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Abstract: In 1859, Cayley introduced the ordered Bell numbers which have been used in many problems
in number theory and enumerative combinatorics. The ordered Bell polynomials were de�ned as a natural
companion to the ordered Bell numbers (also known as the preferred arrangement numbers). In this paper,
we study Fourier series of functions related to higher-order ordered Bell polynomials and derive their Fourier
series expansions. In addition, we express each of them in terms of Bernoulli functions.
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1 Introduction
The ordered Bell polynomials of order r (r ∈ Z>0) are de�ned by the generating function

(
1

2 − et
)
r
ext =

∞
∑
m=0

b(r)m (x) t
m

m!
, (see [2, 3, 7, 8, 15, 18, 20]). (1)

When x = 0, b(r)m = b(r)m (0) are called the ordered Bell numbers of order r. These higher-order ordered Bell
polynomials andnumbers are further generalizations of the orderedBell polynomials andnumberswhich are
respectively given by bm(x) = b(1)m (x) and bm = b(1)m . The ordered Bell polynomials bm(x)were de�ned in [11]
as a natural companion to the ordered Bell numbers whichwere introduced in 1859 by Cayley to count certain
plane trees with m + 1 totally ordered leaves. The ordered Bell numbers have been used in many counting
problems in number theory and enumerative combinatorics since its �rst appearance. They are all positive
integers, as we can see from

bm =
m
∑
n=0

n!S2(m, n) =
∞
∑
n=0

nm

2n+1
, (m ≥ 0). (2)

Here we would like to point out that the ordered Bell numbers are also known (or mostly known) as the
preferred arrangement numbers (see [8]). The ordered Bell polynomial bm(x) has degree m and is a monic
polynomial with integral coe�cients, as we can see from

b0(x) = 1, bm(x) = xm +
m−1
∑
l=0

(
m
l
)bl(x), (m ≥ 1) (3)
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(see [11]). From (1), we can derive the following.

d
dx

b(r)m = mb(r)m−1, (m ≥ 1),

b(r)m (x + 1) − b(r)m (x) = b(r)m (x) − b(r−1)m (x), (m ≥ 0).
(4)

Also, from these we immediately get

b(r)m (1) − b(r)m = b(r)m − b
(r−1)
m , (m ≥ 0),

1

∫

0

b(r)m (x)dx = 1
m + 1

(b(r)m+1(1) − b
(r)
m+1) =

1
m + 1

(b(r)m+1 − b
(r−1)
m+1 ).

(5)

For any real number x, we let < x >= x−[x] ∈ [0, 1) denote the fractional part of x. Let Bm(x) be the Bernoulli
polynomials given by the generating function

t
et − 1

ext =
∞
∑
m=0

Bm(x)
tm

m!
. (6)

For later use, we will state the following facts about Bernoulli functions Bm(< x >):
(a) for m ≥ 2,

Bm(< x >) = −m!
∞
∑

n=−∞,n≠0

e2πinx

(2πin)m
, (7)

(b) for m = 1,

−
∞
∑

n=−∞,n≠0

e2πinx

2πin
= {

B1(< x >), for x ∈ Zc ,
0, for x ∈ Z, (8)

where Zc
= R − Z. Here we will consider the following three types of functions αm(< x >), βm(< x >), and

γm(< x >) involving higher order ordered Bell polynomials.
In this paper, wewill derive their Fourier series expansions and in addition express each of them in terms

of Bernoulli functions:
(1) αm(< x >) = ∑m

k=0 b
(r)
k (< x >) < x >m−k , (m ≥ 1);

(2) βm(< x >) = ∑m
k=0

1
k!(m−k)!b

(r)
k (< x >) < x >m−k , (m ≥ 1);

(3) γm(< x >) = ∑m−1
k=1

1
k(m−k)b

(r)
k (< x >) < x >m−k , (m ≥ 2).

