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Abstract: The main purpose of this paper is to introduce a class of new extended forms of the beta function,
Gauss hypergeometric function and Appell-Lauricella hypergeometric functions by means of the modi�ed
Bessel function of the third kind. Some typical generating relations for these extended hypergeometric
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1 Introduction
Extensions and generalizations of some known special functions are important both from the theoretical
and applied point of view. Also many extensions of fractional derivative operators have been developed
and applied by many authors (see [2–6, 11, 12, 19–21] and [17, 18]). These new extensions have proved
to be very useful in various �elds such as physics, engineering, statistics, actuarial sciences, economics,
�nance, survival analysis, life testing and telecommunications. The above-mentioned applications have
largely motivated our present study.

The extended incomplete gamma functions constructed by using the exponential function are de�ned
by

(α, z; p) =
z

∫
0

tα−1 exp(−t − p
t
)dt (R(p) > 0; p = 0,R(α) > 0) (1)

and

Γ (α, z; p) =
∞

∫
z

tα−1 exp(−t − p
t
)dt (R(p) ≥ 0) (2)

with ∣arg z∣ < π, which have been studied in detail by Chaudhry and Zubair (see, for example, [2] and [4]).
The extended incomplete gamma functions γ (α, z; p) and Γ (α, z; p) satisfy the following decomposition
formula

(α, z; p) + Γ (α, z; p) = Γp (α) = 2pα/2Kα (2
√
p) (R(p) > 0) , (3)
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whereΓp (α) is called extended gamma function, and Kα (z) is themodi�ed Bessel function of the third kind,
or the Macdonald function with its integral representation given by (see [7])

Kα(z) =
1
2

∞

∫
0

exp [−κ(z∣t)] dt
tα+1 , (4)

whereR(z) > 0 and
κ(z∣t) = z

2 (t + 1
t
) . (5)

For α = 1
2 , we have

K 1
2
(z) =

√
π

2z e
−z . (6)

Instead of using the exponential function, Chaudhry and Zubair extended (1) and (2) in the following form
(see [3], see also [4])

γµ (α, x; p) =
√

2p
π

x

∫
0

tα−
3
2 exp (−t)Kµ+ 1

2
(p
t
)dt (7)

and

Γµ (α, x; p) =
√

2p
π

∞

∫
x

tα−
3
2 exp (−t)Kµ+ 1

2
(p
t
)dt, (8)

whereR(x) > 0,R(p) > 0, −∞ < α < ∞.
Inspired by their construction of (7) and (8), we aim to introduce a class of new special functions and

fractional derivative operator by suitably using the modi�ed Bessel function Kα (z).
The present paper is organized as follows: In Section 2, we �rst de�ne the extended beta function

and study some of its properties such as di�erent integral representations and its Mellin transform. Then
some extended hypergeometric functions are introduced by using the extended beta function. The extended
Riemann-Liouville type fractional derivative operator and its properties are given in Section 3. In Section 4,
the linear and bilinear generating relations for the extended hypergeometric functions are derived. Finally,
the Mellin transforms of the extended fractional derivative operator are determined in Section 5.

2 Extended beta and hypergeometric functions
This section is divided into two subsections. In subsection-1, we de�ne the extended beta function
Bµ(x, y; p;m) and study some of its properties. In subsection-2, we introduce the extended Gauss hyper-
geometric function Fµ(a, b; c; z; p;m), the Appell hypergeometric functions F1,µ, F2,µ and the Lauricella
hypergeometric function FD3,µ and then obtain their integral representations. Throughout the present study,
we shall assume thatR(p) > 0 and m > 0.

2.1 Extended beta function

De�nition 2.1. The extended beta function Bµ(x, y; p;m) withR(p) > 0 is de�ned by

Bµ(x, y; p;m) ∶=
√

2p
π

1

∫
0

tx−
3
2 (1 − t)y−

3
2 Kµ+ 1

2
( p
tm(1 − t)m

)dt, (9)

where x, y ∈ C,m > 0 andR(µ) ≥ 0.
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Remark 2.2. Taking m = 1, µ = 0 and making use of (6), (9) reduces to the extended beta function Bµ(x, y; p)
de�ned by Chaudhry et al. [5, Eq. (1.7)]

B(x, y; p) ∶= B0(x, y; p; 1) =
1

∫
0

tx−1 (1 − t)y−1 exp(− p
t(1 − t)

)dt, (10)

whereR(p) > 0 and x, y ∈ C.

Theorem 2.3. The following integral representations for the extended beta functions Bµ(x, y; p;m) with
R(p) > 0 are valid

Bµ(x, y; p;m) = 2
√

2p
π

π
2

∫
0

cos2(x−1)
θ sin2(y−1)

θ Kµ+ 1
2
(p sec2m

θ csc2m
θ)dθ (11)

=
√

2p
π

∞

∫
0

ux−
3
2

(1 + u)x+y−1 Kµ+ 1
2
(p (1 + u)2m

um
)du (12)

= 22−x−y
√

2p
π

1

∫
−1

(1 + u)x−
3
2 (1 − u)y−

3
2 Kµ+ 1

2
( 22mp
(1 − u2)m

)du. (13)

Proof. These formulas can be obtained by using the transformations t = cos2 θ, t = u
1+u and t = 1+u

2 in (9),
respectively.

Theorem 2.4. The following expression holds true

Bµ (x, y; p,m) = 1
2

√
2p
π

∞

∫
0

B0 (x − m
2 , y − m

2 ;κ (p∣u) ;m) du
uµ+ 3

2
, (14)

(x, y ∈ C, m > 0, R (p) > 0, R (µ) ≥ 0)

where κ (p∣u) is given by (5).

