By Minkowski’s inequality we have

1 5= 1/q
(g [ e 00rax)
’YHB
zx 7z =1

< (ﬁf ffnlfl(tx)|n|b (x) - b(tx)|80(t1,t2)dl'1dt2) dX)
B—Y

< ff(wf(q|ﬁ(tix)|ﬁ|bi(x)—bi(tl-x)|)qu)1/q<p(t1,tz)dtldtz
zy Iy B, ¥ =

=L+ +I3 +I4+15 +I6,

where

/[ Bln / H|fn(tx)\H\b(x) blB|)qu)1/qu(t1,t2)dt1dt2,
ff 1Byl f Hlﬂ(tx)\H\b(tX) biz I)qu)l/qso(tl,tz)dtldtz,

/f Bl / H|ﬁ(tx>\H\b,B i) dx) (b1, £)dtdts,

f UG J T 5 800 - bua,

q 1/q
bj’Bw _bj,t,-Bﬁ,|) dX) go(tl,tz)dtldtz,
D(i.j)

b= [ [ (mﬁ(tix)\ > [Bi(x) - bis, [y(t%) - Bygn. ) 'dx) " o(tr, ) dtnder,
zy B, 7

D(i.j)
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1 2 q 1/q
I6: [[(m/(ﬂ‘fl(tl)(” Z ‘bi,B«,_bi,tiB,y||bj(tiX)_bj,t,'Ba,|) dX) go(tl,tz)dfldtz,

7x 7+ B, i=1 D(i,j)

and

A 1 .
D(J) = )5 (L2, D) bis, = 5 |Hfb,~, i=1,2.
viH g

Choose g < 51 < 00, g < S < cosuchthat1/sy =1/q1+1/p1,1/s2 =1/q2+1/p>. Then by Holder’s inequality,
we know that

Il [ f ~(tiX)|qidX)1/ H |B f |b (X) blB |P1dx) <P(t1,t2)dt1dtz
zy 7y i=1 i=1
S\BwlﬁffHI iy H( Mq flf,(x)|q’dx) Ha
Z* Z* i=1 i=1 |tlB | B’y

X |B ‘ f|b (X) sz |p1dX) so(tl,tz)dtldtz

i=

< \Bwlﬂllbl\lcmom @ 11l cmors o) Il poass cany I1f2 ez

2
fH\t,-|;>‘i(p(t1,t2)dt1dtz.

i=1
e

Similarly, we obtain

L < f[H |B’Y| f|fz(tlx)|qldx) “ 21(|B’1)I|H§[ |bi(tiX)—bi,tiB_y|pidX)l/pi<p(t1,tz)dtldtz

i

A Ai 1 ; 1/q;
B [ [T TT( g [ Vil ax)
i=1 |tiB’Y|H 4B,

ze zx =1

2
XH |tB f |b (X) bztB |pldX) @(tl,tz)dtldtz

i=1

< By [ |b1 | cmors ap) b1l emors capy 11 lposns gy 12l oana oy

2
X[fH|ti|1no)\i80(t1,f2)dt1dt2.

i1
7

It follows from 1/q = 1/s1 + 1/s; that 1 = g/s1 + q/s2. From 1/s1 = 1/q1 + 1/p1, 1/s2 = 1/q2 + 1/p2 and
Holder’s inequality, we deduce that

1 2 2 a \1/a
L= [ [(mo [ (TTA@ITTIbis, - biss,|) dx) ety t)dtdes
Z* Z* ‘B’Y|HBW i=1 i=1

f[n Bl f‘ﬁ(tlx)|51dx) (ililbi,Bv—bi,z,-BV|)g0(t1,tz)dt1dt2

. 1 . 1/qi
<iBfi [ [ THETT( g [ Vil ax)
i ‘tiB’Y|H tiB-,

i=1 i=1
Z; 73

2
X( [1Ibis, - bi,zl-37|)<,0(l‘1, ty)dtidt,
i=1

A = nA A
< 1Bl op falsnnep 2 [ [ apeR

1=0 k=0,
{p " <|talp<p'} {p~*1<|ta|p<p~*}
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<

