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Abstract: The main purpose of this paper is to introduce a class of new extended forms of the beta function,
Gauss hypergeometric function and Appell-Lauricella hypergeometric functions by means of the modified
Bessel function of the third kind. Some typical generating relations for these extended hypergeometric
functions are obtained by defining the extension of the Riemann-Liouville fractional derivative operator.
Their connections with elementary functions and Fox’s H-function are also presented.
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1 Introduction

Extensions and generalizations of some known special functions are important both from the theoretical
and applied point of view. Also many extensions of fractional derivative operators have been developed
and applied by many authors (see [2-6, 11, 12, 19-21] and [17, 18]). These new extensions have proved
to be very useful in various fields such as physics, engineering, statistics, actuarial sciences, economics,
finance, survival analysis, life testing and telecommunications. The above-mentioned applications have
largely motivated our present study.

The extended incomplete gamma functions constructed by using the exponential function are defined
by

(0, 2;D) = Of 21 exp (—t— ‘%) dt  (R(p)>0; p=0,%(a)>0) )
and -
I'(a,z3p) = f ! exp (—t - ‘t—;) dt  (R(p)=0) )]

with |arg z| < «, which have been studied in detail by Chaudhry and Zubair (see, for example, [2] and [4]).
The extended incomplete gamma functions ~ («, z; p) and I (o, z; p) satisfy the following decomposition
formula

(o, z;p) + T (o, 23p) = I () = 2p°"*K,, (2vp)  (R(p)>0), (3)
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where I, () is called extended gamma function, and K, (z) is the modified Bessel function of the third kind,
or the Macdonald function with its integral representation given by (see [7])

Ka(2) :%fexp[—ff(zm] tSfl’ “
0
where %R(z) > 0 and
z 1
K,(Z‘t)zi(tﬁ’ ?). (5)

For o = =, we have

1
2

Ky (2) =+ /%e*z. (6)

Instead of using the exponential function, Chaudhry and Zubair extended (1) and (2) in the following form

(see [3], see also [4])
v (s X3P = 3 /27” [ et e (0K, (LZ) dt @)
0

[2p [ o2
Iy (a,x3p) = 7pft 3exp(—l‘)KlH% (I%)dt, (8)
X

where R(x) > 0, R(p) >0, —oc0 < a < oo.

Inspired by their construction of (7) and (8), we aim to introduce a class of new special functions and
fractional derivative operator by suitably using the modified Bessel function K (z).

The present paper is organized as follows: In Section 2, we first define the extended beta function
and study some of its properties such as different integral representations and its Mellin transform. Then
some extended hypergeometric functions are introduced by using the extended beta function. The extended
Riemann-Liouville type fractional derivative operator and its properties are given in Section 3. In Section 4,
the linear and bilinear generating relations for the extended hypergeometric functions are derived. Finally,
the Mellin transforms of the extended fractional derivative operator are determined in Section 5.

and

2 Extended beta and hypergeometric functions

This section is divided into two subsections. In subsection-l, we define the extended beta function
B, (x,y;p; m) and study some of its properties. In subsection-2, we introduce the extended Gauss hyper-
geometric function F,(a, b; c; z; p; m), the Appell hypergeometric functions Fi,,, F»,, and the Lauricella

hypergeometric function Fﬁ’, . and then obtain their integral representations. Throughout the present study,
we shall assume that 53(p) > 0 and m > 0.

2.1 Extended beta function

Definition 2.1. The extended beta function B,,(x, y; p; m) with R(p) > 0 is defined by

1
/2 _3 _3
Bu(X,y;p; m) = 7pftx 2 (1—t)y ZI(H"’% (M)dt, (9)
0

where x,y € C,m > 0 and R(u) > 0.
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Remark 2.2. Taking m = 1, u = 0 and making use of (6), (9) reduces to the extended beta function B,,(x, y; p)
defined by Chaudhry et al. [5, Eq. (1.7)]

) (10)

B(x,y;p) ::Bo(x,y;p;l):/tx_l(l—t)y_lexp( (-0
0

where R(p) >0and x,y € C.