The reader may refer to any book for elementary facts about Fourier analysis (for example, see [1,16,21]).
As to γm(< x >), we note that the polynomial identity (9) follows immediately from Theorems 4.1 and 4.2,

which is in turn derived from the Fourier series expansion of γm(< x >).

m−1
∑
k=1

1
k(m − k)

b(r)k (x)xm−k = 1
m

m
∑
s=0

(
m
s
)(Λm−s+1 +

Hm−1 − Hm−s
m − s + 1

(1 + b(r)m−s+1 − b
(r−1)
m−s+1))Bs(x), (9)

where Hm = ∑
m
j=1

1
j are the harmonic numbers and Λl = ∑

l−1
k=1

1
k(l−k)(2b

(r)
k − b(r−1)k ). The obvious poly-

nomial identities can be derived also for αm(< x >) and βm(< x >) from Theorems 2.1 and 2.2, and
Theorems 3.1 and 3.2 , respectively. It is noteworthy that from the Fourier series expansion of the function
∑

m−1
k=1

1
k(m−k)Bk(⟨x⟩)Bm−k(⟨x⟩)wecanderive the Faber-Pandharipande-Zagier identity (see [6]) and theMiki’s

identity (see [5,17,19]). Some relatedworks on Fourier series expansions for analogous functions can be found
in the recent papers [9,10,13,14]. From now on, we will assume that r ≥ 2. The case of r = 1 has been treated
as a special case of the result in [4].
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2 Fourier series of functions of the �rst type

Let αm(x) = ∑m
k=0 b

(r)
k (x)xm−k , (m ≥ 1). Then we will consider the function

αm(< x >) =
m
∑
k=0

b(r)k (< x >) < x >m−k , (10)

de�ned on R which is periodic of period 1. The Fourier series of αm(< x >) is
∞
∑

n=−∞
A(m)n e2πinx , (11)

where

A(m)n =

1

∫

0

αm(< x >)e−2πinxdx =
1

∫

0

αm(x)e−2πinxdx. (12)

To proceed further, we need to observe the following.

α
′
m(x) =

m
∑
k=0

{kb(r)k−1(x)x
m−k
+ (m − k)b(r)k (x)xm−k−1}

=
m
∑
k=1

kb(r)k−1(x)x
m−k
+

m−1
∑
k=0

(m − k)b(r)k (x)xm−k−1

=
m−1
∑
k=0

(k + 1)b(r)k (x)xm−1−k +
m−1
∑
k=0

(m − k)b(r)k (x)xm−1−k

= (m + 1)αm−1(x).

(13)

From this, we get

(
αm+1(x)
m + 2

)

′
= αm(x), (14)

and
1

∫

0

αm(x)dx =
1

m + 2
(αm+1(1) − αm+1(0)). (15)

For m ≥ 1, we put

∆m = αm(1) − αm(0) =
m
∑
k=0

(b(r)k (1) − b(r)k δm,k)

=
m
∑
k=0

(2b(r)k − b
(r−1)
k − b(r)k δm,k) =

m
∑
k=0

(2b(r)k − b
(r−1)
k ) − b(r)m .

(16)

We note from this that
αm(0) = αm(1) ⇐⇒ ∆m = 0, (17)

and
1

∫

0

αm(x)dx =
1

m + 2
∆m+1. (18)

We are now going to determine the Fourier coe�cients A(m)n .
Case 1 : n ≠ 0.

A(m)n =

1

∫

0

αm(x)e−2πinxdx

= −
1

2πin
[αm(x)e−2πinx]

1

0
+

1
2πin

1

∫

0

α
′
m(x)e−2πinxdx

=
m + 1
2πin

A(m−1)m −
1

2πin
∆m ,

(19)
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from which by induction on m we can deduce that

A(m)n = −
m
∑
j=1

(m + 1)j−1
(2πin)j

∆m−j+1 = −
1

m + 2

m
∑
j=1

(m + 2)j
(2πin)j

∆m−j+1. (20)

Case 2: n = 0.

A(m)0 =

1

∫

0

αm(x)dx =
1

m + 2
∆m+1. (21)

αm(< x >), (m ≥ 1) is piecewise C∞. In addition, αm(< x >) is continuous for those positive integers with
∆m = 0 and discontinuouswith jump discontinuities at integers with∆m ≠ 0. Assume �rst thatm is a positive
integer with ∆m = 0. Then αm(0) = αm(1). Thus the Fourier series of αm(< x >) converges uniformly to
αm(< x >), and

αm(< x >) = 1
m + 2

∆m+1 +
∞
∑

n=−∞,n≠0

⎛

⎝
−

1
m + 2

m
∑
j=1

(m + 2)j
(2πin)j

∆m−j+1
⎞

⎠
e2πinx

=
1

m + 2
∆m+1 +

1
m + 2

m
∑
j=1

(
m + 2
j

)∆m−j+1
⎛

⎝
−j!

