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Abstract: The ordering of normal linear experiments with respect to quadratic estimation, introduced by
Stępniak in [Ann. Inst. Statist. Math. A 49 (1997), 569-584], is extended here to the experiments involving
the nuisance parameters. Typical experiments of this kind are induced by allocations of treatments in the
blocks. Our main tool, called quotient of information matrices, may be interesting itself. It is known that any
orthogonal allocation of treatments in blocks is optimal with respect to linear estimation of all treatment
contrasts. We show that such allocation is, however, not optimal for quadratic estimation.
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1 Introduction
Any statistical experimentmay be perceived as an information channel transforming a deterministic quantity
(parameter) into a random one (observation) according to a design indicated by experimenter. The primary
aim of statistician is to recover the information about the parameter from the observation. However the
e�ciency of this process depends not only on the statistical rule but also on the experimental design. Such
design, which may be identi�ed with the experiment, is represented by a probabilistic structure.

When observations have normal distribution the entire statistical analysis is based on their linear and
quadratic forms. Thus the properties of such forms should be taken into account in any reasonable choice of
statistical experiment.

Comparison of linear experiments by linear forms has been intensively studied in statistical literature.
It is well known (for instance [1–6]) that almost all criteria used for comparison of two linear experiments
with respect to linear estimation reduce to the Loewner order between their information matrices, say M1

andM2. However, the comparison of normal linear experiments with respect to quadratic estimation is still
at the initial stage and we are looking for respective tools.

Itwas revealed in Stępniak [7] that the relation "to be at least as goodwith respect to quadratic estimation"
needs some knowledge about the matrix M+1M2, where symbol + means the Moore-Penrose generalized
inversion.We shall refer to thismatrix as quotient ofM2 byM1. Properties of such quotientmay be interesting
themselves. It appears that the Loewner order may be expressed in terms of the quotient, but not vice versa.
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In this note we use the quotient of positive semide�nite matrices as the main tool in the ordering of
normal linear experiments with respect to quadratic estimation. The orderings of linear experiments with
respect to linear and with respect to quadratic estimation are extended here to the experiments involving
nuisance parameters. Typical experiments of this kind are induced by allocations of treatments in blocks.

It is well known (see [8]) that any orthogonal allocation of treatments in blocks is optimal by means of
linear estimationof all treatment contrasts.We show that this allocation is, however, not optimal for quadratic
estimation.

2 De�nitions and known results
In this paper the standard vector-matrix notation is used. All vectors and matrices considered here have real
entries. The space of all n × 1 vectors is denoted by Rn. For any matrixM the symbolsMT , R(M), N(M) and
r(M) denote, respectively, its transpose, range (column space), kernel (null space) and rank. The symbol PM
stands for the orthogonal projector onto R(M), i.e. the square matrix P satisfying the conditions Px = x for
x ∈ R(M) and zero for x ∈ N(MT

). Moreover, ifM is square then tr(M) denotes its trace and the symbolM ≥ 0
means thatM is symmetric and positive semide�nite (psd, for short).

Let x be a random vector with the expectation E(x) = Aα and the variance-covariance matrix σV, where
A and V are known matrices while α = (α1, ...αp)T and σ > 0 are unknown parameters. In this situation we
shall say that x is subject to the linear experiment L(Aα, σV). If V = I, then we say that the experiment is
standard. If x is normally distributed then instead of L(Aα, σV) we shall use the symbolN(Aα, σV).

Now let us consider two experiments L1 = L(A1α, σV) and L2 = L(A2α, σW)with the same parameters
and with observation vectors x ∈ Rm and y ∈ Rn, respectively.

De�nition 2.1 ([9]). Experiment L1 is said to be at least as good as L2 with respect to linear estimation
[notation: L1 ⊵ L2] if for any parametric function ψ = cTα and for any estimator bTy there exists an estimator
aTx with uniformly not greater squared risk. If L1 ⊵ L2 and L2 ⊵ L1 then we say that the experiments are
equivalent for linear estimation.

