
Open Access. © 2017 Li, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.

Open Math. 2017; 15: 1591–1598

Open Mathematics

Research Article

Shixing Li*

Enumeration of spanning trees
in the sequence of Dürer graphs
https://doi.org/10.1515/math-2017-0136
Received October 12, 2016; accepted December 7, 2017.

Abstract: In this paper, we calculate the number of spanning trees in the sequence of Dürer graphs with a
special feature that it has two alternate states. Using the electrically equivalent transformations, we obtain
the weights of corresponding equivalent graphs and further derive relationships for spanning trees between
the Dürer graphs and transformed graphs. By algebraic calculations, we obtain a closed-form formula for the
number of spanning trees with regard to iteration step. Finally we compare the entropy of our graph with
other studied graphs and see that its value of entropy lies in the interval of those of graphs with average
degree being 3 and 4.
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1 Introduction
In the study of networks, spanning trees are related to many aspects of networks, such as reliability [1, 2],
consensus [3], random walks [4] and nonlinear dynamics [5, 6]. A spanning tree of a connected graph is
de�ned as a minimal set of edges that connect all its nodes. On the other hand, enumeration of spanning
trees has been applied in mathematics [7], computer science [8, 9], physics [10, 11], and chemistry [12], to
name just a few.

Recently, counting the number of spanning trees has attracted increasing attention [13–16]. It is known
that the number of spanning trees can be obtained by matrix-tree theorem [13]. Due to the complexity
and diversity of networks, analytically enumerating spanning trees is challenging. For fractal networks,
the existing works [17–20] applied the self-similarity, spanning forests, and Laplacian spectrum to obtain
exact formulae of spanning trees, while for some self-similar graphs, e.g., generalized Petersen graphs,
those methods are not e�ective. Recently, the enumeration of spanning trees has been investigated by the
electrically equivalent transformations in Refs. [21–23].

A sequence ofDürer graphs is the skeletonofDürer’s solid,whichbelongs to generalizedPetersengraphs.
This graph has a special feature that it has two alternate states. Calculating the number of spanning trees in
this family of graph by its laplacian spectrum does not work. To the best of our knowledge, few analytical
results involve the derivation of enumeration of spanning trees. Here we employ the knowledge of electrical
networks, where an edge-weighted graph is regarded as an electrical network with the weights equalling the
conductances of the corresponding edges. Using the electrically equivalent transformations provided in Refs.
[24, 25], we obtain some relationships for spanning trees between the original graph and transformed graphs.
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We then obtain a closed-form formula for enumeration of spanning trees. Finally we calculate the entropy of
spanning trees and compare it with those of other studied graphs.

In Section 2, the construction of the sequence of Dürer graphs is presented. Section 3 shows the elec-
trically equivalent transformations of graphs. The detailed calculations of spanning trees are provided in
Section 4. Finally, the conclusions are included in the last section.

2 Model presentation
The sequence of Dürer graphs is denoted by Gn(n ≥ 1) after n steps, which is constructed as follows:

For n = 1, G1 is a triangle.
For n = 2, G2 is obtained from G1, where a hexagon is put into the triangle and three new adjacent nodes

in the hexagon are connected to the nodes in the triangle.
For n ≥ 3, Gn is produced by Gn−1. If n is an even number, a hexagon is inserted into Gn−1; if n is an odd

number, a triangle is embedded into Gn−1. Figure 1 shows this construction process.

Fig. 1. The Dürer graphs Gn produced at steps n = 1, 2, 3 and 4.

According to the construction, the number of total vertices Vn and edges En are,

Vn =
9n
2
−
3
2
, En =

15n
2
−
9
2
, n = 1, 3,⋯,

and
Vn =

9n
2
, En =

15n
2
− 3, n = 2, 4,⋯.

Then the average degree is ⟨k⟩n = 2En
Vn

, which is approximately 10
3 for a large t.

3 Electrically equivalent transformations
According to the structures of Gn, the �nal state is either a triangle or a hexagon. When the �nal state is a
hexagon, using the star-triangle electrically equivalent transformation, we obtain a new graph, denoted by
Ft and the weights in the new triangles become 1

3 , other edge weights remain unchanged. Figure 2 shows the
transformation between G2 and F1. Using the results in Ref. [24], we transform a star graph with weights a, b
and c to a triangle graph H∗, where the weights are bc

a+b+c ,
ac

a+b+c and ab
a+b+c . Then we obtain the relationship
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of weighted spanning trees between H and H∗, i.e., τ(H) = (a + b + c)τ(H∗
). Since the graph Gn contains

3
2n identical star graphs, we obtain

τ(Gn) = 3
3
2 nτ(Ft). (1)

Fig. 2. The transformation from G2 to F1.

