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Abstract: In 1859, Cayley introduced the ordered Bell numbers which have been used in many problems
in number theory and enumerative combinatorics. The ordered Bell polynomials were defined as a natural
companion to the ordered Bell numbers (also known as the preferred arrangement numbers). In this paper,
we study Fourier series of functions related to higher-order ordered Bell polynomials and derive their Fourier
series expansions. In addition, we express each of them in terms of Bernoulli functions.
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1 Introduction

The ordered Bell polynomials of order r (r € Z.) are defined by the generating function
1\ v &m0t
(Z—e‘) e :mZ::Obm (X)%, (see [2,3,7,8,15,18,20]). )

When x = 0, bS,,’ ) = bfn' ) (0) are called the ordered Bell numbers of order r. These higher-order ordered Bell
polynomials and numbers are further generalizations of the ordered Bell polynomials and numbers which are
respectively given by b (x) = bﬁnl) (x)and by = bfnl). The ordered Bell polynomials b, (x) were defined in [11]
as a natural companion to the ordered Bell numbers which were introduced in 1859 by Cayley to count certain
plane trees with m + 1 totally ordered leaves. The ordered Bell numbers have been used in many counting
problems in number theory and enumerative combinatorics since its first appearance. They are all positive
integers, as we can see from

nm

on+1’

bm = i n!S;(m,n) = i

n=0 n=0

(m>0). @)

Here we would like to point out that the ordered Bell numbers are also known (or mostly known) as the
preferred arrangement numbers (see [8]). The ordered Bell polynomial b, (x) has degree m and is a monic
polynomial with integral coefficients, as we can see from

bo(x):1,bm(x):x’"+”il(r7)bl(x), (m>1) 3)
=0
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(see [11]). From (1), we can derive the following.

d. @ _, .0
dxb =mb,’,, (m=>1), @

bl (x+1) - b (x) = by (x) - by (x), (m20).
Also, from these we immediately get

b (1) - by = by —bEY, (m>0),

1
( n( rl+) 1 b I(Tlr+ 1 ) )

[ e U NORIRE

0

_m+1

For any real number x, we let < x >= x—[x] € [0, 1) denote the fractional part of x. Let B, (x) be the Bernoulli
polynomials given by the generating function

t
et -1

For later use, we will state the following facts about Bernoulli functions By, (< x >):
(a) form > 2,

oo eZﬂinx
Bn(<x>)=-m! _—
n( ) n:—z:,rwo (2min)m @

(b) form =1,

2minx c
o B , z°,
e ) { 1(<x>), for xe ®

ne—oonz0 27N 0, for xeZ,

where Z¢ = R - Z. Here we will consider the following three types of functions am (< x >), Bm(< x >), and
~ym(< x >) involving higher order ordered Bell polynomials.

In this paper, we will derive their Fourier series expansions and in addition express each of them in terms
of Bernoulli functions:
(D) am(<x>) =38, b,((r)(< x>) <x>"K (m>1);
Q) Bm(<x>) =%, k,(ml k), (r)(< x>)<x>mk (m>1);

B) ym(< x>) =y}t o k)b(')(<x>)<x>”’ kK (m>2).

The reader may refer to any book for elementary facts about Fourier analysis (for example, see [1,16,21]).
As to ym (< x >), we note that the polynomial identity (9) follows immediately from Theorems 4.1 and 4.2,
which is in turn derived from the Fourier series expansion of vn (< x >).

m Hp1-H
s b 0" = ) ( ) (Am—s+1 s (b)) b 5131))33()() ©)

m-1 1
,(Z k(m k) k “m¢ s+1
where Hn = Y], ; are the harmonic numbers and 4; = Yt k(l 5 (2b(') b,((r_l)). The obvious poly-
nomial identities can be derived also for am(< x >) and Bm(< x >) from Theorems 2.1 and 2.2, and
Theorems 3.1 and 3.2, respectively. It is noteworthy that from the Fourier series expansion of the function
st = k)Bk(( ))Bm_r({x)) we can derive the Faber-Pandharipande-Zagier identity (see [6]) and the Miki’s
identity (see [5,17,19]). Some related works on Fourier series expansions for analogous functions can be found
in the recent papers [9,10,13,14]. From now on, we will assume that r > 2. The case of r = 1 has been treated

as a special case of the result in [4].
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2 Fourier series of functions of the first type

