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Abstract: In this paper, we calculate the number of spanning trees in the sequence of Diirer graphs with a
special feature that it has two alternate states. Using the electrically equivalent transformations, we obtain
the weights of corresponding equivalent graphs and further derive relationships for spanning trees between
the Diirer graphs and transformed graphs. By algebraic calculations, we obtain a closed-form formula for the
number of spanning trees with regard to iteration step. Finally we compare the entropy of our graph with
other studied graphs and see that its value of entropy lies in the interval of those of graphs with average
degree being 3 and 4.
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1 Introduction

In the study of networks, spanning trees are related to many aspects of networks, such as reliability [1, 2],
consensus [3], random walks [4] and nonlinear dynamics [5, 6]. A spanning tree of a connected graph is
defined as a minimal set of edges that connect all its nodes. On the other hand, enumeration of spanning
trees has been applied in mathematics [7], computer science [8, 9], physics [10, 11], and chemistry [12], to
name just a few.

Recently, counting the number of spanning trees has attracted increasing attention [13-16]. It is known
that the number of spanning trees can be obtained by matrix-tree theorem [13]. Due to the complexity
and diversity of networks, analytically enumerating spanning trees is challenging. For fractal networks,
the existing works [17-20] applied the self-similarity, spanning forests, and Laplacian spectrum to obtain
exact formulae of spanning trees, while for some self-similar graphs, e.g., generalized Petersen graphs,
those methods are not effective. Recently, the enumeration of spanning trees has been investigated by the
electrically equivalent transformations in Refs. [21-23].

A sequence of Diirer graphs is the skeleton of Diirer’s solid, which belongs to generalized Petersen graphs.
This graph has a special feature that it has two alternate states. Calculating the number of spanning trees in
this family of graph by its laplacian spectrum does not work. To the best of our knowledge, few analytical
results involve the derivation of enumeration of spanning trees. Here we employ the knowledge of electrical
networks, where an edge-weighted graph is regarded as an electrical network with the weights equalling the
conductances of the corresponding edges. Using the electrically equivalent transformations provided in Refs.
[24, 25], we obtain some relationships for spanning trees between the original graph and transformed graphs.
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We then obtain a closed-form formula for enumeration of spanning trees. Finally we calculate the entropy of
spanning trees and compare it with those of other studied graphs.

In Section 2, the construction of the sequence of Diirer graphs is presented. Section 3 shows the elec-
trically equivalent transformations of graphs. The detailed calculations of spanning trees are provided in
Section 4. Finally, the conclusions are included in the last section.

2 Model presentation

The sequence of Diirer graphs is denoted by G,(n > 1) after n steps, which is constructed as follows:

For n =1, G is a triangle.

For n = 2, G, is obtained from G,, where a hexagon is put into the triangle and three new adjacent nodes
in the hexagon are connected to the nodes in the triangle.

For n > 3, Gy is produced by G,_1. If n is an even number, a hexagon is inserted into G,_1; if n is an odd
number, a triangle is embedded into G,_1. Figure 1 shows this construction process.

Fig. 1. The Diirer graphs G, produced at stepsn =1, 2,3 and 4.
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According to the construction, the number of total vertices V, and edges E, are,
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and 9n 15n
Vi = 5 , En= N -3,n=2,4,---.
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Then the average degree is (k)» = 5, which is approximately 13—0 for a large t.

3 Electrically equivalent transformations

According to the structures of Gy, the final state is either a triangle or a hexagon. When the final state is a
hexagon, using the star-triangle electrically equivalent transformation, we obtain a new graph, denoted by
F¢ and the weights in the new triangles become %, other edge weights remain unchanged. Figure 2 shows the
transformation between G, and F;. Using the results in Ref. [24], we transform a star graph with weights a, b

and c to a triangle graph H”, where the weights are _ +b}f+c, e and - flf)+c' Then we obtain the relationship
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of weighted spanning trees between H and H*, i.e., 7(H) = (a + b + ¢)7(H"). Since the graph G, contains
%n identical star graphs, we obtain

7(Gn) = 33"r(Fy). )

Fig. 2. The transformation from G, to F;.
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In the same way, when the final state is a triangle, we transform G, into F; . Figure 3 gives the transformation
between G5 and F;. The weighted spanning trees reads as

7(Gn) = 31D (F)). ®)

Fig. 3. The transformation from G3 to Fy.
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In order to calculate the functions 7(F;) and 7(F;), we provide the following two Lemmas and three
corollaries.

Lemma 3.1. For the edge-weighted graph F1 (see Fig. 4), suppose the weights of the innermost triangle,
outermost triangle and the linked edges are a, c and b, respectively. Then, we have

7(F1) = 6b(2ab + 2bc + 3ac + b*)°.