∞
∑

n=−∞,n≠0

e2πin

(2πin)j
⎞

⎠

=
1

m + 2
∆m+1 +

1
m + 2

m
∑
j=2

(
m + 2
j

)∆m−j+1Bj(< x >) +∆m × {
B1(< x >), for x ∈ Zc ,
0, for x ∈ Z.

(22)

Now, we can state our �rst result.

Theorem 2.1. For each positive integer l, we let

∆l =
l
∑
k=0

(2b(r)k − b
(r−1)
k ) − b(r)l . (23)

Assume that m is a positive integer with∆m = 0. Then we have the following.
(a)∑m

k=0 b
(r)
k (< x >) < x >m−k has the Fourier series expansion

m
∑
k=0

b(r)k (< x >) < x >m−k= 1
m + 2

∆m+1 +
∞
∑

n=−∞,n≠0

⎛

⎝
−

1
m + 2

m
∑
j=1

(m + 2)j
(2πin)j

∆m−j+1
⎞

⎠
e2πinx , (24)

for all x ∈ R, where the convergence is uniform.
(b)

m
∑
k=0

b(r)k (< x >) < x >m−k= 1
m + 2

∆m+1 +
1

m + 2

m
∑
j=2

(
m + 2
j

)∆m−j+1Bj(< x >), (25)

for all x ∈ R, where Bj(< x >) is the Bernoulli function.

Assume next that ∆m ≠ 0, for a positive integer m. Then αm(0) ≠ αm(1). Hence αm(< x >) is piecewise C∞,
and discontinuouswith jump discontinuities at integers. The Fourier series ofαm(< x >) converges pointwise
to αm(< x >), for x ∈ Zc, and converges to

1
2
(αm(0) + αm(1)) = αm(0) +

1
2
∆m , (26)

for x ∈ Z. We can now state our second result.

Theorem 2.2. For each positive integer l, we let

∆l =
l
∑
k=0

(2b(r)k − b
(r−1)
k ) − b(r)l . (27)
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Assume that m is a positive integer with∆m ≠ 0. Then we have the following.
(a)

1
m + 2

∆m+1 +
∞
∑

n=−∞,n≠0

⎛

⎝
−

1
m + 2

m
∑
j=1

(m + 2)j
(2πin)j

∆m−j+1
⎞

⎠
e2πinx

=

⎧⎪⎪
⎨
⎪⎪⎩

∑
m
k=0 b

(r)
k (< x >) < x >m−k , for x ∈ Zc ,

b(r)m + 1
2∆m , for x ∈ Z.

(28)

(b)

1
m + 2

m
∑
j=0

(
m + 2
j

)∆m−j+1Bj(< x >) =
m
∑
k=0

b(r)k (< x >) < x >m−k , for x ∈ Zc ;

1
m + 2

m
∑

j=0,j≠1
(
m + 2
j

)∆m−j+1Bj(< x >) = b(r)m +
1
2
∆m , for x ∈ Z.

(29)

3 Fourier series of functions of the second type

Let βm(x) = ∑m
k=0

1
k!(m−k)!b

(r)
k (x)xm−k , (m ≥ 1). Then we will consider the function

βm(< x >) =
m
∑
k=0

1
k!(m − k)!

b(r)k (< x >) < x >m−k , (30)

de�ned on R which is periodic with period 1. The Fourier series of βm(< x >) is

∞
∑

n=−∞
B(m)n e2πinx , (31)

where

B(m)n =

1

∫

0

βm(< x >)e−2πinxdx =
1

∫

0

βm(x)e−2πinxdx. (32)

To proceed further, we need to observe the following.

β
′
m(x) =

m
∑
k=0

{
k

k!(m − k)!
b(r)k−1(x)x

m−k
+

m − k
k!(m − k)!

b(r)k (x)xm−k−1}

=
m
∑
k=1

1
(k − 1)!(m − k)!

b(r)k−1(x)x
m−k
+

m−1
∑
k=0

1
k!(m − k − 1)!

b(r)k (x)xm−k−1

=
m−1
∑
k=0

1
k!(m − 1 − k)!

b(r)k (x)xm−1−k +
m−1
∑
k=0

1
k!(m − k − 1)!

b(r)k (x)xm−1−k

= 2βm−1(x).