Theorem 2.3. The following integral representations for the extended beta functions B, (x,y;p;m) with
R(p) > 0 are valid

BM(X’ VD m) =21 / zl / COSZ(X—I) 0 Sin2(y_1) 01{/“"‘1 (p Seczm 0 CSCZm 0) do (11)
T 0
[2p 7 w3 (1+u)™™
2 3 22m
22Xy zp 2 y b
\/ = f(1+u) (1-u) ((1 2)m)du. (13)

Proof. These formulas can be obtained by using the transformations t = cos? 6, t = Ty and t = ”” in (9),

respectively. O

Theorem 2.4. The following expression holds true

1 /2 r m du
BH(X,)GP,m):E l/BO(X_an_ sk (plu) s m) +3’ (14)
™ 5 ut

(x,yeC, m>0, R(p) >0, R(u)>0)

where k (p|u) is given by (5).

Proof. Expressing B,, (x,y;p, m) in its integral form with the help of (9), and taking (4) into account, we

obtain
2 1
Bu(x,y;p,m)ﬂ/:ft"Z(l—t)ysz;(ﬁn(lp_t)m)dt
0
1 oo
L ot Fep|or) ] au
-2 Woftx (1-1t) {Ofexp[ L | e [
=) 1
1 T et it e[ ) Ty] du
=5\ = Of{bft (1-1t) exp[ YL de T (15)

where « (p|u) is given by (5).
In order to write the inner integral as our extended beta function, we need the following variant of (6),

that is,
_ 2
e“=1/=zKi(z).
T 2

F o k(plw)
[ero -0 e |

Then, we have
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o\)
.
oo

Tt iy 2 K (plu) Kl( K (plu) )dt

Ttm(1-t)" tm(1-6)"
1
/ZK(plu)ftx ERENCTVAL S O g i LV P
2\tm(1-t)
0
:Bo( R LICOL m) (16)
Substituting (16) into (15) we obtain the required result (14). O

Remark 2.5. It is interesting to note that using the definition of the extended beta function (see, [11, 12]) we can
get the following expression for (9)

1 [2p 7 1 1\ du
B, (x,y;p,m)=§ 7/Bn(p|u);m,m (X—E,y—z)m, (17)
0

where the function By, » (x,y) is given by [12, p. 631, Eq. (2)]

b

tﬂ(l—t))‘)dt (x,yeC).

1
Bppx (%, y) = / et (1- t)y_l €xp (_
0
The following theorem establishes the relation between the Mellin transform
M{f (x);x—>s}= / xX*7H (x) dx
0

and the extended beta function.

Theorem 2.6. Letx,y ¢ C,m >0, R (u) > 0 and

9C{(S)>1113X{9‘i(,u),—%+i—E)%(X) _E+L_M}.

2m m ’ 2 2m m
Then we have the following relation
M (B, (x,y;p;m) :p — s}
A D(s+p)0(5-5)0 (x+ms+"2) I (y+ms+ ")
T onm ris+4)r
1T (s+p)I(5- 2y ( m-1 m—l)

X+ ms + ,Y+ms+
N ©
2 r(s+%)

BYr(x+y+2ms+m-1)

(18)

Proof. First, we have

M {By (x,y;psm) :p — s}

oo

:f %ftx”(l—t)y"l( (tm(1p t)m)dtdp
0 0

1 oo
2 x-3 y-3 f s+1-1 p
= — 1- K, i|————
e l - “*z(t'"(l—t)m)dp]dt

1 oo
f tXer(SJr%)*% (1 _ t)erm(SJr%)*% dt [ us+%71KM+% (u) du
0 0

’B

5}

f us"%‘ll(w% (u) du. (19)

0

) r'(x+ms+22)r(y+ms+21)
- I'(x+y+2ms+m-1)
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Since the Mellin transform of the Macdonald function K, (z) is given by [9, p. 37, Eq.(1.741)]:

m{KV(Z):Z—>S}:2572F(§+%)F(§—g), 20)

the last integral in (19) can be evaluated as

oo s+i-1 s-32 s p 1 S W 1 F(S+M)F(%_%)
fu Km%(u)duzz F(E+§+§)F(E_§):2 N p(§+g) ’ 1)
0 272
where we have used
22271 1
I'(2z) = I I =
2= (=+3)
Finally, we get
1 s+ (5-BYr(x+ms+ ) (y+ms+ 22
M {B, (x,y;p;m):p >s}=— (s+mI(5-5)r( ) (y 3 ) -

S 2m r($+4)r(x+y+2ms+m-1)

Now we can derive the Fox H-function representation of the extended beta function defined in (9).