Proof. Expressing Bµ (x, y; p,m) in its integral form with the help of (9), and taking (4) into account, we
obtain

Bµ (x, y; p,m) =
√

2p
π

1

∫
0

tx−
3
2 (1 − t)y−

3
2 Kµ+ 1

2
( p
tm (1 − t)m

)dt

= 1
2

√
2p
π

1

∫
0

tx−
3
2 (1 − t)y−

3
2

⎧⎪⎪⎨⎪⎪⎩

∞

∫
0

exp [− κ (p∣u)
tm (1 − t)m

] du
uµ+ 3

2

⎫⎪⎪⎬⎪⎪⎭
dt

= 1
2

√
2p
π

∞

∫
0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

∫
0

tx−
3
2 (1 − t)y−

3
2 exp [− κ (p∣u)

tm (1 − t)m
]dt

⎫⎪⎪⎪⎬⎪⎪⎪⎭

du
uµ+ 3

2
, (15)

where κ (p∣u) is given by (5).
In order to write the inner integral as our extended beta function, we need the following variant of (6),

that is,

e−z =
√

2
π
z K 1

2
(z) .

Then, we have

1

∫
0

tx−
3
2 (1 − t)y−

3
2 exp [− κ (p∣u)

tm (1 − t)m
]dt
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=
1

∫
0

tx−
3
2 (1 − t)y−

3
2

¿
ÁÁÀ2

π

κ (p∣u)
tm (1 − t)m

K 1
2
( κ (p∣u)
tm (1 − t)m

)dt

=
√

2κ (p∣u)
π

1

∫
0

tx−
m
2 −

3
2 (1 − t)y−

m
2 −

3
2 K 1

2
( κ (p∣u)
tm (1 − t)m

)dt

= B0 (x − m
2 , y − m

2 ;κ (p∣u) ;m) . (16)

Substituting (16) into (15) we obtain the required result (14).

Remark 2.5. It is interesting to note that using the de�nition of the extended beta function (see, [11, 12]) we can
get the following expression for (9)

Bµ (x, y; p,m) = 1
2

√
2p
π

∞

∫
0

Bκ(p∣u);m,m (x − 1
2 , y −

1
2) du

uµ+ 3
2
, (17)

where the function Bb;ρ,λ (x, y) is given by [12, p. 631, Eq. (2)]

Bb;ρ,λ (x, y) =
1

∫
0

tx−1 (1 − t)y−1 exp(− b
tρ (1 − t)λ

)dt (x, y ∈ C) .

The following theorem establishes the relation between the Mellin transform

M{f (x) ; x → s} =
∞

∫
0

xs−1f (x)dx

and the extended beta function.

Theorem 2.6. Let x, y ∈ C, m > 0,R (µ) ≥ 0 and

R (s) > max{R (µ) ,−1
2 + 1

2m − R (x)
m

,−1
2 + 1

2m − R (y)
m

} .

Then we have the following relation

M{Bµ (x, y; p;m) ∶ p → s}

= 1
2µ

Γ (s + µ)Γ ( s
2 −

µ
2 )Γ (x +ms + m−1

2 )Γ (y +ms + m−1
2 )

Γ ( s
2 +

µ
2 )Γ (x + y + 2ms +m − 1)

= 1
2µ

Γ (s + µ)Γ ( s
2 −

µ
2 )

Γ ( s
2 +

µ
2 )

B (x +ms + m − 1
2 , y +ms + m − 1

2 ) . (18)

Proof. First, we have

M{Bµ (x, y; p;m) ∶ p → s}

=
∞

∫
0

ps−1
√

2p
π

1

∫
0

tx−
3
2 (1 − t)y−

3
2 Kµ+ 1

2
( p
tm(1 − t)m

)dtdp

=
√

2
π

1

∫
0

tx−
3
2 (1 − t)y−

3
2

⎡⎢⎢⎢⎢⎣

∞

∫
0

ps+
1
2−1Kµ+ 1

2
( p
tm(1 − t)m

)dp
⎤⎥⎥⎥⎥⎦

dt

=
√

2
π

1

∫
0

tx+m(s+
1
2 )−

3
2 (1 − t)y+m(s+

1
2 )−

3
2 dt

∞

∫
0

us+
1
2−1Kµ+ 1

2
(u)du

=
√

2
π

Γ (x +ms + m−1
2 )Γ (y +ms + m−1

2 )
Γ (x + y + 2ms +m − 1)

∞

∫
0

us+
1
2−1Kµ+ 1

2
(u)du. (19)
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Since the Mellin transform of the Macdonald function Kv (z) is given by [9, p. 37, Eq.(1.7.41)]:

M{Kv (z) ∶ z → s} = 2s−2
Γ ( s2 + v

2)Γ ( s2 − v
2) , (20)

the last integral in (19) can be evaluated as
∞

∫
0

us+
1
2−1Kµ+ 1

2
(u)du = 2s− 3

2 Γ ( s2 + µ

2 + 1
2)Γ ( s2 − µ

2) = 2−
1
2−µ

√
π
Γ (s + µ)Γ ( s

2 −
µ
2 )

Γ ( s
2 +

µ
2 )

, (21)

where we have used
Γ (2z) = 22z−1

√
π

Γ (z)Γ (z + 1
2) .

Finally, we get

M{Bµ (x, y; p;m) ∶ p → s} = 1
2µ

Γ (s + µ)Γ ( s
2 −

µ
2 )Γ (x +ms + m−1

2 )Γ (y +ms + m−1
2 )

Γ ( s
2 +

µ
2 )Γ (x + y + 2ms +m − 1)

.