(33)

From this, we have

(
βm+1(x)

2
)

′
= βm(x), (34)

and
1

∫

0

βm(x)dx =
1
2
(βm+1(1) − βm+1(0)). (35)
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For m ≥ 1, we have

Ωm = βm(1) − βm(0) =
m
∑
k=0

1
k!(m − k)!

(b(r)k (1) − b(r)k δm,k)

=
m
∑
k=0

1
k!(m − k)!

(2b(r)k − b
(r−1)
k − b(r)k δm,k)

=
m
∑
k=0

1
k!(m − k)!

(2b(r)k − b
(r−1)
k ) −

1
m!

b(r)m .

(36)

From this, we note that

βm(0) = βm(1) ⇐⇒ Ωm = 0, (37)

and
1

∫

0

βm(x)dx =
1
2
Ωm+1. (38)

We are now going to determine the Fourier coe�cients B(m)n .
Case 1: n ≠ 0.

B(m)n =

1

∫

0

βm(x)e−2πinxdx = −
1

2πin
[βm(x)e−2πinx]

1

0
+

1
2πin

1

∫

0

β
′
m(x)e−2πinxdx

= −
1

2πin
(βm(1) − βm(0)) +

2
2πin

1

∫

0

βm−1(x)e−2πinxdx

=
2

2πin
B(m−1)n −

1
2πin

Ωm ,

(39)

from which by induction on m we can easily get

B(m)n = −
m
∑
j=1

2j−1

(2πin)j
Ωm−j+1. (40)

Case 2: n = 0.

B(m)0 =

1

∫

0

βm(x)dx =
1
2
Ωm+1. (41)

βm(< x >), (m ≥ 1) is piecewise C∞. Moreover, βm(< x >) is continuous for those positive integers m with
Ωm = 0, and discontinuous with jump discontinuities at integers for those positive integers m withΩm ≠ 0.

Assume �rst that Ωm = 0, for a positive integer m. Then βm(0) = βm(1). Hence βm(< x >) is piecewise
C∞, and continuous. Thus the Fourier series of βm(< x >) converges uniformly to βm(< x >), and

βm(< x >) = 1
2
Ωm+1 +

∞
∑

n=−∞,n≠0

⎛

⎝
−

m
∑
j=1

2j−1

(2πin)j
Ωm−j+1

⎞

⎠
e2πinx

=
1
2
Ωm+1 +

m
∑
j=1

2j−1

j!
Ωm−j+1

⎛

⎝
−j!

∞
∑

n=−∞,n≠0

e2πinx

(2πin)j
⎞

⎠

=
1
2
Ωm+1 +

m
∑
j=2

2j−1

j!
Ωm−j+1Bj(< x >) +Ωm × {

B1(< x >), for x ∈ Zc ,
0, for x ∈ Z.

(42)

Now, we state our �rst result.



1612 | T. Kim et al.

Theorem 3.1. For each positive integer l, we let

Ωl =
l
∑
k=0

1
k!(l − k)!

(2b(r)k − b
(r−1)
k ) −

1
l!
b(r)l . (43)

Assume that m is a positive integer withΩm = 0. Then we have the following.
(a)∑m

k=0
1

k!(m−k)!b
(r)
k (< x >) < x >m−k has the Fourier series expansion

m
∑
k=0

1
k!(m − k)!

b(r)k (< x >) < x >m−k= 1
2
Ωm+1 +

∞
∑

n=−∞,n≠0

⎛

⎝
−

m
∑
j=1

2j−1

(2πin)j
Ωm−j+1

⎞

⎠
e2πinx , (44)

for all x ∈ R, where the convergence is uniform.
(b)

m
∑
k=0

1
k!(m − k)!

b(r)k (< x >) < x >m−k=
m
∑

j=0,j≠1

2j−1

j!
Ωm−j+1Bj(< x >), (45)

for all x ∈ R, where Bj(< x >) is the Bernoulli function.

Assume next thatm is a positive integer withΩm ≠ 0. Then βm(0) ≠ βm(1). Hence βm(< x >) is piecewise C∞,
and discontinuous with jump discontinuities at integers. The Fourier series of βm(< x >) converges pointwise
to βm(< x >), for x ∈ Zc, and converges to

1
2
(βm(0) + βm(1)) = βm(0) +

1
2
Ωm . (46)

for x ∈ Z. Now we state our second result.