Proof. We firstly transform the innermost triangle with weights a into an electrically equivalent star graph
denoted by X1 with weights 3a, then 7(X1) = 9ar(F1).
Using the star-triangle transformation, three star graphs are changed into three connected curved edge

triangles, where the weights of innermost six curved edges are 33%’ 5> and the weights of outer three curved

edges are 3a+2b The transformed graph is denoted by X, then 7(X3) = (5357 3a+2b Y7 (X1).
Merging six pairs of parallel edges into single edges produces a new graph denoted by X3, which includes
a triangle with weights ¢ + 3;121, and a star graph with weights =42, Then 7(X3) = 7(X2). Using the star-

3a+2b°
triangle transformation again, we obtain a curved edge triangle with weights 5 ﬁig 5> then7(Xy) = 31”8;2171’ 7(X3).
b’+2ab

Finally, merging two parallel edges into a single edge to form a new triangle with weights ¢ + 3757, we
obtain 7(Xs) = 7(X,). Through the above five transformations, we obtain 7(F; ) = 6b(2ab+2bc+3ac+b?)>.
The whole electrically equivalent transformations from F; to X5 are shown in Fig. 4.
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Fig. 4. The transformations from F; to Xs.
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Lemma 3.2. For the edge-weighted graph Y,(see Fig. 5), the weights of the innermost triangle, outermost
triangle and the linked edges are x, z and y. Then,

(Y1) = 3y(xy + 3xz + yz)°.

Proof. Using the same transformation between F; and Xi, we change Y; into Y>, then 7(Y>) = 9x7(Y1).

Merging two serial edges with the weights 3x and y into a single edge with the weight ;’ﬁry 5> we obtain7(Y3) =

T}WT( Y,). Then implementing the star-triangle transformation and the curved edge triangle with weights

. Thus, 7(Y4) = 32X 7(Y3).
Finally merging parallel edges into a single edge with weight z + 3;‘{}, gives 7(Ys) = 7(Y4). Combining

the above-mentioned transformation, we obtain 7( Y1) = 3y(xy + 3xz + yz)2. Figure 5 gives the electrically
equivalent transformations between Y; and Ys. According to Lemmas 3.1 and 3.2, we obtain the following
corollaries.

Fig. 5. The transformations from Y; to Ys.
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Corollary 3.3. Considering a new graph F, formed by connecting two graphs F1 through three edges with the
weight y, we obtain
7(F2) = 2by(2b +3a)*(3x +y)*7(F1),

b*+2ab

where x = ¢ + 3aiah

Proof. Based on the transformations in Fig. 6, we have 7(F,) = 2b(2b + 3a)*r(F;) and 7(F}) = y(3x +
y)’r(F1).

Fig. 6. The transformations from F, to F;.
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Corollary 3.4. Based on the transformations of F», we obtain a relationship of enumerating spanning trees
between F; and F1, i.e.,

2 . t
7(Fe) = (g)t T3+ 141:)? - 7(F1), G)
i=2
where r; = %’ and r; is the edge weights in the innermost triangle of Fj;.
Proof. According to the transformations (F; — X5 and Y; — Y5 ) in Figs. 4 and 5, we obtain x = ¢ + b;;fz"lf’
andry = z + 3;‘{),. Letz=b=131,c=y=1,a=r,itgivesx = ?Zié and r; = 2176:17256’52. Further, 7(F,) =

% (3+14r,)?-7(F1). Through the transformations between F; and F; and by induction, Equation (3) holds. [J

Corollary 3.5. The graphs F; are produced by inserting a triangle with the weights 1 into F;, and connecting
them by linked-edges with the weights 1. Then,

T(F;r) =167(F;). (4)

Proof. Letx=y=1,z= % and from Lemma 3.2, it gives 7(Y;) = 167(Y5). Using the transformations from F;
to F¢, Corollary 3.5 is established. O

4 Calculating the number of spanning trees

Using the expression r;_1 = L6+757 gpnd denoting the coefficients of 27 + 126r; and 16 + 75r; as A¢ and By,

27+126r,
we obtain

3+ 14r¢ = Ap(27 + 126r1¢) + Bo(16 + 751¢),
A1(27 +1261¢) + B1(16 + 751¢)

341414 = ,
e 9[Ao(27 +126r1¢) + Bo(16 + 7571¢]
Ai(27 +126r¢) + B;(16 + 751¢)

3+ 14r,; = s 5

" = 9[Ai_1(27 + 12671¢) + Bi_1(16 + 751¢] ©)

3+ 147y = Ai1(27 +1261¢) + Bi11(16 + 751¢) ©)

9[A;(27 +126r¢) + Bi(16 + 751¢] °
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A[_2(27 + 1261}) + Bt_2(16 + 751})
[A¢-3(27 +1267¢) + B;—3(16 + 751¢)]’

3+ 14r; = 5

where Ao = 3, Bo = 0; A1 = 3, By = 14. Substituting Eq. (5) into Eq. (3) yields
r(F) =21 37%%[A4,5(27 + 1261¢) + Br_5(16 + 751¢)]* - 7(F1). @)

Leta=ri, b= %, ¢ = 1 and from Lemma 3.1, we obtain

2
7(F1) = o= (7 +33r1)%. ®)
81
By the relationship between r; and r¢_; and Egs. (5) and (6), we obtain
At+1 = 102At - 9At71; B[+1 = 1OZBt - 9B[71.