The relation ⊵ may be expressed in terms of linear forms (see [8,9]). Namely L1 ⊵ L2, if and only if, for any
b ∈ Rn there exists a ∈ Rm such that

E(aTx) = E(bTy) and var(aTx) ≤ var(bTy) (1)

for all α and σ. It is worth to note that the relation L(A1α, σV) ⊵ L(A2α, σW) does not depend on whether
σ is known or not. Thus L1 ⊵ L2 if and only if L(A1α, V) ⊵ L(A2α,W).

Moreover, under the normality assumption, the condition (1) may be expressed in the form:

For any parametric function ψ and for any b ∈ Rn there exists a ∈ Rm such that ∣aTx − ψ∣ is stochastically not greater than
∣bTy − ψ∣ for all α and σ

(Sinha [10] and Stępniak [11]).
Now consider two normal linear experimentsN1 = N(Aα, σV) andN2 = N(Bα, σW) with observation

vectors x ∈ Rm and y ∈ Rn. It is well known (cf. [12,13]) that such experiments are not comparable with respect
to all possible statistical problems. Therefore we shall restrict our attention to quadratic estimation only.

De�nition 2.2 ([7]). Experiment N1 is said to be at least as good as N2 with respect to quadratic estimation
[notation:N1 ⪰ N2] if for any quadratic form yTGy there exists a quadratic form xTHx such that

E(xTHx) = E(yTGy) and var(xTHx) ≤ var(yTGy)

for all α and σ. If N1 ⪰ N2 and N2 ⪰ N1 then we say that the experiments are equivalent for quadratic
estimation.
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In the last de�nition the quadratic forms xTHx and yTGy play the role of potential unbiased estimators for
parametric functions of type ϕ(α,σ) = cσ + αTCα. It is known that any mean squared error of a linearly
estimable parametric function ψ = ψ(α) in the experiment N1 (or in N2) has such a form (Stępniak [14]).
The orderings ⊵ and ⪰ possess invariance property with respect to nonsingular linear transformation both
the parameter α and the observation vectors x and y as well ([7], Lemmas 2.1 and 2.2).

The main tool in comparison of the standard linear experiments is the information matrixM de�ned as
the Fisher information matrix ATA corresponding to the experimentN(Aα, I).

The relation ⊵may be characterized by the following theorem.

Theorem 2.3 ([15], Theorem 1). For standard linear experimentsL1 = L(A1α,σIm) andL2 = L(A2α, σIn)with
information matricesM1 = AT1A1 andM2 = AT2A2 the followings are equivalent:

(a) L1 ⊵ L2,
(b)M1 −M2 is psd,
(c) R(M2) ⊆ R(M1) and the maximal eigenvalue of the matrixM+1M2 is not greater than 1.

A corresponding result for the relation ⪰ is due to Stępniak ([7], Theorem 5.1) in the form

Theorem 2.4. For standard normal linear experiments N1 = N(A1α, σIm) and N2 = N(A2α, σIn) with
information matricesM1 = AT1A1 andM2 = AT2A2 the followings are equivalent:

(a)N1 ⪰ N2,
(b)M1 −M2 is psd and

q
∑
i=1

1 − λi
1 + λi

≤ m − n − r(A1) + r(A2), (2)

where λi, i = 1, ..., q, are the positive eigenvalues of the matrixM+1M2, counted with their multiplicities.
(c) R(M2) ⊆ R(M1), the maximal eigenvalue of the matrix M+1M2 is not greater than 1 and the inequality

(2) holds.

It is interesting that the both orderings ⊵ and ⪰ may be expressed in terms of the matrix M+1M2, where Mj,
j = 1, 2, are information matrices corresponding to the experimentsN(A1α, σIm) andN(A2α, σIn). Matrix
of this kind will be called quotient ofM2 byM1.

3 Quotient of matrices in comparison of experiments
For given psd matrices T and U of the same order we shall refer to the expressions Q1 = TU+, Q2 = U+T,
Q3 = (U+)1/2T(U+)1/2 and Q4 = T1/2U+T1/2 as versions of the quotient of T by U. We note that only Q3 and
Q4 are always symmetric.

We shall start from basic properties of the quotients.