In the same way, when the �nal state is a triangle, we transform Gn into F∗t . Figure 3 gives the transformation
between G3 and F∗1 . The weighted spanning trees reads as

τ(Gn) = 3
3
2 (n−1)τ(F∗t ). (2)

Fig. 3. The transformation from G3 to F∗1 .

In order to calculate the functions τ(Ft) and τ(F∗t ), we provide the following two Lemmas and three
corollaries.

Lemma 3.1. For the edge-weighted graph F1 (see Fig. 4), suppose the weights of the innermost triangle,
outermost triangle and the linked edges are a, c and b, respectively. Then, we have

τ(F1) = 6b(2ab + 2bc + 3ac + b2)2.

Proof. We �rstly transform the innermost triangle with weights a into an electrically equivalent star graph
denoted by X1 with weights 3a, then τ(X1) = 9aτ(F1).

Using the star-triangle transformation, three star graphs are changed into three connected curved edge
triangles, where the weights of innermost six curved edges are 3ab

3a+2b , and the weights of outer three curved
edges are b2

3a+2b . The transformed graph is denoted by X2, then τ(X2) = ( 1
3a+2b )

3τ(X1).
Merging six pairs of parallel edges into single edges produces a new graph denoted by X3, which includes

a triangle with weights c + b2
3a+2b and a star graph with weights 6ab

3a+2b . Then τ(X3) = τ(X2). Using the star-
triangle transformation again,we obtain a curved edge trianglewithweights 2ab

3a+2b , then τ(X4) =
3a+2b
18ab τ(X3).

Finally, merging two parallel edges into a single edge to form a new triangle with weights c + b2+2ab
3a+2b , we

obtain τ(X5) = τ(X4). Through the above �ve transformations, we obtain τ(F1) = 6b(2ab+2bc+3ac+b2)2.
The whole electrically equivalent transformations from F1 to X5 are shown in Fig. 4.
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Fig. 4. The transformations from F1 to X5.

Lemma 3.2. For the edge-weighted graph Y1(see Fig. 5), the weights of the innermost triangle, outermost
triangle and the linked edges are x, z and y. Then,

τ(Y1) = 3y(xy + 3xz + yz)2.

Proof. Using the same transformation between F1 and X1, we change Y1 into Y2, then τ(Y2) = 9xτ(Y1).
Merging two serial edges with the weights 3x and y into a single edge with the weight 3xy

3x+y , we obtain τ(Y3) =
1

(3x+y)3 τ(Y2). Then implementing the star-triangle transformation and the curved edge triangle with weights
xy

3x+y . Thus, τ(Y4) =
3x+y
9xy τ(Y3).

Finally merging parallel edges into a single edge with weight z + xy
3x+y gives τ(Y5) = τ(Y4). Combining

the above-mentioned transformation, we obtain τ(Y1) = 3y(xy + 3xz + yz)2. Figure 5 gives the electrically
equivalent transformations between Y1 and Y5. According to Lemmas 3.1 and 3.2, we obtain the following
corollaries.

Fig. 5. The transformations from Y1 to Y5.
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Corollary 3.3. Considering a new graph F2 formed by connecting two graphs F1 through three edges with the
weight y, we obtain

τ(F2) = 2by(2b + 3a)2(3x + y)2τ(F1),

where x = c + b2+2ab
3a+2b .

Proof. Based on the transformations in Fig. 6, we have τ(F2) = 2b(2b + 3a)2τ(F∗1) and τ(F∗1) = y(3x +
y)2τ(F1).

Fig. 6. The transformations from F2 to F1.

Corollary 3.4. Based on the transformations of F2, we obtain a relationship of enumerating spanning trees
between Ft and F1, i.e.,

τ(Ft) = (
2
3
)
t−1

t
∏
i=2

(3 + 14ri)2 ⋅ τ(F1), (3)

where ri = 16+75ri+1
27+126ri+1 , and ri is the edge weights in the innermost triangle of Fi.