Theorem 3.2. For each positive integer l, we let

Ωl =
l
∑
k=0

1
k!(l − k)!

(2b(r)k − b
(r−1)
k ) −

1
l!
b(r)l . (47)

Assume thatΩm ≠ 0, for a positive integer m. Then we have the following.
(a)

1
2
Ωm+1 +

∞
∑

n=−∞,n≠0

⎛

⎝
−

m
∑
j=1

2j−1

(2πin)j
Ωm−j+1

⎞

⎠
e2πinx

=

⎧⎪⎪
⎨
⎪⎪⎩

∑
m
k=0

1
k!(m−k)!b

(r)
k (< x >) < x >m−k , for x ∈ Zc ,

1
m!b

(r)
m +

1
2Ωm , for x ∈ Z.

(48)

(b)
m
∑
j=0

2j−1

j!
Ωm−j+1Bj(< x >) =

m
∑
k=0

1
k!(m − k)!

b(r)k (< x >) < x >m−k , (49)

for x ∈ Zc;
m
∑

j=0,j≠1

2j−1

j!
Ωm−j+1Bj(< x >) = 1

m!
b(r)m +

1
2
Ωm , (50)

for x ∈ Z.

4 Fourier series of functions of the third type

Let γm(x) = ∑m−1
k=1

1
k(m−k)b

(r)
k (x)xm−k , (m ≥ 2). Then we will consider the function.

γm(< x >) =
m−1
∑
k=1

1
k(m − k)

b(r)k (< x >) < x >m−k , (51)
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de�ned on R, which is periodic with period 1. The Fourier series of γm(< x >) is
∞
∑

n=−∞
C(r)m e2πinx , (52)

where

C(m)n =

1

∫

0

γm(< x >)e−2πinxdx =
1

∫

0

γm(x)e−2πinxdx. (53)

To proceed further, we need to observe the following.

γ
′
m(x) =

m−1
∑
k=1

1
m − k

b(r)k−1(x)x
m−k
+

m−1
∑
k=1

1
k
b(r)k (x)xm−k−1

=
m−2
∑
k=0

1
m − 1 − k

b(r)k (x)xm−1−k +
m−1
∑
k=1

1
k
b(r)k (x)xm−1−k

=
m−2
∑
k=1

(
1

m − 1 − k
+
1
k
) b(r)k (x)xm−1−k + 1

m − 1
xm−1 + 1

m − 1
b(r)m−1(x)

= (m − 1)γm−1(x) +
1

m − 1
xm−1 + 1

m − 1
b(r)m−1(x).

(54)

From this, we see that

(
1
m

(γm+1(x) −
1

m(m + 1)
xm+1 − 1

m(m + 1)
b(r)m+1(x)))

′
= γm(x) (55)

and
1

∫

0

γm(x)dx =
1
m

(γm+1(1) − γm+1(0) −
1

m(m + 1)
−

1
m(m + 1)

(b(r)m+1(1) − b
(r)
m+1)) . (56)

For m ≥ 2, we put

Λm = γm(1) − γm(0) =
m−1
∑
k=1

1
k(m − k)

(b(r)k (1) − b(r)k δm,k)

=
m−1
∑
k=1

1
k(m − k)

(2b(r)k − b
(r−1)
k ).

(57)

Notice here that,

γm(0) = γm(1) ⇐⇒ Λm = 0, (58)

and
1

∫

0

γm(x)dx =
1
m

(Λm+1 −
1

m(m + 1)
(1 + b(r)m+1 − b

(r−1)
m+1 )) . (59)

We are now going to determine the Fourier coe�cients C(m)n .
Case 1: n ≠ 0.

C(m)n =

1

∫

0

γm(x)e−2πinxdx

= −
1

2πin
[γm(x)e−2πinx]10 +

1
2πin

1

∫

0

γ
′
m(x)e−2πinxdx

= −
1

2πin
(γm(1) − γm(0)) +

1
2πin

1

∫

0

{(m − 1)γm−1(x) +
1

m − 1
xm−1 + 1

m − 1
b(r)m−1(x)} e

−2πinxdx

=
m − 1
2πin

C(m−1)n −
1

2πin
Λm +

1
2πin(m − 1)

1

∫

0

xm−1e−2πinxdx + 1
2πin(m − 1)

1

∫

0

b(r)m−1(x)e
−2πinxdx.

