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Abstract: This paper studies the quasi-maximum likelihood estimator (QMLE) for the generalized autoregres-
sive conditional heteroscedastic (GARCH) model based on the Laplace (1,1) residuals. The QMLE is proposed
to the parameter vector of the GARCH model with the Laplace (1,1) �rstly. Under some certain conditions,
the strong consistency and asymptotic normality of QMLE are then established. In what follows, a real
example with Laplace and normal distribution is analyzed to evaluate the performance of the QMLE and
some comparison results on the performance are given. In the end the proofs of some theorem are presented.
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1 Introduction
The ARCHmodel has been widely used ever since it was �rst proposed by Engle (1982)[1] because this model
was able to address the volatility in the forecasting of Britain’s in�ation rate. Inmany statistical applications,
particularly �nance, the ARCHmodel is the leading way to explain changes in the conditional variance of the
error term over time. In recent years, the ARCH model has been extended to the generalized-ARCH (GARCH)
model (seeBollerslev (1986)[2]). Since theGARCHmodel can explain thephenomenaof volatility convergence
and the thick tail of the rate of return (see David (2014)[3] and Yang (2008)[4]) it has drawn widespread
concern from many scholars and has many applications.

Recently, some advances have been made for the structure and parameter estimation of the GARCH
model. Weiss (1986)[5] established some results on the asymptotic properties of the QMLE depending on
assumptions of moment conditions. Lee (1994)[6] and Lumsdaine (1996)[7] studied the asymptotic properties
of the QMLE for the GARCH model. Berkes et al. (2003)[8] studied the structure and estimator of GARCH.
Berkes and Horvath (2003, 2004)[9,10] provided consistency convergence rate that is QMLE and validity of
parameter estimation for general GARCH(r,s). Francq and Zakoian (2004)[11] studied the QMLE for GARCH(r,
s). Straumann (2006)[12] presented the QMLE by a stochastic recurrence method, which includes GARCH(r,
s). Ling (2007)[13] proposed a self-weightedQMLE, and Zhu (2011)[14] investigated the local QMLE for IGARCH
models under a fractionalmoment conditiononly. The theoretical properties of theQMLE in theGARCHmodel
need to be developed further, especially in statistical applications, to include situations where these sorts
of moment conditions are not satis�ed. Han and Kristensen (2014)[15] applied the asymptotic properties of
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Gaussian QMLE to the GARCH model with an additional explanatory variable, and showed that the QMLE of
the parameters for the volatility equation is consistent and mixed-normally distributed in large samples.

Although the literature on classical GARCHmodels is quite rich,most of it is based on residuals of GARCH
model, which follow a normal distribution, as noted by Francq and Zakoian (2004)[11]. Nelson (1991)[16] used
other distributions to investigate the GARCHmodel. In this paper, we consider the Laplace distribution since
this distribution is worthy of being studied because it describes the fat-tail feature of �nancial market data.
This papermainly investigates the QMLE for the GARCHmodel based on Laplace distribution. The theoretical
results on strong consistency and asymptotic normality of the QMLE are established. A performance compar-
ison between Laplace distribution and normal distribution is made to show that the former is superior to the
later.

The article is organized as follows. The main results for the QMLE of GARCH(r, s) are given based on
Laplace distribution in the second section. In the third section a practical instance is described. The proofs
of two theorems are in the end.

2 Main results
In this section we investigate the quasi-maximum likelihood estimator (QMLE) for the generalized autore-
gressive conditional heteroscedastic (GARCH) model based on the Laplace (1,1) residuals to propose some
theoretical results.