Theorem 3.1. For arbitrary positive semide�nite matrices T and U of the same order
(a) All versionsQ1 = TU+,Q2 = U+T,Q3 = (U+)1/2T(U+)1/2 andQ4 = T1/2U+T1/2 of the quotient of T by U

have the same eigenvalues.
(b) All eigenvalues of arbitrary quotient are nonnegative.
(c)U − T is psd if and only if R(T) ⊆ R(U) and all eigenvalues of arbitrary quotientQi are not greater than1.

Proof. (a) If Q1w = λw then U+Q1w = Q2U+w = λU+w and λ is an eigenvalue of Q2. Conversely, if Q2w = λw
thenQ1Tw = λTw. ThusQ1 andQ2 have the same eigenvalues. To prove the same forQ3 andQ4 we note that
Q3 = FFTa nd Q4 = FTF for F = (U+)1/2T1/2 and the desired correspondence follows by the implications
Q3w = λw Ô⇒ Q4FTw = λFTw and Q4w = λw Ô⇒ Q3Fw = λFw. Thus it remains to show a similar
correspondence for Q2 and Q3.
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The equality Q2w = λw implies Q4T1/2w = λT1/2w. Thus λ is an eigenvalue of Q4 and, in consequence,
of Q3. Similarly, if Q3w = λw then Q2(U+)1/2w = λ(U+)1/2w. This implies the desired condition and com-
pletes the proof of the part (a).

(b) It follows immediately from (a).
(c) By (a) we only need to show the desired equivalence for i = 3. Implication U − T ≥ 0 Ô⇒ R(T) ⊆

R(U) is evident. For the remain we note that under assumption R(T) ⊆ R(U), λmax(Q3) ≤ 1 if and only if
(U+)1/2U(U+)1/2 ≥ (U+)1/2T(U+). This implies (c) and completes the proof of Theorem 2.4.

Now we shall use Theorem 3.1 to comparison of normal linear experiments N1 = N(A1α, σIm) and N2 =

N(A2α, σIn) w.r.t. quadratic estimation.
We note that r(A1) = r(M1) while n − r(A1) means the number of degrees of freedom in the experiment

N1. By Theorem 2.4 we get the following result.

Lemma 3.2. If the numbers of degrees of freedom in the experiments N1 = N(A1α, σIm) and N2 = N(A2α
,σIn) are equal then N1 ⪰ N2 if and only if M1 −M2 is psd and any quotient Qi, i = 3, 4, of the information
matrixM2 byM1 is idempotent, i.e. Q2

i = Qi.

Proof. Under our assumption the right side of the inequality (2) is 0 andhence each eigenvalue of anyquotient
Qi is either 0 or 1. Since the quotients Qi, i = 3, 4, are symmetric this is equivalent their idempotency.

The case when the numbers of observations in the both experiments are equal, i.e. m = n, is the most
interesting. In this case by Theorem 3.1 we get

Lemma 3.3. For standard normal experiments N1 and N2 with the same number observations the relation
N1 ⪰ N2 holds if and only ifM1 =M2, i.e. when the experiments are equivalent.

Proof. Assume that M1 − M2 is psd, the inequality (2) is true and m = n. Then R(M1) = R(M2) and, by
Lemma 3.2,Q3 is idempotent. ThusQ3 is the orthogonal projector onto R(M1) = R(M2), and, in consequence,
Q3 = (M+1 )1/2M1(M+1 )1/2. This implies the desired result.

Now let us consider a linear experiment where observation vector x depends on several parameters but only
some of them are of interest. More precisely, assume that

E(x)= Aα + Bβ

and
Cov(x)=σI

with unknown parameters α ∈ Rp , β ∈ Rk and σ > 0 such that α (or α and σ) is of interest, while β is treated as
the nuisance one. Such experiment will be denoted by L(Aα + Bβ, σI) or (under the normality assumption)
byN(Aα + Bβ, σI).