(60)
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We can show that
1

∫

0

xle−2πinxdx =
⎧⎪⎪
⎨
⎪⎪⎩

−∑
l
k=1

(l)k−1
(2πin)k , for n ≠ 0,

1
l+1 , for n = 0.

(61)

Also, from the paper [12], we have

1

∫

0

b(r)l (x)e−2πinxdx =

⎧⎪⎪
⎨
⎪⎪⎩

−∑
l
k=1

(l)k−1
(2πin)k (b

(r)
l−k+1 − b

(r−1)
l−k+1), for n ≠ 0,

1
l+1(b

(r)
l+1 − b

(r−1)
l+1 ), for n = 0.

(62)

From (60), (61), and (62), we have

C(m)n =
m − 1
2πin

C(m−1)n −
1

2πin
Λm −

1
2πin(m − 1)

Φm , (63)

where

Φm =
m−1
∑
k=1

(m − 1)k−1
(2πin)k

(1 + b(r)m−k − b
(r−1)
m−k ). (64)

From (63) by induction on m we can deduce that

C(m)n = −
m−1
∑
j=1

(m − 1)j−1
(2πin)j

Λm−j+1 −
m−1
∑
j=1

(m − 1)j−1
(2πin)j(m − j)

Φm−j+1. (65)

We note here that
m−1
∑
j=1

(m − 1)j−1
(2πin)j(m − j)

Φm−j+1

=
m−1
∑
j=1

(m − 1)j−1
(2πin)j(m − j)

m−j
∑
k=1

(m − j)k−1
(2πin)k

(1 + b(r)m−j−k+1 − b
(r−1)
m−j−k+1)

=
m−1
∑
j=1

1
m − j

m−j
∑
k=1

(m − 1)j+k−2
(2πin)j+k

(1 + b(r)m−j−k+1 − b
(r−1)
m−j−k+1)

=
m−1
∑
j=1

1
m − j

m
∑
s=j+1

(m − 1)s−2
(2πin)s

(1 + b(r)m−s+1 − b
(r−1)
m−s+1)

=
m
∑
s=2

(m − 1)s−2
(2πin)s

(1 + b(r)m−s+1 − b
(r−1)
m−s+1)

s−1
∑
j=1

1
m − j

=
1
m

m
∑
s=1

(m)s

(2πin)s
Hm−1 − Hm−s
m − s + 1

(1 + b(r)m−s+1 − b
(r−1)
m−s+1).

(66)

Putting everything altogether, from (65), we �nally obtain

C(m)n = −
1
m

m
∑
s=1

(m)s

(2πin)s
{Λm−s+1 +

Hm−1 − Hm−s
m − s + 1

(1 + b(r)m−s+1 − b
(r−1)
m−s+1)} . (67)

Case 2: n = 0.

C(m)0 =

1

∫

0

γm(x)dx =
1
m

(Λm+1 −
1

m(m + 1)
(1 + b(r)m+1 − b

(r−1)
m+1 )) . (68)

γm(< x >), (m ≥ 2) is piecewise C∞. Moreover, γm(< x >) is continuous for those integersm ≥ 2 with Λm = 0,
and discontinuous with jump discontinuities at integers for those integers m ≥ 2 with Λm ≠ 0.
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Assume �rst that Λm = 0, for an integer m ≥ 2 . Then γm(0) = γm(1). Hence γm(< x >) is piecewise C∞,
and continuous. Thus the Fourier series of γm(< x >) converges uniformly to γm(< x >), and

γm(< x >)

=
1
m

(Λm+1 −
1

m(m + 1)
(1 + b(r)m+1 − b

(r−1)
m+1 ))

+
∞
∑

n=−∞,n≠0
{−

1
m

m
∑
s=1

(m)s

(2πin)s
(Λm−s+1 +

Hm−1 − Hm−s
m − s + 1

(1 + b(r)m−s+1 − b
(r−1)
m−s+1))} e

2πinx

=
1
m

(Λm+1 −
1

m(m + 1)
(1 + b(r)m+1 − b

(r−1)
m+1 ))

+
1
m

m
∑
s=1

(
m
s
)(Λm−s+1 +

Hm−1 − Hm−s
m − s + 1

(1 + b(r)m−s+1 − b
(r−1)
m−s+1))

⎛

⎝
−s!