The GARCH (r,s) model has the following form:

εt = ηtσt , σ2t = α0 +
r
∑
i=1
αiε2t−i +

s
∑
j=1
βjσ2t−j , (1)

Here, ηt is a sequence of independent and identical distributed (i.i.d.) random variables, α0 > 0, αi ≥ 0, i =
1, 2,⋯, r; βj ≥ 0, j = 1, 2,⋯, s. According to Bougerol and Picard(1992)[17], the su�cient and necessary
condition for the strictly stationary solution of GARCH (r, s) model is

r
∑
i=1
αi +

s
∑
j=1
βj < 1. (2)

Assume that θ = (α0, α1,⋯, αr , β1, β2,⋯, βs)′ is the parameter vector of formula (1) and its true parameter
vector is θ0. Let l = r + s + 1, then θ is l dimension vector. The parameter vector space is Θ, Θ ⊂ Rr+s+10 , R0 =
[0,∞). By assumption that a Laplace distribution has the density f(x) = 0.5e−∣x−1∣ for ηt and conditionally
on initial values ε0,⋯, ε1−r , σ20,⋯, σ21−s, then the Laplace quasi-likelihood is

Ln(θ) = Ln(θ; ε0,⋯, εn) =
n
∑
t=1

1
2
√
σ2t
exp(− ∣εt − 1∣√

σ2t
)

with regard to t ≥ 1, where

σ2t = σ2t (θ) = α0 +
r
∑
i=1
αiε2t−i +

s
∑
j=1
βjσ2t−j .

We select the initial values

ε0 = ⋯ = ε1−r =
√
ω, σ20 = ⋯ = σ21−s = ω (3)

or

ε0 = ⋯ = ε1−r = ε1, σ20 = ⋯ = σ21−q = ε21. (4)

As a result, θ̂n is named the QMLE for θ and has the following form

θ̂n = argmax
θ∈Θ

Ln(θ) = argmin
θ∈Θ

In(θ), (5)
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where

In(θ) = n−1
n
∑
t=1
lt , lt = lt(θ) = log σt(θ) +

∣εt − 1∣
σt(θ)

. (6)

Denote α(z) = ∑ri=1 αizi , β(z) = 1 − ∑sj=1 βjzj . If r = 0, α(z) = 0; if s = 0, β(z) = 1. Before providing main
results, we introduce �rstly the following assumptions.

Assumption 1. θ0 ∈ Θ,Θ is compact and θ0 is an inner dot.
Assumption 2.∑rj=1 βj < 1.

Assumption 3. E[ ∣εt−1∣σt ] = 1.
Assumption 4. If s > 0,there are no common roots for α(z) and β(z), α(1) ≠ 0, αr + βs ≠ 0.
Assumption 5. τ = E[ ∣εt−1∣σt ]2 < ∞.

Assumption 1 ensures the parameter vector space is compact and is required to prove asymptotic normality.
Assumption 2 and 4 are the identi�ability conditions for model (1). Assumption 3 is a necessary condition to
prove the strong consistency and Assumption 5 is asymptotic normality.

Actually, the initial values of εt and σ2t are unknownwhen t ≤ 0. Let ε̃t(θ) and σ̃2t (θ) be εt(θ) and σ2t (θ),
respectively, when εt and σ2t (θ) are constants when t ≤ 0. The formula (6) can be modi�ed as

Ĩn(θ) = Ĩn(θ; εn , εn−1,⋯) = n−1
n
∑
t=1
l̃t , (7)

l̃t = l̃t(θ) = log
√
σ̃2t (θ) +

∣εt − 1∣√
σ̃2t (θ)

. (8)

In what follows we establish the main results of this paper.

Theorem 2.1. Under the initial values (3) or (4), if the Assumptions 1-5 hold, then there exists a sequence of
minimizers θ̂n of In(θ) such that

θ̂n → θ0 a.s., as n →∞.

Theorem 2.2. If the Assumptions 1-5 hold, then
√
n(θ̂n − θ0) → N(0,MJ−1) as n →∞,

where
M = τ − 14 , J = Eθ0 (

∂2lt(θ0)
∂θ∂θT

) = Eθ0 (
1

σ4t (θ0)
∂σ2t (θ0)
∂θ

∂σ2t (θ0)
∂θT

) . (9)

3 Applications and comparison
In this section, the China Securities Index 800 (CSI 800) from January 12, 2007 to December 31, 2008 is
studied. There are 482 data points. The descriptive statistics of data subjected to di�erential, denoted by
{yt}481t=1 are shown in Figure 1.