Let m, n, p, q be integers such that 0 < m < ¢, 0 < n < p, and for parameters a;, b; € C and for parameters
ag, B € R* (i=1,...,p; j=1,...,q), the H-function is defined in terms of a Mellin-Barnes integral in the
following manner ([8, pp. 1-2]; see also [10, p. 343, Definition E.1.] and [13, p. 2, Definition 1.1.]):

(al',ai)l,p (aly al)s"" (ap; ap) 1
Hp 'z =Hpj |z =5 [ O (s)z °ds, (22)
T
(b Bj)1 4 (b1, 1) -+, (bgs Bq) £
where m "
szll“(b,--rﬂjs) [T, I (1 -a; — a;8)
I_Ip F(a,-+a,-s) Hq F(l*bjfﬂjs),

i=n+1 j=m+1

O(s) = (23)

with the contour £ suitably chosen. As convention, the empty product is equal to one. The theory of the H-
function is well explained in the books of Mathai [14], Mathai and Saxena ([15], Ch.2), Srivastava, Gupta and
Goyal ([22], Ch.1) and Kilbas and Saigo ([8], Ch.1and Ch.2). Note that (18) and (20) mean Hy,'y'(2) in (22) is the
inverse Mellin transform of © (s) in (23).

Theorem 2.7. Let R(p) >0, x,y € C, m > 0and R (p) > 0, then

) (4,3), (x+y+m-1,2m)

B, (x,y;psm) = —Hyy )

w (X, y5p )2u2,4p L - et
(N’l)’( 2’2)’(X+ 2 ’m)’(y+ 2 ’m)

where B,, (x,y; p; m) is as defined in (9).

Proof. The result is obtained by taking the inverse Mellin transform of (18) in Theorem 2.6 and using (22) and
(23). O

2.2 Extended hypergeometric functions

Definition 2.8. The extended Gauss hypergeometric function F,(a, b; c; z; p; m) is defined by

Byu(b+n,c—b;p;m) 2"
B(b,c-b) n!’

Fu.(a,b;c;z;p;m) := i(a)n (24)
n=0

where R(p) > 0, R(p) 20,0 <R(b) <R(c) and |z| < 1.
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Definition 2.9. The extended Appell hypergeometric function F1,,, is defined by

ad B(a+n+k,d—a;p;m)x"yk
F e - . = ® A 2
1,#(a’b’c’dax’y,pam) n%o(b)n (C)k B(a,d—a) n! k" ( 5)
where R(p) > 0, R(p) 20,0 < R(a) <R(d) and |x| < 1, |y| < 1.
Definition 2.10. The extended Appell hypergeometric function F, ,, is defined by
& B, (b+n,d-b;p;m)B (c+k,e—c;p;m)x”y"
F 7b7 ;d, 3 X, Vi DS = ® L — =, 26
@ bcidenxyipim) = 3 (@ g Bleeo @
where R(p) > 0, R(p) >0, 0 < R(b) < R(d), 0 <R(c) <R(e)and |x| +y| < 1.
Definition 2.11. The extended Lauricella hypergeometric function F %, 1S
3 o R Bu(a+n+k+r,e—a;p;m)x"y"z’
Fp,(a,b,c,d;e;x,y,z;p;m) := n’%::o(b)n(c)k (d)r Blae-a) TR 27)

where R(p) > 0, R(u) 20,0 < R(a) <R(e)and |x| <1, |y|<1,|z| < 1.

Here, it is important to mention that when we take m = 1, i, = 0 and then letting p — 0, function (24) reduces
to the ordinary Gauss hypergeometric function defined by

2F1 (a, b;C;Z) =,F I:a’cb;Z:I = nio(:)(a)(zgj)"ir:’

where (x), denotes the Pochhammer symbol defined, in terms of the familiar gamma function, by

(28)

(x) _I'(x+n) |1 (n=0; xeC~{0})
"Tr(X)  |x(x+1)(x+n-1) (neN; xeC).