Let am(X) = ¥ito b,((r) (x)x™ K, (m > 1). Then we will consider the function

m
am(<x>) = Zb,((r)(<x>) <x>mK (10)
k=0

defined on R which is periodic of period 1. The Fourier series of am (< x >) is

i Aﬁlm)ebrinx’ (11)
n=—oo
where
1 1
Af,m) :[am(<x>)e_2”i""dx:/am(x)e_hi""dx. (12)
0 0

To proceed further, we need to observe the following.

a:n(x) = i{kbii)l (X)Xmik +(m- k)bl((’) (X)Xm—kfl}
k=0

m m-1
= kb,((r_)l(x)xm_k + Y (m- k)b,((r)(x)x'"_k_1
k=1 k=0

(13)
S (1) oy -1k R~ (1) oy om—1—k
= Y (k+1)b,” (x)x + Y (m-k)b,"” (x)x
k=0 k=0
=(m+1)am-1(x).
From this, we get
A
X
() -omw w
and
; 1
Of am(X)dx = —— (am:1(1) -~ ane1(0)). (15)
Form > 1, we put
m
An = an(1) = am(0) = 3 (b (1) = b 6 )
k=0 (16)
m m
= > (267 =By = b6mi) = 3 (2687 - bV ) - B,
k=0 k=0
We note from this that
am(o):am(l) = An =0, (17)
and
; 1
f am(X)dX = mAm+1. (18)
0
We are now going to determine the Fourier coefficients Agm).
Casel:n=0.
1
A)(1m) _ f am(x)efzﬂinxdx
0
(19)

1

1 —2minx 1 1 f U —2minx

=— x)e + x)e dx
2rin [am( ) ]0 2xin J am(X)

_m+ 1 (m-1) _ 1

- . . m
2xin = ™" 2rin
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from which by induction on m we can deduce that

mo(m+1) 1 (m+2);
A0 _ < SN I Ay
" ]Zl (2riny " T2 Z (2miny St (20)
Case2:n=0.
- 1
Aém) = b[Oém (X)dX = mAnHJ. (21)

am(< x >), (m > 1) is piecewise C*. In addition, asn (< x >) is continuous for those positive integers with
Am = 0 and discontinuous with jump discontinuities at integers with A, # 0. Assume first that m is a positive
integer with Ay, = 0. Then am(0) = am(1). Thus the Fourier series of am(< x >) converges uniformly to
am(< x >), and

1 — 1 (m + 2)1 2minx
=— A - m—j e
am(< X >) m+2 m+1 + n=;n¢0( m+ 2 Z (Zﬂln)] m—j+1
1 1 & m+2 & e?min
= 7A 1+ ( )A —j+1 —]! P ue—y (22)
m+2-""  m+2 }; T nj_;,#o (2win)i
1 1 2 (m+2 Bi(<x>), for xeZS,
=—A Am—iv1B; A
m+2 m+1+m+2];( j ) mopra Bj(<X>) + mX{O, for xeZ.
Now, we can state our first result.
Theorem 2.1. For each positive integer 1, we let
I
A= 2b0 — ) ™, 23)
k=0
Assume that m is a positive integer with Ay, = 0. Then we have the following.
(@Yo b,(:) (<x>)<x >™ ¥ has the Fourier series expansion
A - 1 = 1 & (m+2) 2mi
b (cx>)<x>m ke = Apaq + - L Apive | €27, p
k;) i ( ) m+2°- " n:—;nio m+2]; (2rin)l ~MIH (24)

for all x € R, where the convergence is uniform.

(b)
ib,((r)(<x>)<x>m_k: L Ame1 + i(m+2) m-j+1Bj(< x >), (25)

s m+2 m+2 g
for all x € R, where Bj(< x >) is the Bernoulli function.

Assume next that A, + 0, for a positive integer m. Then am (0) # am(1). Hence am(< x >) is piecewise C*,
and discontinuous with jump discontinuities at integers. The Fourier series of am (< x >) converges pointwise
to am(< x >), for x € Z¢, and converges to

S (@n(0) + an(1)) = an(0) + 3 A, 26)

for x € Z. We can now state our second result.

Theorem 2.2. For each positive integer I, we let

1
A= 2b0 — Iy —p ™, @7
k=0
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Assume that m is a positive integer with A, + 0. Then we have the following.