As shown in Figure 1, the mean was near 0. At the 0.05 signi�cance level, the value of J-Bera statistic is
greater than the critical value. This indicates that the regression may not follow the normal distribution. It
can be initially determined that the distribution of the return presents "fat tail" feature.

When the signi�cance level is 1%, 5% and 10%, the value of the test statistic t is smaller than the critical
value in Table 1. In this way, the sequence rejects the null hypothesis, which the unit root exists. It is also
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Fig. 1. Log-return descriptive statistics of CSI 800

Table 1. ADF unit root test

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -21.50265 0.0000
Test critical values: 1% level -3.443748

5% level -2.867342
10% level -2.569922

Table 2. ARCH test

F-statistic 3.282313 Prob. F(1,478) 0.0707
Obs*R-squared 3.273568 Prob. Chi-square(1) 0.0704

a stationary series. As shown in Table 2, n ∗ R2 = 3.273568 > χ20.1(1), which indicates the sequence has
heteroskedasticity.

In this way, the GARCH(1,1) model was established according to {yt}. When ηt obeyed the Laplace (1, 1),
the estimation of the parameters vector was performed by using the QMLE at MATLAB.

The results were α0 = 0.0701, α1 = 0.1381, β1 = 0.4605. As α1 + β1 = 0.5986 < 1, which satis�es the
strictly stationary condition.Next, the sample biases, the sample standarddeviations (SD) and the asymptotic
standard deviations (AD) of the estimation on the parameter vector were given when ηt obeyed the N(0, 1)
and ηt obeyed the Laplace(1, 1).

The bias is a technical index that re�ects the degree of violation of the stock price and themoving average
in the process of �uctuation. The computational formula is:

bias = Closingprice −MovingaveragepriceinNdays
MovingaveragepriceinNdays

× 100%

SD is the square root of the arithmetic mean of deviation from the mean square. AD is the standard deviation
of the asymptotic distribution of deviation. They all re�ect the degree of dispersion among individuals in the
group. Therefore, these indexes canbeused to analyze the accuracy of the estimation on theparameter vector.
In general, the estimation is much more accurate only if the values of bias, AD and SD are much smaller.

As shown in Table 3, when ηt ∼ Laplace(1, 1), the values of the bias, the SD, and the AD were all smaller
than the ones when ηt ∼N(0,1). This indicated that the �tting e�ect of Laplace distribution is better than that
of normal distribution. It is hereby suggested that instead of the Normal distribution the Laplace distribution
is much more e�ective for the data from �nancial markets.
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Table 3. Estimators for GARCH(1, 1)

QMLE-N QMLE-L
ᾱ0 ᾱ1 β̄1 α̂0 α̂1 β̂1

Bias -0.0005 1.4103 -0.6701 0.0001 -0.3619 -0.0698
SD 0.0035 0.1912 0.0256 0.0025 0.0042 0.0175
AD 0.0000 0.0695 0.0451 0.0000 0.0491 0.0159

4 Proofs
In this section we will present the proof of Theorem 2.1 and Theorem 2.2.

Proof of Theorem 2.1. The formula σ2t = α0 +
r
∑
i=1
αiε2t−i +

s
∑
j=1
βjσ2t−j in model (1) can be rewritten in vector form

as
σ̃2t = c̃t + Bσ̃

2
t−1, (10)

where

σ̃2t =

⎛
⎜⎜⎜⎜
⎝

σ2t
σ2t−1
⋮

σ2t−s+1

⎞
⎟⎟⎟⎟
⎠

, c̃t =

⎛
⎜⎜⎜⎜
⎝

α0 +∑ri=1 αiε2t−i
0
⋮
0

⎞
⎟⎟⎟⎟
⎠

, B =

⎛
⎜⎜⎜⎜
⎝

β1 β2 ⋯ βr
1 0 ⋯ 0
⋮
0 ⋯ 1 0

⎞
⎟⎟⎟⎟
⎠

. (11)

Then following intermediate results can be used to prove Theorem 2.1.