( S 1bapin, — bopiip, | + 1Dy piip, bz,[i3w|)g0(t1, t2)dt1dt
j=0

|by ,pB, bl,p—f—le‘ + |bl,p+1)3w - bl,tiB.y|)

- T

A
< CIBy i [b1llemors o) D1 lemors (g 11 o xi amy I1F2 llear2 )
P P P P

2
i 14
x[/H|t,~|z log, £ |t| log, (7 (t1, ) dtds,
zx 7y =t p
where we use the fact that

1
b1,p, = b1,e,8,| = D |b1p-ip, — b1p1p, |+ b1 p-r-ip, — b1, |
j=0

<c(l+ 1)|\b1|\cmom<@")

< Clogp| i Ib1llemors @n)»

and

|ba,g., = ba,i,8, | < Clog, —— HbZHCMOPZ(Q")

If lp
We now estimate I,. Similarly, we choose 1 < s < oo suchthat1/q =1/g1 +1/g> +1/sand 1/s = 1/q1 + 1/q>.
Using Minkowski’s inequality and Holder’s inequality yields

D(i.))

[ [ st S (105100 1. I, b))

+(|Bin((f{|ﬁ(tix)|)(|b2(x)b2,37||b1,BWbl,,137|))qu)1/q]<p(t1,tz)dtldtz

1 s 1/s
[ f H B f it dx) " |B|H/ b1(x) - bu.s, Fdx)

1/s
X|b2’Bw - bZ,tsz‘ + ( / |b2(X) - bz’B«, |sdx) |b1’Bv - b1,t137|}tp(t1, tz)dt1dt2

’Y

<igh [ [ T H(| rRRTl flﬁ(X)lq’dX) o

Z*Z*ll i=1

1 2 q 1/q
I - f [ (TP f (T 5 15100 = bis, i, = i, [) %) o(tr, ) dtrde
r Tp v

{(an f|b1(x) brs,[dx) " 1b2s, - oo

‘ / |bz(x)—b2,37|5dx) |b1,37—b1,t137|}<p(t1,tz)dt1dt2

’Y

< 1B il cop ol eoscoyy [ [ TTHE

Z*Z*ll

|B| f|b1(X) byp |dX) |b2,., = ba,t,8, |

+ f |b2(X)—b2,Bv|st) |b1,13_Y —bl,t137|}50(t1,t2)dt1dt2

By
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A
< CIBy i [[b1llemors o) D1 | emors o) If1 | oras amy [1F2 1 oax2 )

2 A 2 p
X[fn'm; I@(tl,tz)(Hlng—)dtldtz_
i=1 i=1

% o i ltilp
It is apparent from the estimates of I1, I, I5 and I, that

A
Is < |BW|HH b, HCMO/“ @) Hbl ”CMOpl @) ||f1 ||Ba1v/\1 @) ||f2 ||B‘12v>\z @)

2
Xf_/H|ti|z)\i@(t1,fz)dt1dtz,
zx zx =1

and
A
I < |B7|HH b1 cmor @) Ib1[ cmoes @) If1lgarr (@) If2] gazrs @

ZHRY 2 P
X_//H“ip @(ﬁJz)(Hlng W)dﬁdtz.
Zx Iy i=1 i=1 ilp

Combining the estimates of I1, I», I, I4, Is and I gives
1 b 7 q 1/q
(W / |’H%2(f)(x)| dx)
YIH B’Y

< C|b1] cmon @) | b1l cmoes @) If2 Hqul @ If2 HquAz(@;)
2

2
« [ [ TT ettt [Thos, m )dtidt.
VASNAY i=1 i=1 1p
)4 p
This finishes the proof of Theorem 3.1. 0
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