We shall say that a statistic t =t(x) is invariant (with respect to β) if its �rst two moments exist and they
do not depend on β. It is evident that a linear form aTx is invariant in the experiment L(Aα + Bβ, σI) if and
only if it depends on x only through (I − PB)x. The same condition for invariance of quadratic form xTHx
follows by the well known formula

var(xTHx) = 2σ2trH2
+ 4σ(αT , βT)[A,B]TH2

[A,B](αT , βT)T

for variance of quadratic forms in normal variables (cf. [16,17]).
Now let us consider two linear experiments L1 = L(A1α + B1β, σIm) and L2 = L(A2α + B2β, σIn) (or

N1 = N(A1α + B1β, σIm) andN2 = N(A2α + B2β, σIn)) with observation vectors x ∈Rm and y ∈Rn.

De�nition 3.4. Weshall say thatL1 is at least as goodasL2 w.r.t. invariant linear estimation if for any invariant
statistic bTy there exists an invariant aTx such that E(aTx) = E(bTy) and var(aTx) ≤ var(bTy) for all α and σ.
Similarly, we shall say thatN1 is at least as good asN2 w.r.t. invariant quadratic estimation if for any invariant
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statistic yTGy there exists an invariant xTHx such that E(xTHx) = E(yTGy) and var(xTHx) ≤ var(yTGy) for
all α and σ.

First we shall reduce the comparison of linear experiments with a nuisance parameter β to the same problem
for the usual linear experiments. To this aim we need the invariance condition in a a more explicit form.

Let x be observation vector in a linear experimentL(Aα + Bβ, σI) orN(Aα + Bβ, σI) and let b1, ..., bn−r
be orthonormal basis in N(BT). Then I − PB may be presented in the form

[b1 , ..., bn−r ]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bT1
.
.

bTn−r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

De�ne

Ãi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bT1
.
.

bTn−r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ai. (3)

In thiswayL(A1α + B1β, σIm) is at least as good asL(A2α + B2β, σIn)w.r.t. invariant linear estimation if and
only if L(Ã1α, σIm−r1) ≥ L(Ã2α, σIn−r2), where Ãi is de�ned by (3) and ri = r(Bi). Similarly N(A1α + B1β,
σIm) is at least as good as N(A2α + B2β, σIn) w.r.t. invariant quadratic estimation if and only if N(Ã1α,
σIm−r1) ⪰ N(Ã2α, σIn−r2).

For convenience the matrices ÃTi Ãi, i = 1, 2, will be called the reduced information matrices and will be
denoted by M̃i. We note that

M̃i = ATi (I − PBi)Ai (4)

As a direct consequence of Theorems 2.3 and 2.4 we get the following lemmas.

Lemma 3.5. For arbitrary linear experiments L1 = L(A1α + B1β, σIm) and L2 = L(A2α + B2β, σIn), L1 is at
least as good as L2 w.r.t. invariant linear estimation if and only if M̃1 − M̃2 ≥ 0.

Lemma 3.6. For arbitrary normal linear experimentsN1 = N(A1α + B1β, σIm) andN2 = N(A2α + B2β, σIn),
N1 is at least as good asN2 w.r.t. invariant quadratic estimation if and only if M̃1 − M̃2 ≥ 0 and

q
∑
i=1

1 − λi
1 + λi

≤ m − r( M̃1) − r(B1) − [n − r(M̃2) − r(B2)],

where λi, i = 1, ..., q, are positive eigenvalues of arbitrary version of the quotient of M̃2 by M̃1, counted with
their multiplicities.

In particular, if m − r(B1) = n − r(B2) then by Lemma 3.2 we get

Corollary 3.7. If n− r(B1) = m− r(B2) thenN1 is at least as good asN2 w.r.t. invariant quadratic estimation
if and only if the matrix (M̃+1 )1/2M̃2(M̃+1 )1/2 is idempotent.

Similarly, by Lemmas 3.3 and 3.6 we get

Corollary 3.8. If m = n and B1 = B2 thenN1 is at least as good asN2 w.r.t. invariant quadratic estimation if
and only if M̃1 = M̃2.
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4 Problem of optimal allocation of treatments in blocks
Consider allocation of v treatments with replications t1, ..., tv in k blocks of sizes b1, ..., bk, where ∑i ti =
∑j bj = n. Let us introduce matrices B =diag(1b1 , ..., 1bk) and D = (dij), where

dij =
⎧⎪⎪
⎨
⎪⎪⎩

1, if the i-th observation refers to the j-th treatment,
0, otherwise.