(i) limn→∞ supθ∈Θ ∣In(θ) − Ĩn(θ)∣ = 0 a.s.
(ii) ∃t ∈ Z makes σ2t (θ) = σ2t (θ0) Pθ0 a.s.⇒ θ = θ0.
(iii) Eθ0 ∣lt(θ0)∣ < ∞, and if θ ≠ θ0, Eθ0 lt(θ) > Eθ0 lt(θ0).
(iv) For θ ≠ θ0, there is a neighbourhood V(θ) making lim infn→∞ infθ∗∈V(θ) Ĩn(θ∗) > Eθ0 l1(θ0) a.s.

(i) As Assumption 1,
sup
θ∈Θ

ρ(B) < 1. (12)

Iterating (10) produces the following:

σ2t = ct + Bct−1 + B
2ct−1 +⋯ + Bt−1c1 + B

tσ20 =
∞

∑
k=0
Bkct−k . (13)

It is supposed here that σ̃2t may be the vector obtained by replacing σ2t−i by σ̃2t−i. Let c̃ be the vector obtained
by replacing ε20,⋯, ε21−p with the initial values (3) or (4). We have

σ̃2t = ct + Bc̃t−1 +⋯ + Bt−r−1 c̃r + 1 + B
t−r c̃r +⋯ + Bt−1 c̃1 + B

t σ̃20. (14)

Through (12)-(14), it is almost certain the following is true:

sup
θ∈Θ

∥σ2t − σ̃
2
t ∥ = sup

θ∈Θ
∥{

r
∑
k=1
Bt−k(ck − c̃k) + B

t(σ20 − σ̃
2
0)}∥

≤ Kρt , ∀t. (15)

Hence,

sup
θ∈Θ

∣In(θ) − Ĩn(θ)∣ ≤ n−1
n
∑
t=1

sup
θ∈Θ

{∣ σ̃t − σt
σt σ̃t

(εt − 1)∣ +
1
2 ∣log(1 + σ

2
t − σ̃2t
σ̃2t

)∣}

≤ n−1
n
∑
t=1

sup
θ∈Θ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

¿
ÁÁÀ∣

σ̃2t − σ2t
σ̃2t σ2t

(εt − 1)2∣ +
1
2 ∣log(1 + σ

2
t − σ̃2t
σ̃2t

)∣
⎫⎪⎪⎪⎬⎪⎪⎪⎭
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≤
√
K
n

{sup
θ∈Θ

1
α0

}
n
∑
t=1

√
ρt(εt − 1)2 +

K
2n {sup

θ∈Θ

1
α0

}
n
∑
t=1
ρt .

By the Markov inequality, the following equation can be determined:

∞

∑
t=1
P(ρt(εt − 1)2 > ϵ) ≤

∞

∑
t=1

E(ρt(εt − 1)2)m

ϵm
< ∞.

From the Borel-Cantelli lemma, (i) is obtained.
(ii) It’s obvious that the result (ii) can be easily proved with Assumption 2 and Assumption 4.
(iii) Because of Eθ0 l

−
t (θ) ≤ Eθ0 ln

− σ2t ≤ max{0,− lnω} < ∞. It remains to be shown that Eθ0 l
+
t (θ) < ∞.