For conditions of convergence and other related details of this function, see [1], [9] and [16]. Similarly, we can
reduce the functions (25), (26) and (27) to the well-known Appell functions F;, F, and Lauricella function F %,
respectively (see [16] and [23]).

Now, we establish the integral representations of the extended hypergeometric functions given by (24),
(25), (26) and (27) as follows.

Theorem 2.12. The following integral representation for the extended Gauss hypergeometric function
F.(a, b;c;z;p;m) is valid

1
R _ 2£ 1 b-3 _ p\c-b-3 _ -a 14
Fu.(a,b;c;z;p;m) =1/ - B(b,c—b)oft (1-¢) (1-2zt) Ku+% (tm(l—t)’")dt’ (29)
where |arg(1 - z)| < m, R(p) > 0, m > 0 and R(u) > 0.

Proof. By using (9) and employing the binomial expansion

a & t)"
(=207 - S (@ %)

(Jzt] < 1), (30)
we get the above integral representation. O

Theorem 2.13. The following integral representation for the extended hypergeometric function Fy,,, is valid

2 1
Fi,u(a,b,c;d;x,y;psm) = \/ fm

1
« f (=0T (A -xt) P (1-y) K, (t’“(lp—t)’") a, o
0
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Proof. For simplicity, let J denote the left-hand side of (31). Then, using (25) yields

= Bu(a+n+k,d-a;p;m)x"y*
_n%o(b)"(c)k B(a,d-a) T (32)

By applying (9) to the integrand of (31), after a little simplification, we have

1
— 2p a+n+k-2 d-a-2 p (D)n () X" y
3= \/—/t F(1-0T ik, dt 33
n%o{ ™ ( ) o3 (tm(l—t)m) }B(a d-a)n k! 3)
By interchanging the order of summation and integration in (33), we get
~ ZP 1 f a—— d—a-2 b
= _— t 1-t 2 K —_—
RV B(a,d-a) J $(1-9) (tm(l—t)’”)

Shpates }{kz et ar

w1 et (1 gy}
- nB(a,d—a)b[t 1-9

b —c p
><(1—Xt) (1—yt) I</L+% (tm(lt)m)dt, (34)

which proves the integral representation (31). O

To establish Theorem 2.13, we need to recall the following elementary series identity involving the bounded

sequence of {f(N)} ., stated in the following result.

Lemma 2.14. For a bounded sequence {f(N)}x., of essentially arbitrary complex numbers, we have

oo oo Tl
7

zfav)(“” S fnek

n=0 k=0

y
R (35)

Theorem 2.15. The following integral representation for the extended hypergeometric function F,,, is valid

2£ 1
m B(b,d-b)B(c,e-c)

F>u(a,b,c;d, e;x,y;p;m) =

X
T~

1
[ Aot (L w) T (1 xt - yw)
0

p p
ot () oot (e e o

Proof. Let £ denote the left-hand side of (36). Then, using (26) yields

X
=

B Bu(b+n,d-b;p;m)Bu(c+k,e-c;p;m)x"y
ﬁ‘wzzo(“)“k B(b,d-b) B(c,e—¢) ! k"

(37)

By applying (9) to the integrand of (32), we have

o 1
c=27p > {f (-0 K, (tm(lp_t)m)dt}
0

n,k=0
i p
b+n-2 e—c-2
X OfW (1—W) I(H+% (M/Tn(]__]/v)m)dw
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(@)nsk x" ,Vk

B(b d-b)B(c,e-c) n' k'’ (38)

Next, interchanging the order of summation and integration in (38), which is guaranteed, yields
2 1 1
4p b- 3 -3 b-3 e—c-3
L= [ f t2 w2 (1-w 2
7 B(b,d- b)B(ce c)O J ( )

p p
Ky (tm(l—t)'")K+ (w"’(l w)m)

( S (@ XY W)k)dtd (39)

n,k=0

Finally, applying (35) to the double series in (39), we obtain the right-hand side of (36). O