∞
∑

n=−∞,n≠0

e2πinx

(2πin)s
⎞

⎠

=
1
m

m
∑

s=0,s≠1
(
m
s
)(Λm−s+1 +

Hm−1 − Hm−s
m − s + 1

(1 + b(r)m−s+1 − b
(r−1)
m−s+1))Bs(< x >)

+ Λm × {
B1(< x >), for x ∈ Zc ,
0, for x ∈ Z.

(69)

Now, we are going to state our �rst result.

Theorem 4.1. For each integer l ≥ 2, we let

Λl =
l−1
∑
k=1

1
k(l − k)

(2b(r)k − b
(r−1)
k ), (70)

with Λ1 = 0. Assume that Λm = 0, for an integer m ≥ 2. Then we have the following.
(a)∑m−1

k=1
1

k(m−k)b
(r)
k (< x >) < x >m−k has the Fourier series expansion

m−1
∑
k=1

1
k(m − k)

b(r)k (< x >) < x >m−k

=
1
m

(Λm+1 −
1

m(m + 1)
(1 + b(r)m+1 − b

(r−1)
m+1 ))

+
∞
∑

n=−∞,n≠0
{−

1
m

m
∑
s=1

(m)s

(2πin)s
(Λm−s+1 +

Hm−1 − Hm−s
m − s + 1

(1 + b(r)m−s+1 − b
(r−1)
m−s+1))} e

2πinx ,

(71)

for all x ∈ R, where the convergence is uniform.
(b)

m−1
∑
k=1

1
k(m − k)

b(r)k (< x >) < x >m−k

=
1
m

m
∑

s=0,s≠1
(
m
s
)(Λm−s+1 +

Hm−1 − Hm−s
m − s + 1

(1 + b(r)m−s+1 − b
(r−1)
m−s+1))Bs(< x >),

(72)

for all x ∈ R, where Bs(< x >) is the Bernoulli function.

Assume next that Λm ≠ 0, for an integer m ≥ 2. Then γm(0) ≠ γm(1). Hence γm(< x >) is piecewise C∞, and
discontinuous with jump discontinuities at integers.Thus the Fourier series of γm(< x >) converges pointwise
to γm(< x >), for x ∈ Zc, and converges to

1
2
(γm(0) + γm(1)) = γm(0) +

1
2
Λm , (73)

for x ∈ Z. Next, we are going to state our second result.
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Theorem 4.2. For each integer l ≥ 2, we let

Λl =
l−1
∑
k=1

1
k(l − k)

(2b(r)k − b
(r−1)
k ), (74)

with Λ1 = 0. Assume that Λm ≠ 0, for an integer m ≥ 2. Then we have the following.
(a)

1
m

(Λm+1 −
1

m(m + 1)
(1 + b(r)m+1 − b

(r−1)
m+1 ))

+
∞
∑

n=−∞,n≠0
{−

1
m

m
∑
s=1

(m)s

(2πin)s
(Λm−s+1 +

Hm−1 − Hm−s
m − s + 1

(1 + b(r)m−s+1 − b
(r−1)
m−s+1))} e

2πinx

=

⎧⎪⎪
⎨
⎪⎪⎩

∑
m−1
k=1

1
k(m−k)b

(r)
k (< x >) < x >m−k , for x ∈ Zc ,

1
2Λm , for x ∈ Z.

(75)

(b)

1
m

m
∑
s=0

(
m
s
)(Λm−s+1 +

Hm−1 − Hm−s
m − s + 1

(1 + b(r)m−s+1 − b
(r−1)
m−s+1))Bs(< x >)

=
m−1
∑
k=1

1
k(m − k)

b(r)k (< x >) < x >m−k ,
(76)

for x ∈ Zc and

1
m

m
∑

s=0,s≠1
(
m
s
)(Λm−s+1 +

Hm−1 − Hm−s
m − s + 1

(1 + b(r)m−s+1 − b
(r−1)
m−s+1))Bs(< x >) = 1

2
Λm , (77)

for x ∈ Z.
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