By Jenson inequality,

Eθ0 log σt(θ0) =
1
2Eθ0 log σ

2
t (θ0) =

1
2Eθ0

1
m
log{σ2t (θ0)}m ≤ 1

2m log Eθ0{σ
2
t (θ0)}m < ∞,

Thus,

Eθ0 lt(θ0) = Eθ0 {
1
2 log σ2t (θ0) +

∣εt − 1∣
σt(θ0)

} = 1 + 1
2Eθ0 log σ

2
t (θ0) < ∞.

Therefore,

Eθ0 lt(θ) − Eθ0 lt(θ0) = Eθ0 ln
σt(θ)
σt(θ0)

+ Eθ0
σt(θ0)
σt(θ)

− 1.

For all x > 0, log x ≤ x − 1, where the equality is true if and only if x = 1. Thus, it is true that

Eθ0 lt(θ) − Eθ0 lt(θ0) ≥ Eθ0 {log
σt(θ)
σt(θ0)

+ log σt(θ0)
σt(θ)

} = 0 (16)

It is noted that the equality in (16) holds if σt(θ0) = σt(θ).
(iv) From result (i),

lim inf
n→∞

inf
θ∗∈Vk(θ)∩Θ

Ĩn(θ∗) ≥ lim inf
n→∞

inf
θ∗∈Vk(θ)∩Θ

In(θ∗) − lim sup
n→∞

sup
θ∈Θ

∣̃In(θ) − In(θ∗)∣

≥ lim inf
n→∞

1
n

n
∑
t=1

inf
θ∗∈Vk(θ)∩Θ

lt(θ∗)

Based on the ergodic theorem, Beppo-Levi theorem and the formula (16), the result (iv) can be proved.
By compactness theory, the proof of Theorem 2.1 is �nished.

Proof of Theorem 2.2. Through a Taylor expansion at θ0,

0 = n−1/2
n
∑
t=1

∂
∂θ
lt(θ̂n)

= n−1/2
n
∑
t=1

∂
∂θ
lt(θ0) + (1

n

n
∑
t=1

∂2

∂θiθj
lt(θ∗ij))

√
n(θ̂n − θ0),

which indicates that both

n−1/2
n
∑
t=1

∂
∂θ
lt(θ0) ⇒ N(0, ( τ − 14 )J) (17)

and

n−1
n
∑
t=1

∂2

∂θiθj
lt(θ∗ij) → J(i, j) in probability. (18)

hold. The proof of Theorem 2.2 is divided into the following six conclusions.
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(i) Eθ0∥(∂lt(θ0)/∂θ)(∂lt(θ0)/∂θ
T)∥ < ∞, Eθ0∥∂

2lt(θ0)/∂θ∂θT∥ < ∞.
(ii) J is nonsingular, varθ0{∂lt(θ0)/∂θ} = MJ.
(iii) There exists a neighborhood V(θ0) of θ, with regard to i, j, k ∈ {1,⋯, r + s + 1}, such that

Eθ0 sup
θ∈V(θ0)

∣ ∂3lt(θ)
∂θi∂θj∂θk

∣ < ∞.

(iv) ∥n−1/2∑nt=1{∂lt(θ0)/∂θ − ∂l̃t(θ0)/∂θ}∥ → 0 when n → ∞, supθ∈V(θ0) ∥n
−1∑nt=1{∂2lt(θ)/∂θ∂θT −

∂2 l̃t(θ)/∂θ∂θT}∥ → 0 in probability.
(v) n−1/2∑nt=1 ∂lt(θ0)/∂θ⇒ N(0,MJ).
(vi) n−1∑nt=1 ∂2lt(θ∗ij)/∂θi∂θj → J(i, j) a.s.
(i) Because of lt(θ) = ln

√
σ2t + ∣εt − 1∣/

√
σ2t , it is true that

∂lt
∂θ

= 1
2σ2t

∂σ2t
∂θ

+ (− ∣εt − 1∣
2

1
(σ2t )3/2

) ∂σ
2
t

∂θ

= 1
2
⎛
⎝
1 − ∣εt − 1∣√

σ2t

⎞
⎠
( 1
σ2t
∂σ2t
∂θ

) , (19)