These matrices indicate allocation of treatments in blocks. For this reason D is sometimes identi�ed with
block design.

To each pair (B,D) corresponds a linear experiment L = L(Dα+[1n ,B]β, σIn), where α = (α1,...,αυ)T

refers to the treatment e�ects, while β =(µ, β1, ..., βk)T refers to the general mean and block e�ects. In this
case the reduced information matrix (4), called also C-matrix (see [18-20]), may be presented in the form

C = DTD −DTdiag(b−11 1b11
T
b1 , ..., b

−1
k 1bk1

T
bk)D

= diag(t1, ..., tv) −Ndiag(b−11 , ..., b−1k )NT ,

where N = (nij) is the incidence matrix de�ned as N = DBT . It is clear that N1k = t and 1TvN = bT , where
t =(t1, ..., tv)T and b =(b1, ..., bk)T . A design D is said to be orthogonal if N = 1

n tb
T .

One can verify that

Ndiag(b−11 , ..., b−1k )NT =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑j
n21j
bj ∑j

n1jn2j
bj ... ∑j

n1jnvj
bj

∑j
n2jn1j
bj ∑j

n22j
bj ... ∑j

n2jnvj
bj

... ... ... ...

∑j
nvjn1j
bj ∑j

nvjn2j
bj ... ∑j

n2vj
bj

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In particular, for the orthogonal design, Ndiag(b−11 , ..., b−1k )NT = 1
n tt

T .
Denote byD = D(t;b) the class of all possible allocations of v treatments with replications t1, ..., tv in k

blocks of sizes b1, ..., bk for v, k ≥ 2. Such class contains or does not contain an orthogonal design. If it does
then by Stępniak [8] this design is optimal inD w.r.t. invariant linear estimation, i.e. it is at least as good as
any other design in the class.

It is natural to ask whether the orthogonal design is also optimal w.r.t. invariant quadratic estimation. In
the light of the results presented in Section 3 we are strongly convinced that the answer is negative, but for
formal reasonswe are ready to provide a rigorous proof of this fact. By Corollary 3.8 we only need to show that
for any incidence matrix N = (nij) corresponding to the orthogonal design there exists an incidence matrix
M = (mij) such thatMdiag(b−11 , ..., b−1k )MT

≠ Ndiag(b−11 , ..., b−1k )NT De�ne

mij =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

nij + 1, if i = 1 and j = 1, or i = 2 and j = 2,
nij − 1, if i = 1 and j = 2, or i = 2 and j = 1,
nij , otherwise.

We note that M1k = N1k and 1TvM = 1TvN. Therefore, the designs represented by M and N belong to the
same class. To show the desired inequality we only need, for instance, to compare the left upper entries, say
u11 and u011, of the matricesMdiag(b−11 , ..., b−1k )MT and Ndiag(b−11 , ..., b−1k )NT .

Since nij = 1
n tibj we have

u11 − u011 =
m2

11
b1
+
m2

12
b2
− (

n211
b1
+
n212
b2

)

=
(n11 + 1)2

b1
+

(n12 − 1)2

b2
− (

n211
b1
+
n212
b2

)

= 2(n11
b1
−
n12
b2

) +
1
b1
+

1
b2
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=
2
n
(
t1b1
b1
−
t1b2
b2

) +
1
b1
+

1
b2

=
1
b1
+

1
b2

> 0.

This leads to the following

Conclusion 4.1. Any orthogonal block design is not optimal w.r.t. invariant quadratic estimation. Moreover, for
any t =(t1, ..., tv)T and b =(b1, ..., bk)T there is no optimal design in the classD = D(t;b).

By the way we have demonstrated that, with reference to the orthogonal block design, the meaning of the
optimality w.r.t. linear estimation may be strengthened in the sense that the words "at least as good" may be
replaced by "better".
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