Theorem 2.16. The following integral representation for the extended hypergeometric function Ff), p is valid

FD#(a b,c,d;e;x,y,z;p;m) = Blae- a)”

a-3 1-t)e af—
x/ t bz( t) Kyt (tml tm)dt (40)
4 (1-xt)?(1-yt)°(1-zt) (1-1)
Proof. A similar argument in the proof of Theorem 2.15 will be able to establish the integral representation in
(40). Therefore, details of the proof are omitted. O

3 Extended Riemann-Liouville fractional derivative operator

We first recall that the classical Riemann-Liouville fractional derivative is defined by (see [23, p. 286])
DYf(2) = [ (z- 0™ () dt,

where %(rv) < 0 and the integration path is a line from O to z in the complex ¢-plane. It coincides with the
fractional integral of order —v. Incase m - 1 < R (v) < m, m € N, it is customary to write

v . d” V m m-v-1
DYf(2) = oD (2) = dzm{F(m f (z-0) f(t)dt}

We present the following new extended Riemann-Liouville-type fractional derivative operator.

Definition 3.1. The extended Riemann-Liouville fractional derivative is defined as

VMPm (Z) _ F( V) [2p [(Z*t)_u 1 (t)Kp,+— (t’"(z))dt’ (41)

where R(v) < 0, R(p) > 0,93 (m) >0 and R(u) > 0.

Forn-1<%R(v) <n,neN, wewrite

v, pp;m o d" V—n,u;p;m _ d" 1 ZP 3 n-v-1 pzzm
Dzll«p f(Z) = @Dz Hwp f(Z)_dZ”{F(n—y)‘/ﬂ'b[(Zt) f(t)K#+% (tm(Z—t)m)dt} (42)

Remark 3.2. If we take m = 0, u = 0, and p — 0, then the above extended Riemann-Liouville fractional
derivative operator reduces to the classical Riemann-Liouville fractional derivative operator.
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Now, we begin our investigation by calculating the extended fractional derivatives of some elementary
functions. For our purpose, we first establish two results involving the extended Riemann-Liouville fractional
derivative operator.

Lemma 3.3. Let R(v) < 0, then we have

A—v
4ip; z 3 1
DZ’I pim {ZA} = F(*yi)Bu (/\+§,—1/+5;P;YH). (43)

Proof. Using Definition 3.1 and 1, we have

Z 2m
Dyt {z*}= ! 2—p/(z—t)*”’ltAK,H; (pZ )dt
™ 2

r(-v) tm(z-t)m
_ 2p _ —v+1)-3 (a+2)-2
- r( ) \/ /(1 u K’”(um(l u)m)
P 3
=m3u()\+§»—’/+?l’§m)- O

Next, we apply the extended Riemann-Liouville fractional derivative to a function f(z) analytic at the origin.

Lemma3.4. Let R(v) < 0 and suppose that a function f(z) is analytic at the origin with its Maclaurin
expansion given by f(z) = Y72 anz" (|| < p) for some p € R. Then we have

DZV’M;P;"I {f(Z)} — i an D;’:M;P;m {Zn} .
n=0

Proof. Using Definition 3.1 to the function f(z) with its series expansion, we have

v, uspsm 1 2p f —v— bz
D)) = s Wof(z—t) K (tm(z t)m)Za,,tdt

Since the power series converges uniformly on any closed disk centered at the origin with its radius smaller
than p, so does the series on the line segment from O to a fixed z for |z| < p. This fact guarantees term-by-term
integration as follows:

v, u;p;m & 1 2 - —v— 2m n & v, u;p;m n
D ”“’“é““{m-w\/fof“‘” K(tft))tdt}ZD "), o

As a consequence we have the following result.

Theorem 3.5. Let R(v) < O and suppose that a function f(z) is analytic at the origin with its Maclaurin
expansion given by f(z) = ¥ poo anz" (|z| < p) for some p € R... Then we have

)\l/loo

F( V)nO

v,uspsm [ -1 _ — vyspsm [ A+n—-1 l _ 1 . n
D} {z f(z)}—n;:)anDz {z } B;L(/\+n+2, z/+2,p,m)z.