Proof. According to the transformations (F1 → X5 and Y1 → Y5 ) in Figs. 4 and 5, we obtain x = c + b2+2ab
3a+2b

and r1 = z + xy
3x+y . Let z = b = 1

3 , c = y = 1, a = r2, it gives x =
33r2+7
27r2+6 and r1 =

16+75r2
27+126r2 . Further, τ(F2) =

2
3(3+14r2)

2
⋅τ(F1). Through the transformations between Ft and F1 andby induction, Equation (3) holds.

Corollary 3.5. The graphs F∗t are produced by inserting a triangle with the weights 1 into Ft, and connecting
them by linked-edges with the weights 1. Then,

τ(F∗t ) = 16τ(Ft). (4)

Proof. Let x = y = 1, z = 1
3 and from Lemma 3.2, it gives τ(Y1) = 16τ(Y5). Using the transformations from F∗t

to Ft, Corollary 3.5 is established.

4 Calculating the number of spanning trees
Using the expression rt−1 = 16+75rt

27+126rt and denoting the coe�cients of 27 + 126rt and 16 + 75rt as At and Bt,
we obtain

3 + 14rt = A0(27 + 126rt) + B0(16 + 75rt),

3 + 14rt−1 =
A1(27 + 126rt) + B1(16 + 75rt)
9[A0(27 + 126rt) + B0(16 + 75rt]

,

⋮ ⋮

3 + 14rt−i =
Ai(27 + 126rt) + Bi(16 + 75rt)

9[Ai−1(27 + 126rt) + Bi−1(16 + 75rt]
, (5)

3 + 14rt−(i+1) =
Ai+1(27 + 126rt) + Bi+1(16 + 75rt)
9[Ai(27 + 126rt) + Bi(16 + 75rt]

, (6)
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⋮ ⋮

3 + 14r2 =
At−2(27 + 126rt) + Bt−2(16 + 75rt)

9[At−3(27 + 126rt) + Bt−3(16 + 75rt)]
,

where A0 =
1
9 , B0 = 0; A1 = 3, B1 = 14. Substituting Eq. (5) into Eq. (3) yields

τ(Ft) = 2t−1 ⋅ 3−5t+9[At−2(27 + 126rt) + Bt−2(16 + 75rt)]2 ⋅ τ(F1). (7)

Let a = r1, b = 1
3 , c = 1 and from Lemma 3.1, we obtain

τ(F1) =
2
81
⋅ (7 + 33r1)2. (8)

By the relationship between rt and rt−1 and Eqs. (5) and (6), we obtain

At+1 = 102At − 9At−1;Bt+1 = 102Bt − 9Bt−1.

Their characteristic equation is
λ
2
− 102λ + 9 = 0,

with two roots being λ1 = 51 + 36
√
2 and λ2 = 51 − 36

√
2. Then the general solutions are

At = a1λt1 + a2λt2;Bt = b1λt1 + b2λt2.

Using the initial conditions A0 =
1
9 , B0 = 0;A1 = 3, B1 = 14 gives

At =
3 −

√
2

54
λ
t
1 +

3 +
√
2

54
λ
t
2;Bt =

7
√
2

72
λ
t
1 −

7
√
2

72
λ
t
2. (9)

In the sequel, we calculate the values of r1. By rt−1 = 16+75rt
27+126rt , its characteristic equation is 63x2−24x−8 = 0,

which has two roots x1 = 4+6
√
2

21 and x2 = 4−6
√
2

21 .
Subtracting these two roots from both sides of rt−1 = 16+75rt

27+126rt yields

rt−1 −
4 + 6

√
2

21
=

16 + 75rt
27 + 126rt

−
4 + 6

√
2

21

=
51 − 36

√
2

27 + 126rt
(rt −

4 + 6
√
2

21
),

rt−1 −
4 − 6

√
2

21
=

16 + 75rt
27 + 126rt

−
4 − 6

√
2

21

=
51 + 36

√
2

27 + 126rt
(rt −

4 − 6
√
2

21
).

Let at =
rt− 4+6√2

21

rt− 4−6√2
21

, then,

at−1 =
17 − 12

√
2

17 + 12
√
2
at ,

where

a1 =
r1 − 4+6

√
2

21

r1 − 4−6
√
2

21

= (
17 − 12

√
2

17 + 12
√
2
)
t−1at .