∂2lt
∂θ∂θT

= ∂2σ2t
∂θ∂θT

⎛
⎜
⎝

1
2σ2t

− ∣εt − 1∣
2

1√
σ6t

⎞
⎟
⎠
+ ∂σ

2
t

∂θ
∂σ2t
∂θT

⎛
⎝
3∣εt − 1∣

4
1√
σ10t

− 1
2
1
σ4t

⎞
⎠

= 1
2 ( 1

σ2t
∂2σ2t
∂θ∂θT

)
⎛
⎝
1 − ∣εt − 1∣√

σ2t

⎞
⎠
+ 1
2 ( 1

σ4t
∂σ2t
∂θ

∂σ2t
∂θT

)
⎛
⎝
3
2
∣εt − 1∣√

σ2t
− 1

⎞
⎠
. (20)

For θ = θ0, we have

Eθ0 ∥
1
σ2t
∂σ2t
∂θ

(θ0)∥ < ∞, Eθ0 ∥
1
σ2t

∂2σ2t
∂θ∂θT

(θ0)∥ < ∞,

Eθ0 ∥
1
σ4t
∂σ2t
∂θ

∂σ2t
∂θT

(θ0)∥ < ∞.

The proof of (i) is �nished.
(ii) From (i), it have

Eθ0 {
∂lt(θ0)
∂θ

} = Eθ0
⎛
⎝
1
2 −

∣εt − 1∣
2
√
σ2t

⎞
⎠
Eθ0 {

1
σ2t (θ0)

∂σ2t (θ0)
∂θ

} = 0.

Since (20), (i) and (9), the following must also be determined.

varθ0 {
∂lt(θ0)
∂θ

} = Eθ0 {
∂lt(θ0)
∂θ

∂lt(θ0)
∂θ′

}

= E
⎧⎪⎪⎨⎪⎪⎩

(1 − ∣εt−1∣σt )2

4

⎫⎪⎪⎬⎪⎪⎭
Eθ0 {

1
σ4t (θ0)

∂σ2t (θ0)
∂θ

∂σ2t (θ0)
∂θ′

}

= ( τ − 14 ) J. (21)

This shows that J is non-singular. So we establish the conclusion of (ii).
(iii)It is shown in (20) that lt(θ) is di�erentiated. Then

∂3lt(θ)
∂θi∂θj∂θk

= 1
2
⎛
⎝
1 − ∣εt − 1∣√

σ2t

⎞
⎠
( 1
σ2t

∂3σ2t
∂θi∂θj∂θk

)

+
⎛
⎝
1 − 15

8
∣εt − 1∣√

σ2t

⎞
⎠
( 1
σ6t
∂σ2t
∂θi

∂σ2t
∂θj

∂σ2t
∂θk

)
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+ 1
2
1
σ4t

∂2σ2t
∂θi∂θj

∂σ2t
∂θk

⎛
⎝
3
2
∣εt − 1∣√

σ2t
− 1

⎞
⎠

+ 1
2
1
σ4t

∂2σ2t
∂θi∂θk

∂σ2t
∂θj

⎛
⎝
3
2
∣εt − 1∣√

σ2t
− 1

⎞
⎠

+ 1
2
1
σ4t

∂2σ2t
∂θj∂θk

∂σ2t
∂θi

⎛
⎝
3
2
∣εt − 1∣√

σ2t
− 1

⎞
⎠
.