Now we can derive the Fox H-function representation of the extended beta function de�ned in (9).
Letm, n, p, q be integers such that 0 ≤ m ≤ q, 0 ≤ n ≤ p, and for parameters ai , bi ∈ C and for parameters

αi , βj ∈ R+ (i = 1, . . . , p; j = 1, . . . , q), the H-function is de�ned in terms of a Mellin-Barnes integral in the
following manner ([8, pp. 1–2]; see also [10, p. 343, De�nition E.1.] and [13, p. 2, De�nition 1.1.]):

Hm,n
p,q

⎡⎢⎢⎢⎢⎢⎢⎣

z

RRRRRRRRRRRRRRRR

(ai ,αi)1,p

(bj , βj)1,q

⎤⎥⎥⎥⎥⎥⎥⎦

= Hm,n
p,q

⎡⎢⎢⎢⎢⎢⎢⎣

z

RRRRRRRRRRRRRRR

(a1,α1) ,⋯, (ap ,αp)

(b1, β1) ,⋯, (bq , βq)

⎤⎥⎥⎥⎥⎥⎥⎦

= 1
2πi ∫

L

Θ (s) z−sds, (22)

where
Θ (s) =

∏m
j=1 Γ (bj + βjs)∏n

i=1 Γ (1 − ai − αis)
∏p

i=n+1 Γ (ai + αis)∏q
j=m+1 Γ (1 − bj − βjs)

, (23)

with the contour L suitably chosen. As convention, the empty product is equal to one. The theory of the H-
function is well explained in the books of Mathai [14], Mathai and Saxena ([15], Ch.2), Srivastava, Gupta and
Goyal ([22], Ch.1) and Kilbas and Saigo ([8], Ch.1 and Ch.2). Note that (18) and (20) mean Hm,n

p,q (z) in (22) is the
inverse Mellin transform of Θ (s) in (23).

Theorem 2.7. LetR(p) > 0, x, y ∈ C, m > 0 andR (µ) ≥ 0, then

Bµ (x, y; p;m) = 1
2µ

H4,0
2,4

⎡⎢⎢⎢⎢⎢⎢⎣

p

RRRRRRRRRRRRRRR

(µ
2 ,

1
2) , (x + y +m − 1, 2m)

(µ, 1) , (−µ
2 ,

1
2) , (x +

m−1
2 ,m) , (y + m−1

2 ,m)

⎤⎥⎥⎥⎥⎥⎥⎦

,

where Bµ (x, y; p;m) is as de�ned in (9).

Proof. The result is obtained by taking the inverse Mellin transform of (18) in Theorem 2.6 and using (22) and
(23).

2.2 Extended hypergeometric functions

De�nition 2.8. The extended Gauss hypergeometric function Fµ(a, b; c; z; p;m) is de�ned by

Fµ(a, b; c; z; p;m) ∶=
∞

∑
n=0

(a)n
Bµ(b + n, c − b; p;m)

B(b, c − b)
zn

n! , (24)

whereR(p) > 0,R(µ) ≥ 0, 0 < R(b) < R(c) and ∣z∣ < 1.
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De�nition 2.9. The extended Appell hypergeometric function F1,µ is de�ned by

F1,µ(a, b, c; d; x, y; p;m) ∶=
∞

∑
n,k=0

(b)n (c)k
Bµ(a + n + k, d − a; p;m)

B(a, d − a)
xn

n!
yk

k! , (25)

whereR(p) > 0,R(µ) ≥ 0, 0 < R(a) < R(d) and ∣x∣ < 1, ∣y∣ < 1.

De�nition 2.10. The extended Appell hypergeometric function F2,µ is de�ned by

F2,µ (a, b, c; d, e; x, y; p;m) ∶=
∞

∑
n,k=0

(a)n+k
Bµ(b + n, d − b; p;m)

B(b, d − b)
Bµ(c + k, e − c; p;m)

B(c, e − c)
xn

n!
yk

k! , (26)

whereR(p) > 0,R(µ) ≥ 0, 0 < R(b) < R(d), 0 < R(c) < R(e) and ∣x∣ + ∣y∣ < 1.

De�nition 2.11. The extended Lauricella hypergeometric function F3
D,µ is

F3
D,µ(a, b, c, d; e; x, y, z; p;m) ∶=

∞

∑
n,k,r=0

(b)n (c)k (d)r
Bµ(a + n + k + r, e − a; p;m)

B(a, e − a)
xn

n!
yk

k!
zr

r! , (27)

whereR(p) > 0,R(µ) ≥ 0, 0 < R(a) < R(e) and ∣x∣ < 1, ∣y∣ < 1, ∣z∣ < 1.

Here, it is important to mention that when we takem = 1, µ = 0 and then letting p → 0, function (24) reduces
to the ordinary Gauss hypergeometric function de�ned by

2F1 (a, b; c; z) ≡ 2F1 [a, b
c

; z] =
∞

∑
n=0

(a)n (b)n
(c)n

zn

n! , (28)

where (x)n denotes the Pochhammer symbol de�ned, in terms of the familiar gamma function, by

(x)n =
Γ (x + n)
Γ (x)

=
⎧⎪⎪⎨⎪⎪⎩

1 (n = 0; x ∈ C ∖ {0})
x (x + 1)⋯(x + n − 1) (n ∈ N; x ∈ C) .