(@)
1 = & m + 2)] 2minx
— +n_§n¢0( m+2]Z (2xin)i _]+1)e
’ (28)
S b,((')(< x>)<x>mk for xeZzC,
bf,,')+%Am, for xeZ.
(b)
m m
! > (m N 2)A,,,_J-HB,-(< x>)=> b,(:)(< x>)<x>"* forxezt ;
m+2;5\ j k=0 29)
1 mn m+2 n 1
Am_i1B; =b = Am, f 7.
m+2j=0%;1( j ) m-j+1Bj(< X >) = by, +2 m, forx e
3 Fourier series of functions of the second type
Let B (X) = EkZo tigm= k),b(’) (x)x™¥, (m > 1). Then we will consider the function
Bm(<x>) = Z k'(m b (’)(<x>) <x>mk (30)
defined on R which is periodic with period 1. The Fourier series of 8n (< x >) is
Z Br(lm)eZ‘n-inx, (31)
n=—oo
where
1 ) 1 )
B(™ = fﬁm(<x>)e72m"xdx: /ﬂm(x)efzmnxdx. (32)
0 0
To proceed further, we need to observe the following.
’ _ n k (r) m—k m-k (r) m—-k-1
fm(x) = kzzo{k!(m oyt D COXT T e g i (0x
S L 0 ek ; (1) ) mH-t
" & G Dm0 Z s Tdm—k- Dk 0 33)
m-1
B 1 0 m-1-k 1 (n m-1-k
= 2 fmo1 -k 00X *,Z% Am—k-1)ick X
= Zﬁmfl(X).
From this, we have
A
(6m+21(x)) _ ﬂm(X), (34)

and

[ m(0dx =5 (Bmir(1) = me1(0)). G5)
0
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For m > 1, we have

Om = Bm(1) - Bm(0) = Z k'( k)l (bl(:)(l) _ b,(:)(sm,k)

n 1 r r-1 r
L 0
% 1 " -y 1.0
-3 o ])|( P e
From this, we note that
Bm(0) = Bm(1) < 2 =0, (37)
and
; 1
[ Bn(dx = 3 2. (38)
0

We are now going to determine the Fourier coefficients Bflm).
Casel:n +0.

1
Br(lm) _ / B (X)e—Zm‘nde __ 1' [,Bm (X)e—Zwinx f 8l (x)e” 2minx g,
0

2win 0 2 in
™ (39)
= 5 (Bn(1) = Bn(0)) + 5 m//sm 1(0e M dx
2 (m-1) 1
-~ B - O,
2xin " 2rin "
from which by induction on m we can easily get
m _ 27
B, = —]; W-Qm—ju- (40)
Case2:n=0.
1
(m) _ _1
By = | Bm(x)dx = EQer]_. (41)
0

Bm(< x >), (m > 1) is piecewise C*™. Moreovet, 3 (< x >) is continuous for those positive integers m with
2m = 0, and discontinuous with jump discontinuities at integers for those positive integers m with 2, # 0.

Assume first that 2, = 0, for a positive integer m. Then 8, (0) = Sm(1). Hence Bm(< x >) is piecewise
C*, and continuous. Thus the Fourier series of (< x >) converges uniformly to S (< x >), and

1 = ua 2)’—1 2minx
5m(< X >) = 59m+1 + Z - Z fgm—j-#l e

ne—sonzo\ 71 (2win)y
1 2}'71 co eZTrinx
1, 0. il e 42
5 $om+1 + Z ji m 1+1( ] n=7§n¢0 (27in)i (42
m 5j-1 Bi(<x>), for xeZ°
,_Q = Qm_i1B; 2 ’ ’
5 om+1 +; jioom j1Bj(<x>) + mx{o, for xeZ.

Now, we state our first result.
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Theorem 3.1. For each positive integer I, we let

Zku(z k)r(zbir) B - (’)~ (43)

k=0

Assume that m is a positive integer with (2, = 0. Then we have the following.
(@i, be{') (< x >) < x >™ ¥ has the Fourier series expansion

=) j—1
(r) m-k_ 1 2 . 2minx
Z k‘(m k)' (<X >) <X > = 2Qm+1 + nzzn*o( Z (2 ln)1 Om J+1) e y (44)
for all x e R, where the convergence is uniform.
(b) ‘
" mok_ o 27
Z Ki(m k)lb (<x>)<x> :j:()Z];¢1TQm_j+lBj(<X>)’ (45)

for all x € R, where Bj(< x >) is the Bernoulli function.

Assume next that m is a positive integer with 2, # 0. Then 3 (0) # B8 (1). Hence 8m(< x >) is piecewise C*°
and discontinuous with jump discontinuities at integers. The Fourier series of 3 (< x >) converges pointwise
to Bm(< x >), for x € Z°, and converges to

2 (Bn(0) + Bn(1)) = Bn(0) +  2n. (46)

for x € Z. Now we state our second result.