Their characteristic equation is
A2 -1020+9=0,

with two roots being A; = 51 + 361/2 and A, = 51 — 361/2. Then the general solutions are
A[ = a1>\t1 + az/\E;B[ = b1)\t1 + bz)\g.
Using the initial conditions Ag = %, Bo = 0; A1 = 3, By = 14 gives

72 72

3-V2. 3+V2 . t t
A = A1+ Ay Be = A1 — A>. 9
V) A I I ©)
In the sequel, we calculate the values of r1. By r;_1 = 2176:1725g;t , its characteristic equation is 63x* - 24x—-8 = 0,
which has two roots x; = # and x, = %ﬁ.

164751

Subtracting these two roots from both sides of r,_; = 371361,

yields

4+6V2  16+75r  4+6V2

"1 T T 27+ 126 21
_51-36V2 4+6\/2
T ERTTT A A e
rH_4—6ﬁ _ 16+75n _4-6V2
21 27 + 1261; 21
C51+36V2, 4-6V2
S TR TTT A vl
,[74+6ﬁ
Let a; = ﬁ,then,
21
at-1 = 717_ 12\/560,
17 +12V/2
where
- %2 97 122
ai = —( ) ag.

17 + 122

4-6v2
- 21\[

Hence, the expression of r; reads as

. (67/2 - 4)(577 - 408\/2) tas + 4+ 62
1= .
21-21(577 - 408/2)t"1a;

(10)

3-6V2

Ifr = 316v2°

,then a; =

1 Plugging Egs. (7)-(10) into Eq. (1) gives

no__ 2 2 n=4 2 - 2 n=4
7(Gn) =22 -3 "*%ﬂ)\lz +ﬂ)\22

2 2
54 o ) (7 +33r1)°%,
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_(2v/2-4)(577-408v/2) 2 T +21/2+4 _ 1
where r; = (Vo 17085 603’ A =51+36v2and )\, =51 -36V2.

Ifre= 5, thena; = i:gg Inserting Egs. (4) and (7)-(10) into Eq. (2) yields

(Gn) =2 .3_,”6(536 + 379\/§A?ﬁ , 536 —93679\/5

502 2
T3 A2 ) (7 +33r1)5,

n=3
where ry = (14+/2-20) (577-408/2) . +14/2420 Then, we have the following theorem.

(24+/2-33)(577-408+/2) "T" +24+/2+33

Theorem 4.1. The enumeration of spanning trees in the sequence of Diirer graphs is as follows:

n+7 _ n=>5 _ n=>5
(Gr) = 4 36 n(536+93679\/§>\12 4 536 93679\/2/\22 )2-¢1,n: 1,3,
n)= n _ n=4 B n=t
27 .35 ( 2652\ Ty 9265V ) T2 gy n =2, 4,

n-3
where &1 = (7 + 33r1)% with r; = (4Y2220(77-408v2) 7 +14V2420 g ) = (7 + 33r1)2 with 11 =
(24+/2-33)(577-408\/2) 2 +24~/2+33

(2V2-4) (577-408v2) 3 142/ 2+4
(6v/2-3)(577-408+/2) 3 1+61/2+3

5 Entropy of spanning trees

Using the obtained results for enumeration of spanning trees, we calculate the entropy of spanning trees,
denoted by E(G), which is given by,
E(G) = lim mTV&

n—oo n

~In2-2In3+2In(51 +36\/2)
- 9

~ 0.860.

Now we compare the value of entropy in our graph with other graphs. For the graphs with average degree 3,
the entropy of infinite outerplanar small-world graphs [26] is 0.657, the values of entropy in 3-12-12 and 4-8-8
lattices [27] are 0.721 and 0.787, and the honeycomb lattice [28] is 0.807. While for the graphs with average
degree 4, the entropy of the pseudofractal fractal web [29] is 0.896, the fractal scale-free lattice [20] is 1.040,
the values of the two-dimensional Sierpinski gasket [15] and the square lattice [28] are 1.049 and 1.166. The
entropy of spanning trees in our graph is 0.860, which is larger than those of graphs with average degree 3,
but smaller than those of graphs with average degree 4.

6 Conclusions

In the present study, we have used the electrically equivalent transformations to solve the number of spanning
trees in the sequence of Diirer graphs. Compared to existing methods on enumeration of spanning trees, this
method is effective and simple. Applying the transformations, we have converted this graph into a triangle,
and obtained the relationships of corresponding edge weights. Using the obtained method, we could calculate
the spanning trees of Diirer-like graphs, e.g., the cylinders width being an even number. In addition, our
results have shown that the entropy is related to the average degree, whether this conclusion holds for other
graphs needs further study.
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