For conditions of convergence and other related details of this function, see [1], [9] and [16]. Similarly, we can
reduce the functions (25), (26) and (27) to the well-known Appell functions F1, F2 and Lauricella function F3

D,
respectively (see [16] and [23]).

Now, we establish the integral representations of the extended hypergeometric functions given by (24),
(25), (26) and (27) as follows.

Theorem 2.12. The following integral representation for the extended Gauss hypergeometric function
Fµ(a, b; c; z; p;m) is valid

Fµ (a, b; c; z; p;m) =
√

2p
π

1
B(b, c − b)

1

∫
0

tb−
3
2 (1 − t)c−b−

3
2 (1 − zt)−a Kµ+ 1

2
( p
tm(1 − t)m

)dt, (29)

where ∣arg(1 − z)∣ < π,R(p) > 0, m > 0 andR(µ) ≥ 0.

Proof. By using (9) and employing the binomial expansion

(1 − zt)−a =
∞

∑
n=0

(a)n
(zt)n

n! (∣zt∣ < 1) , (30)

we get the above integral representation.

Theorem 2.13. The following integral representation for the extended hypergeometric function F1,µ is valid

F1,µ (a, b, c; d; x, y; p;m) =
√

2p
π

1
B(a, d − a)

×
1

∫
0

ta−
3
2 (1 − t)d−a−

3
2 (1 − xt)−b (1 − yt)−c Kµ+ 1

2
( p
tm(1 − t)m

) dt, (31)
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Proof. For simplicity, let I denote the left-hand side of (31). Then, using (25) yields

I =
∞

∑
n,k=0

(b)n (c)k
Bµ(a + n + k, d − a; p;m)

B(a, d − a)
xn

n!
yk

k! , (32)

By applying (9) to the integrand of (31), after a little simpli�cation, we have

I =
∞

∑
n,k=0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2p
π

1

∫
0

ta+n+k−
3
2 (1 − t)d−a−

3
2 Kµ+ 1

2
( p
tm(1 − t)m

) dt
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(b)n (c)k
B(a, d − a)

xn

n!
yk

k! . (33)

By interchanging the order of summation and integration in (33), we get

I =
√

2p
π

1
B(a, d − a)

1

∫
0

ta−
3
2 (1 − t)d−a−

3
2 Kµ+ 1

2
( p
tm(1 − t)m

)

× {
∞

∑
n=0

(b)n
n! (xt)n}{

∞

∑
k=0

(c)k
k! (yt)k}dt

=
√

2p
π

1
B(a, d − a)

1

∫
0

ta−
3
2 (1 − t)d−a−

3
2

× (1 − xt)−b (1 − yt)−c Kµ+ 1
2
( p
tm(1 − t)m

)dt, (34)

which proves the integral representation (31).

To establish Theorem 2.13, we need to recall the following elementary series identity involving the bounded
sequence of {f(N)}∞N=0 stated in the following result.

Lemma 2.14. For a bounded sequence {f(N)}∞N=0 of essentially arbitrary complex numbers, we have

∞

∑
N=0

f(N)(x + y)N

N! =
∞

∑
n=0

∞

∑
k=0

f(n + k) x
n

n!
yk

k! . (35)

Theorem 2.15. The following integral representation for the extended hypergeometric function F2,µ is valid

F2,µ(a, b, c; d, e; x, y; p;m) = 2p
π

1
B (b, d − b)B (c, e − c)

×
1

∫
0

1

∫
0

tb−
3
2 (1 − t)d−b−

3
2 wb− 3

2 (1 − w)e−c−
3
2 (1 − xt − yw)−a

× Kµ+ 1
2
( p
tm(1 − t)m

) Kµ+ 1
2
( p
wm(1 − w)m

)dtdw. (36)

Proof. Let L denote the left-hand side of (36). Then, using (26) yields

L =
∞

∑
n,k=0

(a)n+k
Bµ(b + n, d − b; p;m)

B(b, d − b)
Bµ(c + k, e − c; p;m)

B(c, e − c)
xn

n!
yk

k! . (37)

By applying (9) to the integrand of (32), we have

L = 2p
π

∞

∑
n,k=0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

∫
0

tb+n−
3
2 (1 − t)d−b−

3
2 Kµ+ 1

2
( p
tm(1 − t)m

)dt
⎫⎪⎪⎪⎬⎪⎪⎪⎭

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

∫
0

wb+n− 3
2 (1 − w)e−c−

3
2 Kµ+ 1

2
( p
wm(1 − w)m

)dw
⎫⎪⎪⎪⎬⎪⎪⎪⎭
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× (a)n+k
B(b, d − b)B(c, e − c)

xn

n!
yk

k! . (38)

Next, interchanging the order of summation and integration in (38), which is guaranteed, yields

L =2p
π

1
B (b, d − b)B (c, e − c)

1

∫
0

1

∫
0

tb−
3
2 (1 − t)d−b−

3
2 wb− 3

2 (1 − w)e−c−
3
2

× Kµ+ 1
2
( p
tm(1 − t)m

)Kµ+ 1
2
( p
wm(1 − w)m

)

×
⎛
⎝

∞

∑
n,k=0

(a)n+k
(xt)n

n!
(yw)k

k!
⎞
⎠

dtdw. (39)

Finally, applying (35) to the double series in (39), we obtain the right-hand side of (36).

Theorem 2.16. The following integral representation for the extended hypergeometric function F3
D,µ is valid

F3
D,µ(a, b, c, d; e; x, y, z; p;m) = 1

B(a, e − a)

√
2p
π

×
1

∫
0

ta−
3
2 (1 − t)e−a−

3
2

(1 − xt)b (1 − yt)c (1 − zt)d
Kµ+ 1

2
( p
tm(1 − t)m

)dt (40)

Proof. A similar argument in the proof of Theorem 2.15 will be able to establish the integral representation in
(40). Therefore, details of the proof are omitted.