Theorem 3.2. For each positive integer 1, we let

_ (r) _ 3, (r-1) ™
Q= Z I k)'(Zb -b ) - b (47)
k=0
Assume that 2, # 0, for a positive integer m. Then we have the following.
(@)
19 " i Z . e27rinx
2 e n=—o00,n+0 (27”")] mejit
1 (r) —k (48)
_ ) Zko momomi b (< x>) <x >, for x e Z°,
- %bf,,’ﬂ%(zm, for xeZ.
(b)
n 21 ! 1 (r) m—k
m_i+1B; ————b ,
2 g OnoimiBilex>) = Zk'(m—k)! o (<xz)<x (49)
forx eZ¢;
o 2"71 ™,
> S OQmonBi(<x>) = b Eﬂm, (50)
j=0,j#1 !
for x € Z.

4 Fourier series of functions of the third type

Let ym(x) = X105 = k)b(r) (x)x™ ¥, (m > 2). Then we will consider the function.

ol 1 (r) m—k
Ym(< x>) = § ——— b (<x>)<x>""", (51)
m( ) = k(m-k)k ( )
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defined on R, which is periodic with period 1. The Fourier series of ym (< x >) is
i Cr(;)ezﬂnx’
n=—oo

where
1 1

Cr(lm) _ / (< X >)e—27rinxdx _ /’ym(X)e_zmnde.
0 0

To proceed further, we need to observe the following.

Y (X) = z —b”ﬁ(x)x’" 4 Z 2p{ ()xm !

m-2 —
_ (r) m-1-k L0 m-1-k
-2 7”1 — kb" (x)x + z:: kb" (x)x
2 1 p® m—1-k 1 ma ("
= k=1(71 k+k) (x)x M 719 1(x)
1 _
:(m—l)ym_l(x)+m_1xm 1+m 1bfn')l(x).

From this, we see that
1 R S = BN SN () _
(m(wmﬂ(x) m(m + l)X m(m+ 1) ’“*1()()) = Ym(x)

and
1
m(m+1) m(m +1)

% (’Ym+1(1) ~Ym+1(0) —

/1 Ym(x)dx =
0

For m > 2, we put

Am = 7m(1) = 1m(0) = Z . )(b’go(l)—bl((r)am,k)

w1 " -1
= ———(2b;’ - b .
kz::l k(m - k)( k e )
Notice here that,
Ym(0) = ym (1) <= Am =0,
and

1
1 1
/’Ym(x)dxzm(/lm+l_m(m+1)( bfnrJ)rl_bEnrJri)))'
0

We are now going to determine the Fourier coefficients Cflm).
Casel:n # 0.
1

Cgm) _ /Wm(X)e_zm.nde
0

1
1 “aminxq1 1 , —aminx
- 27 zn[wm( Je ]0+27ﬂ-n0/Wm(X)e dx

: 1 1 .
:—ﬁ(’ym( ) Wm(O)) 2 ln\/‘{(m—l)’ym_l(x)_km_lxm_l+m_1b(r)1( )} —27rmxdx

m-1_(m-1) 1
-T2 -
2win "

(b0, (1) -, )

A m 1 —27rmxd fb(r) —Zmnxd
2rin " 27rm(m 1) / 27rm(m 1) (x)e X

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)
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We can show that

1
/ e 2minx g, _ )~ Pkt Cnin)E for n+0,
0 for n=0.

Also, from the paper [12], we have

0 1+1 1+1

From (60), (61), and (62), we have

m-1 _(m1y 1 1
e - B,
" 2min " 2rin” " 2xin(m-1)

where

e (m-1) ) (r-1)
D = ~ " (1+b -b .
m l; (Zwin)k ( 00 k m—k )

From (63) by induction on m we can deduce that

m-1 (m _ 1)._1 m-1 (m _ 1)._1
cm -y - T g
n ,Zl (2min)y MM ]Zl (2rin)(m—j) "7
We note here that

o (m-1),

% rinyi(m """

j=1

S (m-1), mij (m—j)i-1
) = (2nin)(m-j) o (2min)k

() (r-1)
(1+ bm—j—k+l - bm—j—k+1

3
|

L1 " (m-1)u-

- Y

m-j 5 (2min)+k

(€] (r-1)
(1 + bm—j—k+1 - bm—j—k+1)

-

ERE
R

1 M (m-1)s

B 2 (2min)s

m-j s=j+1

m-s+1

(1+b{, -bl))

—.
-

(m - 1)5—2 (r) (r-1) = 1
———=(1+b -b —
4 (27rin)5 ( + m—s+1 m—s+1) ; m _}-

i (m)s Hpn-1 - Hmn—s
1 (2min)s m-s+1

o

©
I

(1+b

m-s+1

-1
- br(nrfs+)1)'

3|

S=

Putting everything altogether, from (65), we finally obtain

m-s+1

Case2:n=0.