We present two subsequent theorems which may be useful to find certain generating function.

Theorem 3.6. For R(v) > R(\) > -1, we have

v—1

D;\‘”"“p;m{z’\_l(l —z)—a} = ﬁB (A+ %,y—)\ + %)Fu (a,)\ + %;1/4— 1;z;p;m) (Jz] < 1; € C).
v—

(44)
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Proof. Using (30) and applying Lemmas 3.3 and 3.4, we obtain

oo 1
DB AT (1 g) ") = DY {z“ z<a>lj,}
1=0 :

(a)l )\ V;me{ )\+l—1}
D;

b”mz

N
)

) i (a)lBH(/\+l+ V=AM
i I'(v-2)
By using (24), we can get
v—1
. _ _ 1 1 1
D;\ V,u,p,m{zx 1(1_2) a}:ﬁB(A+§’V_)\+E)F"(a’)\+E;V+LZ;p;m)' O

Theorem 3.7. Let R(v) > R(\) > f%, R(a) > 0,9R(B) > 0; |az| < 1 and |bz| < 1. Then we have
D;‘_”’“;p;m{z)‘_l(l —az) % (1- bz)_ﬁ}

2 B()\+1 )\+1)F ()\+1 B;v+1;az, bz m) (45)
Il Pl = —, 0, D3V 5 ) sDs .
I'(v-2X\) 2 2) N T2 P

Proof. Use the binomial theorem for (1 — az)™® and (1 — bz)?. Apply Lemmas 3.3 and 3.4 to obtain

D) -vemipim {ZA_1(1 —az) *(1- bz)_ﬁ}

o 215 5y, 2L 2

1=0 k=0

= S (ay (D2 () @(bj

1 T

L& By(A+1+k+3,v-X+3;p;m) (az)" (bz)*
l,éo (O‘)l (ﬂ)k F(l/ — )\) I K

By using (25), we get

D) vwipim {zA_l(l —az) %(1- bz)_ﬁ}

Zy—l

:WB(A+%,V—)\+%) Fl,u()u—%,a,,@;u+1;az,bz;p;m)_ O

Theorem 3.8. Let R(v) > R(\) > -3, R(a) > 0, R(B) >0, R(7) >0, |az| < 1,|bz| < 1 and |cz| < 1. Then we
have

v-1
D?V,M;p;m{z,\%l —az) “(1-bz)P(1- cz)W} - ﬁ
1 1
><B(/\Jr 2!1/*)\7L )FDM ()\+ ,a’ﬂ’,y;y+1;az,bZ,CZ;p;m)' (46)

Proof. Asin the proof of Theorem 3.7, taking the binomial theorem for (1 — az)™®, (1 - bz) ? and (1 - cz) ™"
and applying Lemmas 3.3 and 3.4 and taking Definition 5 into account, one can easily prove Theorem 3.8. [

Theorem 3.9. Let R(v) > R(N) > —%, R(a) >0, R(v) > R(B) > 0; |[1%;| < 1 and |x| + |z| < 1. Then we have

D;\_”"“p;m{z’\_l(l -2)"°F, (a, BiviT—5 . iP5 m) }

B(A+3,v-2+1)
S| 25 2) p ( BN+
(- 2\ P

1
Syt 1;x,z;p;m) (47)
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Proof. By using (30) and applying the Definition 2.8 for F,,, we get
D;\—l/yli;p;m {2)\—1(1 —Z)_aFlu (Of, /B; o 1L;p; m)}
i _ Bu(B+n,y-Bip;m) ( x \"
_ pAvmpim { A1q_, (a)n B, ( )
z ( ) Z;) B(B’ Y- ﬂ) 1-z

— B »Y — P Ds —V,upsm - —a-n "
- 3 (@ T AP pvn (g o) X

Using Theorem 3.6 for D)~ HPim {z’\‘1 (1- z)‘a‘”} and interpreting the extended hypergeometric function
F,, as its series representation, we get

D;\—V,M;p;m {ZA71(1 _Z)fOéF ( ’ﬁ’ /y’ _ ,p’ )}

v-1

- 1 )5 B, (B+n,v—-pB;p;m)
_F(V—A)B()\+2’V )\+2)n’§0{(a)n+k B3 5)

Bu(A+k+3,v-A+5p5m) x" 2X
* B(A+3,v-2+1) n! k!