3 Extended Riemann-Liouville fractional derivative operator
We �rst recall that the classical Riemann-Liouville fractional derivative is de�ned by (see [23, p. 286])

Dν
z f(z) ∶=

1
Γ(−ν)

z

∫
0

(z − t)−ν−1f(t)dt,

where R(ν) < 0 and the integration path is a line from 0 to z in the complex t-plane. It coincides with the
fractional integral of order −ν. In case m − 1 < R (ν) < m, m ∈ N, it is customary to write

Dν
z f(z) ∶=

dm

dzm D
ν−m
z f(z) = dm

dzm
⎧⎪⎪⎨⎪⎪⎩

1
Γ(m − ν)

z

∫
0

(z − t)m−ν−1f(t)dt
⎫⎪⎪⎬⎪⎪⎭
.

We present the following new extended Riemann-Liouville-type fractional derivative operator.

De�nition 3.1. The extended Riemann-Liouville fractional derivative is de�ned as

Dν ,µ;p;m
z f(z) ∶= 1

Γ(−ν)

√
2p
π

z

∫
0

(z − t)−ν−1f(t)Kµ+ 1
2
( pz2m

tm(z − t)m
)dt, (41)

whereR(ν) < 0, R(p) > 0,R(m) > 0 and R(µ) ≥ 0.

For n − 1 < R (ν) < n, n ∈ N, we write

Dν ,µ;p;m
z f(z) ∶= dn

dzn D
ν−n,µ;p;m
z f(z) = dn

dzn
⎧⎪⎪⎨⎪⎪⎩

1
Γ(n − ν)

√
2p
π

z

∫
0

(z − t)n−ν−1f(t)Kµ+ 1
2
( pz2m

tm(z − t)m
)dt

⎫⎪⎪⎬⎪⎪⎭
. (42)

Remark 3.2. If we take m = 0, µ = 0, and p → 0, then the above extended Riemann-Liouville fractional
derivative operator reduces to the classical Riemann-Liouville fractional derivative operator.
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Now, we begin our investigation by calculating the extended fractional derivatives of some elementary
functions. For our purpose, we �rst establish two results involving the extended Riemann-Liouville fractional
derivative operator.

Lemma 3.3. LetR(ν) < 0, then we have

Dν ,µ;p;m
z {zλ} = zλ−ν

Γ(−ν)
Bµ (λ + 3

2 ,−ν +
1
2 ; p;m) . (43)

Proof. Using De�nition 3.1 and 1, we have

Dν ,µ;p;m
z {zλ} = 1

Γ(−ν)

√
2p
π

z

∫
0

(z − t)−ν−1tλ Kµ+ 1
2
( pz2m

tm(z − t)m
)dt

= zλ−ν

Γ(−ν)

√
2p
π

1

∫
0

(1 − u)(−ν+
1
2 )−

3
2 u(λ+

3
2 )−

3
2 Kµ+ 1

2
( p
um(1 − u)m

)du

= zλ−ν

Γ(−ν)
Bµ (λ + 3

2 ,−ν +
1
2 ; p;m) .

Next, we apply the extended Riemann-Liouville fractional derivative to a function f(z) analytic at the origin.

Lemma 3.4. Let R(ν) < 0 and suppose that a function f(z) is analytic at the origin with its Maclaurin
expansion given by f(z) = ∑∞n=0 anzn (∣z∣ < ρ) for some ρ ∈ R+. Then we have

Dν ,µ;p;m
z {f(z)} =

∞

∑
n=0

an Dν ,µ;p;m
z {zn} .

Proof. Using De�nition 3.1 to the function f(z) with its series expansion, we have

Dν ,µ;p;m
z {f(z)} = 1

Γ(−ν)

√
2p
π

z

∫
0

(z − t)−ν−1Kµ+ 1
2
( pz2m

tm(z − t)m
)

∞

∑
n=0

an tn dt.

Since the power series converges uniformly on any closed disk centered at the origin with its radius smaller
than ρ, so does the series on the line segment from 0 to a �xed z for ∣z∣ < ρ. This fact guarantees term-by-term
integration as follows:

Dν ,µ;p;m
z {f(z)} =

∞

∑
n=0

an
⎧⎪⎪⎨⎪⎪⎩

1
Γ(−ν)

√
2p
π

z

∫
0

(z − t)−ν−1Kµ+ 1
2
( pz2m

tm(z − t)m
) tn dt

⎫⎪⎪⎬⎪⎪⎭
=

∞

∑
n=0

anDν ,µ;p;m
z {zn} .

As a consequence we have the following result.

Theorem 3.5. Let R(ν) < 0 and suppose that a function f(z) is analytic at the origin with its Maclaurin
expansion given by f(z) = ∑∞n=0 anzn (∣z∣ < ρ) for some ρ ∈ R+. Then we have

Dν ,µ;p;m
z {zλ−1f(z)} =

∞

∑
n=0

an Dν ,µ;p;m
z {zλ+n−1} = zλ−ν−1

Γ(−ν)

∞

∑
n=0

an Bµ (λ + n + 1
2 ,−ν +

1
2 ; p;m) zn .

We present two subsequent theorems which may be useful to �nd certain generating function.