[

m(m+1)

1 1 -
C(()m):['Ym(X)dXZm(Am+1—(1+b£nr+)-1_b§nr+ll) )

0

DE GRUYTER OPEN

(61)

1 I (D=1 () (r-1)
b (x)e gy =~ k=1 GainF (Pioke1 — Pigsy)» for n =0, 62)
1 - 1 b(f) b(r—l) _
i - ), for n=0.

(63)

(64)

(65)

(66)

U Hp-1 - Hm- -
Z (m)S {Am-s+1+u(1+bfr{25+l_bfnr—slzl)}' (67)

(68)

ym(< x >), (m > 2) is piecewise C*. Moreover, ym(< x >) is continuous for those integers m > 2 with A, = 0,
and discontinuous with jump discontinuities at integers for those integers m > 2 with A + 0.
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Assume first that A, = 0, for an integer m > 2 . Then v (0) = v (1). Hence v (< x >) is piecewise C*,
and continuous. Thus the Fourier series of v (< x >) converges uniformly to vm(< x >), and

Ym(< x>)
1
= (Am+1 ﬁ(l +bi - bgnr+11)))
>, 1z (m)s Hpn 1 — Hn-s b(r) b(r 27rinx
+ Z o EZ 71'1)1)5 Am-s+1 + —-s+1 (1 m-s+1 m— s+1)
Nn=—oo0,N+! s=1
1 1
(= gy - 26D (69
1M (m Hm71 _ Hm—s ” (- ) oo eZTrinX
— Am— ——(1+b -b !
’ mg(s)( R | SR e n;_;,ﬁo (27in)s
1 & m Hp-1 - Hn-
o 3 () (e B D, B2 B x)
$=0,s+
Bi(<x>), for xeZf,
A
* mX{O, for xeZ.
Now, we are going to state our first result.
Theorem 4.1. For each integer l > 2, we let
z ka o @b =), (70)
with Ay = 0. Assume that Ay, = 0, for an integer m > 2. Then we have the following.
(@) Y k(m ) b(')(< x >) < x >™ ¥ has the Fourier series expansion
Z - k)b(r)(< x>) < x>mk
1 1
:m(/lmﬁ-l_m(m_’_l)(lﬂ'bgrﬁl_bfnrﬂl))) (1)
ad 1 & (m) Hpn1 - H Q27
3 0{-m Zl (zﬂins)s (Am_s+1 + 7m — 1 (4 +b" b s+1))}
n=—o00,n+ S=
for all x € R, where the convergence is uniform.
(b)
m-1
Z K(m ! )b(r)(<x>) <x>mk
k=1 (72)

1 & (m Hpm1 — Hpns ) (r-1)
- mz(s)(Am T B ) ) Bl ),

for all x € R, where B;(< x >) is the Bernoulli function.
Assume next that A, + O, for an integer m > 2. Then 4, (0) # ym(1). Hence ym(< x >) is piecewise C*°, and

discontinuous with jump discontinuities at integers.Thus the Fourier series of v (< x >) converges pointwise
to ym(< x >), for x € Z°, and converges to

5Cm(0) +m(1)) = 1m(0) + 3 An, @

for x € Z. Next, we are going to state our second result.
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Theorem 4.2. For each integer | > 2, we let

(n (r-1)
Zl(l b — D),

with Ay = 0. Assume that Ap, # O, for an integer m > 2. Then we have the following.

(a)

1 1
(1~ sy @ B -

& 13 (m) Hpo1 - Ho o2
+ oy {_m;(hins)s(/l’"‘””“(l b0 - bfn’m))} "

n=—o0,n#0 s+1

{Zkl R k)b( (<x>)<x>mk for xezc,

3 Am, for xeZ.
(b)
1 & (m Hmn-1 = Hm—s @ (r-1)
msz;)(s)(Am_s+1+M(1 b",: s+1—bmr s+1 )BS(<X>)
m-1 1 k

bl((r)(<x>) <x >,
forx € Z¢ and
2 [(m Hp1 — Hp-
52 (1) (s + Bt b0 b0 ) Bux2) = St

for x € Z.
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