Zu—l

1
_mB()an,l/

1 1
3 +§)F2,u( Yy Bs A+ = ,y,u+1xzp, )

This completes the proof. O

4 Generating functions involving the extended Gauss
hypergeometric function

Here, we establish some linear and bilinear generating relations for the extended hypergeometric function
F,, by using Theorems 3.6, 3.7 and 3.9.

Theorem 4.1. Let R()\) > 0and R (B) > R (a) > —%. Then we have

)\n —
Z( ) F#()\+n o+ = ,ﬂ+1zp, )t =(1-1t) F#(A a+ = ,B+1 1it;p;m). (48)

n=0
(Jz] < min{1, |1 -¢|})

Proof. We start by recalling the elementary identity

-2
-2 _ Y _ z
[(1-2)-07 = (-0 (1- 75
and expand its left-hand side to obtain
A& Mnf t V1 _ z \™*
-9 SO (Y —a-n?(1-75) T Gd<n-a).

= nl \1-z t

Multiplying both sides of the above equality by z*~! and applying the extended Riemann-Liouville fractional
derivative operator DS~ ?#P™ on both sides, we find

—B;13p; = (V) t" a1 -A- —Bsusp; A a-1 z \7
D?[B“pm{n;)nr; 2N (1 —z) L = DR L (1 ) TA (1——1 ) .

—t

Uniform convergence of the involved series makes it possible to exchange the summation and the fractional
operator to give

(Mn aﬁ mf a=1lcq _N=A-n\ n _ 1 =X pa-fiupim | a-1 _Z)\}
z;) wpm 2071 (1 - z) }t(lt)Dz‘“’{z(l )
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The result then follows by applying Theorem 3.6 to both sides of the last identity. O

Theorem 4.2. Let R ()\) >0, R (y) >0and R (B) > R (a) > —%. Then we have

3 (A)"Fu (7—n,a+ %;6+ 1;z;p;m) t"

n=0 n!
) 1
=(1-t) " Fiu a+2,'y,/\ ﬁ+1z — ,p, .
(2l <15 [t <[1=z[5 |z]|t] < [1-t])

Proof. Considering the following identity

1-(1-2=1-) (1 + %)*A

and expanding its left-hand side as a power series, we get

zt

0o _ -2
rg%(l—z)"t":(l—t)_A(l—l—_t) (It| < 11 -2]).

Multiplying both sides by z* *(1 - z)™” and applying the definition of the extended Riemann-Liouville
fractional derivative operator D2~ ##P'™ on hoth sides, we find

. 2 (A - -
p° 5’“"”’"{2)(”?"2“ "(1-2) ”(1—2)”1‘"}

a—L;u;p;m A _a-1 - -zt -
_ po-Bmpm | (4 _ g (1-2)”(1-ﬁ) .

The given conditions are found to allow us to exchange the order of the summation and the fractional
derivative to yield

Z ()‘)71 or B/me{ a—l(l_z)—'y-m}tn

_ Y
= (1-t) Dy mpm {z“‘1(1 -z)7" (1 -1 Ztt) } :

Finally the result follows by using Theorems 3.6 and 3.7. O

Theorem 4.3. Let R (&) >R (5) > -3, R(B) > R (a) > -1 and R (\) > 0. Then we have

Z()\)"F,L()\+n,a+1;5+1;z;p;m) (n5+ sE+ L;usp;m )
= n! 2

=(1-t)" FZH()\,a+ 5+7,8+1§+1 — —ut,p, )
1-t"1-

2 ]<a)

Proof. Replacing t by (1 — u) t in (48) and multiplying both sides of the resulting identity by u’~! gives

> (2?" (/\+n a+ = ,B+1zp, ) Wt (1-u) e
n=0 :
-1 Y 1 z
1-(1- F 5B+ 1 ——————;psm]|.
[1-(1-u)t] M(A,a+2,ﬁ+ ,1_(1_u)t,p,m)

(m(x) 50, R(B)>NR(a)> _%)
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Applying the fractional derivative Dﬂ_g’“;p ‘™ to both sides of the resulting identity and changing the order of
the summation and the fractional derivative yields

(A 1 PSP _
> ( )"FH(/\+n,a+7;ﬁ+1;z;p;m)Dg 5’”””'"{115 1(1—u)"}t"
= n! 2

:Dl‘i_f’“;p;m{u(s_l[l—(l—u)t] FM()\ a+=;8+1; 1(1Zu)t;p;m)}.