Theorem 3.6. ForR(ν) > R(λ) > − 1
2 , we have

Dλ−ν ,µ;p;m
z {zλ−1(1 − z)−α} = zν−1

Γ(ν − λ)
B (λ + 1

2 , ν − λ + 1
2) Fµ (α, λ + 1

2 ; ν + 1; z; p;m) (∣z∣ < 1; α ∈ C).

(44)
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Proof. Using (30) and applying Lemmas 3.3 and 3.4, we obtain

Dλ−ν ,µ;p;m
z {zλ−1(1 − z)−α} = Dλ−ν ,µ;p;m

z {zλ−1
∞

∑
l=0

(α)l
zl

l! }

=
∞

∑
l=0

(α)l
l! Dλ−ν ,µ;p;m

z {zλ+l−1}

=
∞

∑
l=0

(α)l
l!

Bµ(λ + l + 1
2 , ν − λ + 1

2 ; p;m)
Γ(ν − λ)

zν+l−1.

By using (24), we can get

Dλ−ν ,µ;p;m
z {zλ−1(1 − z)−α} = zν−1

Γ(ν − λ)
B (λ + 1

2 , ν − λ + 1
2) Fµ (α, λ + 1

2 ; ν + 1; z; p;m) .

Theorem 3.7. LetR(ν) > R(λ) > − 1
2 ,R(α) > 0,R(β) > 0; ∣az∣ < 1 and ∣bz∣ < 1. Then we have

Dλ−ν ,µ;p;m
z {zλ−1(1 − az)−α(1 − bz)−β}

= zν−1

Γ(ν − λ)
B (λ + 1

2 , ν − λ + 1
2) F1,µ (λ + 1

2 ,α, β; ν + 1; az, bz; p;m) . (45)

Proof. Use the binomial theorem for (1 − az)−α and (1 − bz)−β . Apply Lemmas 3.3 and 3.4 to obtain

Dλ−ν ,µ;p;m
z {zλ−1(1 − az)−α(1 − bz)−β}

= Dλ−ν ,µ;p;m
z {zλ−1

∞

∑
l=0

∞

∑
k=0

(α)l(β)k
(az)l

l!
(bz)k

k! }

=
∞

∑
l,k=0

(α)l (β)kDλ−ν ,µ;p;m
z {zλ+l+k−1} (a)l

l!
(b)k

k!

= zν−1
∞

∑
l,k=0

(α)l (β)k
Bµ (λ + l + k + 1

2 , ν − λ + 1
2 ; p;m)

Γ(ν − λ)
(az)n

l!
(bz)k

k! .

By using (25), we get

Dλ−ν ,µ;p;m
z {zλ−1(1 − az)−α(1 − bz)−β}

= zν−1

Γ(ν − λ)
B (λ + 1

2 , ν − λ + 1
2) F1,µ (λ + 1

2 ,α, β; ν + 1; az, bz; p;m) .

Theorem 3.8. LetR(ν) > R(λ) > − 1
2 ,R(α) > 0,R(β) > 0,R(γ) > 0, ∣az∣ < 1, ∣bz∣ < 1 and ∣cz∣ < 1. Then we

have

Dλ−ν ,µ;p;m
z {zλ−1(1 − az)−α(1 − bz)−β (1 − cz)−γ} = zν−1

Γ(ν − λ)

× B (λ + 1
2 , ν − λ + 1

2) F3
D,µ (λ + 1

2 ,α, β, γ; ν + 1; az, bz, cz; p;m) . (46)

Proof. As in the proof of Theorem 3.7, taking the binomial theorem for (1 − az)−α, (1 − bz)−β and (1 − cz)−γ

and applying Lemmas 3.3 and 3.4 and taking De�nition 5 into account, one can easily prove Theorem 3.8.

Theorem 3.9. LetR(ν) > R(λ) > − 1
2 ,R(α) > 0,R(γ) > R(β) > 0; ∣ x

1−z ∣ < 1 and ∣x∣ + ∣z∣ < 1. Then we have

Dλ−ν ,µ;p;m
z {zλ−1(1 − z)−αFµ (α, β; γ; x

1 − z
; p;m)}

= zν−1 B (λ + 1
2 , ν − λ + 1

2)
Γ (ν − λ)

F2,µ (α, β, λ + 1
2 ; γ, ν + 1; x, z; p;m) (47)
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Proof. By using (30) and applying the De�nition 2.8 for Fµ, we get

Dλ−ν ,µ;p;m
z {zλ−1(1 − z)−αFµ (α, β; γ; x

1 − z
; p;m)}

= Dλ−ν ,µ;p;m
z {zλ−1(1 − z)−α

∞

∑
n=0

(α)n
n!

Bµ(β + n, γ − β; p;m)
B(β, γ − β)

( x
1 − z

)
n
}

=
∞

∑
n=0

(α)n
Bµ(β + n, γ − β; p;m)

B(β, γ − β)
Dλ−ν ,µ;p;m
z {zλ−1(1 − z)−α−n} xn

n! .

Using Theorem 3.6 for Dλ−ν ,µ;p;m
z {zλ−1(1 − z)−α−n} and interpreting the extended hypergeometric function

Fµ as its series representation, we get

Dλ−ν ,µ;p;m
z {zλ−1(1 − z)−αFµ (α, β; γ; x

1 − z
; p;m)}

= zν−1

Γ(ν − λ)
B (λ + 1

2 , ν − λ + 1
2)

∞

∑
n,k=0

⎧⎪⎪⎨⎪⎪⎩
(α)n+k

Bµ (β + n, γ − β; p;m)
B (β, γ − β)

×
Bµ (λ + k + 1

2 , ν − λ + 1
2 ; p;m)

B (λ + 1
2 , ν − λ + 1

2)
xn

n!
zk

k!