Hence, the expression of r1 reads as

r1 =
(6

√
2 − 4)(577 − 408

√
2)t−1at + 4 + 6

√
2

21 − 21(577 − 408
√
2)t−1at

. (10)

If rt = 1
3 , then at = 3−6

√
2

3+6
√
2
. Plugging Eqs. (7)-(10) into Eq. (1) gives

τ(Gn) = 2
n
2 ⋅ 3−n+5(92 + 65

√
2

24
λ

n−4
2

1 +
92 − 65

√
2

24
λ

n−4
2

2 )
2
(7 + 33r1)2,
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where r1 = (2
√
2−4)(577−408

√
2)

n
2 −1+2

√
2+4

(6
√
2−3)(577−408

√
2)

n
2 −1+6

√
2+3

, λ1 = 51 + 36
√
2 and λ2 = 51 − 36

√
2.

If rt = 7
12 , then at = 11−8

√
2

11+8
√
2
. Inserting Eqs. (4) and (7)-(10) into Eq. (2) yields

τ(Gn) = 2
n+7
2 ⋅ 3−n+6(536 + 379

√
2

96
λ

n−5
2

1 +
536 − 379

√
2

96
λ

n−5
2

2 )
2
(7 + 33r1)2,

where r1 = (14
√
2−20)(577−408

√
2)

n−3
2 +14

√
2+20

(24
√
2−33)(577−408

√
2)

n−3
2 +24

√
2+33

. Then, we have the following theorem.

Theorem 4.1. The enumeration of spanning trees in the sequence of Dürer graphs is as follows:

τ(Gn) =

⎧⎪⎪
⎨
⎪⎪⎩

2
n+7
2 ⋅ 36−n( 536+379

√
2

96 λ
n−5
2

1 + 536−379
√
2

96 λ
n−5
2

2 )
2
⋅ Φ1, n = 1, 3,⋯,

2
n
2 ⋅ 35−n( 92+65

√
2

24 λ
n−4
2

1 + 92−65
√
2

24 λ
n−4
2

2 )
2
⋅ Φ2, n = 2, 4,⋯,

where Φ1 = (7 + 33r1)2 with r1 =
(14
√
2−20)(577−408

√
2)

n−3
2 +14

√
2+20

(24
√
2−33)(577−408

√
2)

n−3
2 +24

√
2+33

and Φ2 = (7 + 33r1)2 with r1 =

(2
√
2−4)(577−408

√
2)

n
2 −1+2

√
2+4

(6
√
2−3)(577−408

√
2)

n
2 −1+6

√
2+3

.

5 Entropy of spanning trees
Using the obtained results for enumeration of spanning trees, we calculate the entropy of spanning trees,
denoted by E(G), which is given by,

E(G) = lim
n→∞

ln τ(Gn)

Vn
,

=
ln 2 − 2 ln3 + 2 ln(51 + 36

√
2)

9
≈ 0.860.

Now we compare the value of entropy in our graph with other graphs. For the graphs with average degree 3,
the entropy of in�nite outerplanar small-world graphs [26] is 0.657, the values of entropy in 3-12-12 and 4-8-8
lattices [27] are 0.721 and 0.787, and the honeycomb lattice [28] is 0.807. While for the graphs with average
degree 4, the entropy of the pseudofractal fractal web [29] is 0.896, the fractal scale-free lattice [20] is 1.040,
the values of the two-dimensional Sierpinski gasket [15] and the square lattice [28] are 1.049 and 1.166. The
entropy of spanning trees in our graph is 0.860, which is larger than those of graphs with average degree 3,
but smaller than those of graphs with average degree 4.

6 Conclusions
In thepresent study,wehaveused the electrically equivalent transformations to solve thenumber of spanning
trees in the sequence of Dürer graphs. Compared to existing methods on enumeration of spanning trees, this
method is e�ective and simple. Applying the transformations, we have converted this graph into a triangle,
andobtained the relationships of corresponding edgeweights.Using theobtainedmethod,we could calculate
the spanning trees of Dürer-like graphs, e.g., the cylinders width being an even number. In addition, our
results have shown that the entropy is related to the average degree, whether this conclusion holds for other
graphs needs further study.
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