(J(1-u)t| < 1; |ut|<|1-t])

The last identity can be written as follows:

Z(i\g" (A+n a+ = ,B+1zp, ) 55’“;p;m{u671(1—u)"}t"

n=0
5 epsm | 6-1 —ut 1~ o
=(1- ) u 1-— F Ao+ — ,B+1 spsm| ;.
1-t 1- 7'“
1-t
Finally the use of Theorems 3.6 and 3.9 in the resulting identity is seen to give the desired result. O

5 Mellin transforms and further results

In this section, we first obtain the Mellin transform of the extended Riemann-Liouville fractional derivative
operator.

Theorem 5.1. Let R(v) <0, m>0,9R (¢) > 0and

%(5) > max [ (), -3 - - P2 RO

Then we have the following relation

2 s+ (3-2)r(A+ms+2+1)r(-v+ms+12)
28 (~v) r($+4)r(x-v+2ms+m+1)

2 L(s+p)I(5-

AT ()

o [DyPm {2} s =

w
2)B()\+ms+r;+1,—u+ms+rg). (49)

Proof. Taking the Mellin transform and using Lemma 3.3, we have

oo )\—]) oo
vspim [ AL | s—1pv,mpim [ A _Z s-1 3 1
Em[Dz {z }.s]—fp D, {z }dp—F(_y)fp BH()\+2, z/+2,p,m)dp.
0 0

Applying Theorem 2.6 to the last integral yields the desired result. O

Theorem 5.2. Let R(v) <0, m >0, R (u) >0, |z| < 1and

R(s) >max{%(p),—%—%,—% %}

Then we have the following relation

I(s+p)I(5-

()

o
M[D; P {(1-2)""}:s] = 2)B(ms+r;+1,—y+ms+r;)
szl(a,ms+%+1;—u+2ms+m+1;z), (50)

where , F; is a well known Gauss hypergeometric function given by (28).
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Proof. Using the binomial series for (1 - Z)”\ and Theorem 5.1 with A = n yields

n=0

I
M8

(ii?”fm (D ()

=
Il
o

() 277 T(s+p)I(3-L)r(n+ms+Z+1)r(-v+ms+12)
2 on! 280(-v) r(s+4)yr(n-v+2ms+m+1)

MS

Then the last expression is easily seen to be equal to the desired one. O

Now we present the extended Riemann-Liouville fractional derivative of z* in terms of the Fox H-function.
Theorem 5.3. Let 3(p) > 0, R(u) > 0, R(v) < 0 and m > 0. Then we have

o
Aev (4,3), (A -v+m+1,2m)
ppwm (A2 ol
ZMF(_V) ’ uo1 m m
(1), (-5, 3), A+ F+1,m), (-v+ 3, m)
Proof. The result can be obtained by taking the inverse Mellin transform of the result in Lemma 3.3 with the
aid of Theorem 2.7. O

Applying the result in Theorem 3.3 to the Maclaurin series of e* and the series expression of the Gauss
hypergeometric function ,F; gives the extended Riemann-Liouville fractional derivatives of e* and ,F;
asserted by the following theorems.

Theorem 5.4. If R (v) < O, then we have

Z*V oo

s 3 z"
DV’M’p’m i = B ( Pur i ’ ) ) .
z {e } F(—Z/) HZ;) 12 n+ 2 p n!

Theorem 5.5. IfR (v) < O, then we have

Dz/ ;L,pm{zFl ((1 b; c; Z)} _ F(_Uy) Z (azcgf)nB#( + E —V+ = ,p, )%’: (|Z| < 1).
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