⎫⎪⎪⎬⎪⎪⎭

= zν−1

Γ(ν − λ)
B (λ + 1

2 , ν − λ + 1
2) F2,µ (α, β, λ + 1

2 ; γ, ν + 1; x, z; p;m) .

This completes the proof.

4 Generating functions involving the extended Gauss
hypergeometric function

Here, we establish some linear and bilinear generating relations for the extended hypergeometric function
Fµ by using Theorems 3.6, 3.7 and 3.9.

Theorem 4.1. LetR(λ) > 0 andR (β) > R (α) > − 1
2 . Then we have

∞

∑
n=0

(λ)n
n! Fµ (λ + n,α + 1

2 ;β + 1; z; p;m) tn = (1 − t)−λ Fµ (λ,α + 1
2 ;β + 1; z

1 − t
; p;m) . (48)

(∣z∣ < min{1, ∣1 − t∣})

Proof. We start by recalling the elementary identity

[(1 − z) − t]−λ = (1 − t)−λ (1 − z
1 − t

)
−λ

and expand its left-hand side to obtain

(1 − z)−λ
∞

∑
n=0

(λ)n
n! ( t

1 − z
)
n
= (1 − t)−λ (1 − z

1 − t
)
−λ

(∣t∣ < ∣1 − z∣).

Multiplying both sides of the above equality by zα−1 and applying the extended Riemann-Liouville fractional
derivative operator Dα−β;µ;p;m

z on both sides, we �nd

Dα−β;µ;p;m
z {

∞

∑
n=0

(λ)n tn

n! zα−1(1 − z)−λ−n} = Dα−β;µ;p;m
z {(1 − t)−λzα−1 (1 − z

1 − t
)
−λ

} .

Uniform convergence of the involved series makes it possible to exchange the summation and the fractional
operator to give

∞

∑
n=0

(λ)n
n! Dα−β;µ;p;m

z {zα−1(1 − z)−λ−n} tn = (1 − t)−λ Dα−β;µ;p;m
z {zα−1 (1 − z

1 − t
)
−λ

} .
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The result then follows by applying Theorem 3.6 to both sides of the last identity.

Theorem 4.2. LetR (λ) > 0,R (γ) > 0 andR (β) > R (α) > − 1
2 . Then we have

∞

∑
n=0

(λ)n
n! Fµ (γ − n,α + 1

2 ;β + 1; z; p;m) tn

= (1 − t)−λ F1,µ (α + 1
2 , γ, λ;β + 1; z; −zt

1 − t
; p;m) .

(∣z∣ < 1; ∣t∣ < ∣1 − z∣; ∣z∣∣t∣ < ∣1 − t∣)

Proof. Considering the following identity

[1 − (1 − z)t]−λ = (1 − t)−λ (1 + zt
1 − t

)
−λ

and expanding its left-hand side as a power series, we get

∞

∑
n=0

(λ)n
n! (1 − z)n tn = (1 − t)−λ (1 − −zt

1 − t
)
−λ

(∣t∣ < ∣1 − z∣).

Multiplying both sides by zα−1(1 − z)−γ and applying the de�nition of the extended Riemann-Liouville
fractional derivative operator Dα−β;µ;p;m

z on both sides, we �nd

Dα−β;µ;p;m
z {

∞

∑
n=0

(λ)n
n! zα−1(1 − z)−γ(1 − z)n tn}

= Dα−β;µ;p;m
z {(1 − t)−λzα−1(1 − z)−γ (1 − −zt

1 − t
)
−λ

} .

The given conditions are found to allow us to exchange the order of the summation and the fractional
derivative to yield

∞

∑
n=0

(λ)n
n! Dα−β;µ;p;m

z {zα−1(1 − z)−γ+n} tn

= (1 − t)−λDα−β;µ;p;m
z {zα−1(1 − z)−γ (1 − −zt

1 − t
)
−λ

} .

Finally the result follows by using Theorems 3.6 and 3.7.

Theorem 4.3. LetR (ξ) > R (δ) > − 1
2 ,R (β) > R (α) > − 1

2 andR (λ) > 0. Then we have

∞

∑
n=0

(λ)n
n! Fµ (λ + n,α + 1

2 ;β + 1; z; p;m) Fµ (−n, δ + 1
2 ; ξ + 1; u; p;m) tn

= (1 − t)−λ F2,µ (λ,α + 1
2 , δ +

1
2 ;β + 1, ξ + 1; z

1 − t
, −ut1 − t

; p;m) .

(∣z∣ < 1; ∣1 − u
1 − z

t∣ < 1; ∣ z
1 − t

∣ + ∣ ut
1 − t

∣ < 1)

Proof. Replacing t by (1 − u) t in (48) and multiplying both sides of the resulting identity by uδ−1 gives
∞

∑
n=0

(λ)n
n! Fµ (λ + n,α + 1

2 ;β + 1; z; p;m) uδ−1 (1 − u)n tn

= uδ−1 [1 − (1 − u) t]−λ Fµ (λ,α + 1
2 ;β + 1; z

1 − (1 − u)t
; p;m) .

(R (λ) > 0, R (β) > R (α) > −1
2)
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Applying the fractional derivative Dδ−ξ,µ;p;m
u to both sides of the resulting identity and changing the order of

the summation and the fractional derivative yields
∞

∑
n=0

(λ)n
n! Fµ (λ + n,α + 1

2 ;β + 1; z; p;m)Dδ−ξ,µ;p;m
u {uδ−1(1 − u)n} tn

= Dδ−ξ,µ;p;m
u {uδ−1[1 − (1 − u)t]−λFµ (λ,α + 1

2 ;β + 1; z
1 − (1 − u)t

; p;m)} .

(∣(1 − u)t∣ < 1; ∣ut∣ < ∣1 − t∣)

The last identity can be written as follows:
∞

∑
n=0

(λ)n
n! Fµ (λ + n,α + 1

2 ;β + 1; z; p;m)Dδ−ξ,µ;p;m
u {uδ−1(1 − u)n} tn

= (1 − t)−λ Dδ−ξ,µ;p;m
u {uδ−1 [1 − −ut

1 − t
]
−λ

Fµ (λ,α + 1
2 ;β + 1;

z
1−t

1 − −ut
1−t

; p;m)} .

Finally the use of Theorems 3.6 and 3.9 in the resulting identity is seen to give the desired result.

5 Mellin transforms and further results
In this section, we �rst obtain the Mellin transform of the extended Riemann-Liouville fractional derivative
operator.

Theorem 5.1. LetR(ν) < 0, m > 0,R (µ) ≥ 0 and

R (s) > max{R (µ) ,−1
2 − 1

m
− R (λ)

m
,−1

2 + R (ν)
m

} .

Then we have the following relation

M [Dν ,µ;p;m
z {zλ} ∶ s] = zλ−ν

2µΓ(−ν)
Γ (s + µ)Γ ( s

2 −
µ
2 )Γ (λ +ms + m

2 + 1)Γ (−ν +ms + m
2 )

Γ ( s
2 +

µ
2 )Γ (λ − ν + 2ms +m + 1)

= zλ−ν

2µΓ(−ν)
Γ (s + µ)Γ ( s

2 −
µ
2 )

Γ ( s
2 +

µ
2 )

B (λ +ms + m
2 + 1,−ν +ms + m

2 ) . (49)

Proof. Taking the Mellin transform and using Lemma 3.3, we have

M[Dν ,µ;p;m
z {zλ} ∶ s] =

∞

∫
0

ps−1Dν ,µ;p;m
z {zλ}dp = zλ−ν

Γ(−ν)

∞

∫
0

ps−1Bµ (λ + 3
2 ,−ν +

1
2 ; p;m)dp.

Applying Theorem 2.6 to the last integral yields the desired result.

Theorem 5.2. LetR(ν) < 0, m > 0,R (µ) ≥ 0, ∣z∣ < 1 and

R (s) > max{R (µ) ,−1
2 − 1

m
,−1

2 + R (ν)
m

} .

Then we have the following relation

M [Dν ,µ;p;m
z {(1 − z)−α} ∶ s] = z−ν

2µΓ(−ν)
Γ (s + µ)Γ ( s

2 −
µ
2 )

Γ ( s
2 +

µ
2 )

B (ms + m
2 + 1,−ν +ms + m

2 )

× 2F1 (α,ms + m
2 + 1;−ν + 2ms +m + 1; z) , (50)

where 2F1 is a well known Gauss hypergeometric function given by (28).
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Proof. Using the binomial series for (1 − z)−λ and Theorem 5.1 with λ = n yields

M[Dν ,µ;p;m
z {(1 − z)−α} ∶ s] =M [Dν ,µ;p;m

z {
∞

∑
n=0

(α)n
n! zn} ∶ s]

=
∞

∑
n=0

(α)n
n! M [Dν ,µ;p;m

z {zn} ∶ s]

=
∞

∑
n=0

(α)n
n!

zn−ν

2µΓ(−ν)
Γ (s + µ)Γ ( s

2 −
µ
2 )Γ (n +ms + m

2 + 1)Γ (−ν +ms + m
2 )

Γ ( s
2 +

µ
2 )Γ (n − ν + 2ms +m + 1)

.

Then the last expression is easily seen to be equal to the desired one.

Now we present the extended Riemann-Liouville fractional derivative of zλ in terms of the Fox H-function.

Theorem 5.3. LetR(p) > 0,R(µ) ≥ 0,R(ν) < 0 and m > 0. Then we have

Dν ,µ;p;m
z {zλ} = zλ−ν

2µΓ(−ν)
H4,0

2,4

⎡⎢⎢⎢⎢⎢⎢⎣

p

RRRRRRRRRRRRRRR

(µ
2 ,

1
2) , (λ − ν +m + 1, 2m)

(µ, 1) , (−µ
2 ,

1
2) , (λ +

m
2 + 1,m) , (−ν + m

2 ,m)

⎤⎥⎥⎥⎥⎥⎥⎦

.

Proof. The result can be obtained by taking the inverse Mellin transform of the result in Lemma 3.3 with the
aid of Theorem 2.7.

Applying the result in Theorem 3.3 to the Maclaurin series of ez and the series expression of the Gauss
hypergeometric function 2F1 gives the extended Riemann-Liouville fractional derivatives of ez and 2F1

asserted by the following theorems.

Theorem 5.4. IfR (ν) < 0, then we have

Dν ,µ;p;m
z {ez} = z−ν

Γ(−ν)

∞

∑
n=0

Bµ (n + 3
2 ,−ν +

1
2 ; p;m) zn

n! .

Theorem 5.5. IfR (ν) < 0, then we have

Dν ,µ;p;m
z {2F1 (a, b; c; z)} = z−ν

Γ(−ν)

∞

∑
n=0

(a)n(b)n
(c)n

Bµ (n + 3
2 ,−ν +

1
2 ; p;m) zn

n! (∣z∣ < 1) .
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