Since

Eθ0 sup
θ∈V(θ0)

∣εt − 1∣
σt

< ∞ , Eθ0 sup
θ∈V(θ0)

∣ 1
σ2t

∂3σ2t
∂θi∂θj∂θk

∣ < ∞,

Eθ0 sup
θ∈V(θ0)

∣ 1
σ2t
∂σ2t
∂θi

∣ < ∞ , Eθ0 sup
θ∈V(θ0)

∣ 1
σ4t

∂2σ2t
∂θi∂θj

∣ < ∞,

we have

Eθ0 sup
θ∈V(θ0)

∣ ∂3lt(θ)
∂θi∂θj∂θk

∣ < ∞,

which shows that the conclusion of (iii) is true.
(iv)It follows from (3), (4), (13) and (14) that

sup
θ∈Θ

∥∂σ
2
t

∂θ
− ∂σ̃

2
t

∂θ
∥ < Kρt , sup

θ∈Θ
∥ ∂2σ2t
∂θ∂θT

− ∂2σ̃2t
∂θ∂θT

∥ < Kρt , ∀t, (22)

which yields

∣ 1
σ2t

− 1
σ̃2t

∣ = ∣ σ̃
2
t − σ2t
σ2t σ̃2t

∣ ≤ Kρ
t

σ2t
, σ2t

σ̃2t
≤ 1 + Kρt . (23)

Because of
∂lt(θ)
∂θ

= 1
2
⎛
⎝
1 − ∣εt − 1∣√

σ2t

⎞
⎠
( 1
σ2t
∂σ2t
∂θ

) , ∂l̃t(θ)
∂θ

= 1
2(1 − ∣εt − 1∣√

σ̃2t
)( 1
σ̃2t
∂σ̃2t
∂θ

),

it is true that

∣∂lt(θ0)
∂θ

− ∂l̃t(θ0)
∂θ

∣ = 1
2 ∣

⎧⎪⎪⎨⎪⎪⎩

∣εt − 1∣√
σ̃2t

− ∣εt − 1∣√
σ2t

⎫⎪⎪⎬⎪⎪⎭
{ 1
σ2t
∂σ2t
∂θi

}

+
⎧⎪⎪⎨⎪⎪⎩
1 − ∣εt − 1∣√

σ̃2t

⎫⎪⎪⎬⎪⎪⎭
{ 1
σ2t

− 1
σ̃2t

}{∂σ
2
t

∂θi
}

+
⎧⎪⎪⎨⎪⎪⎩
1 − ∣εt − 1∣√

σ̃2t

⎫⎪⎪⎬⎪⎪⎭
{ 1
σ̃2t

}{∂σ
2
t

∂θi
− ∂σ̃

2
t

∂θi
} ∣(θ0)

≤ 1
2Kρ

t(1 + ∣εt − 1∣
σt

) ∣1 + { 1
σ2t (θ0)

∂σ2t (θ0)
∂θi

}∣ .

Thus,

∣n−1/2
n
∑
t=1

{∂lt(θ0)
∂θ

− ∂l̃t(θ0)
∂θ

}∣

≤ K
2 n

−1/2
n
∑
t=1
ρt(1 + ∣εt − 1∣

σt
){1 + 1

σ2t (θ0)
∂σ2t (θ0)
∂θi

} .

Similarly to the proof (i), according to the Markov inequality and the independent relationship between ηt
and σ2t (θ0), for all ε > 0 we have

P (n−1/2
n
∑
t=1
ρt(1 + ∣εt − 1∣

σt
){1 + 1

σ2t (θ0)
∂σ2t (θ0)
∂θ

} > ε)
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≤ 2
ε
(1 + Eθ0 ∣

1
σ2t (θ0)

∂σ2t (θ0)
∂θ

∣) n−1/2
n
∑
t=1
ρt → 0. (24)

Thus, the �rst part of (iv) was obtained. Due to (20), (22), and (23), we have

sup
θ∈V(θ0)

∣n−1
n
∑
t=1

{∂
2lt(θ)
∂θi∂θj

− ∂
2 l̃t(θ)
∂θi∂θj

}∣

≤ n−1

2
n
∑
t=1

sup
θ∈V(θ0)

∣
⎧⎪⎪⎨⎪⎪⎩

∣εt − 1∣√
σ̃2t

− ∣εt − 1∣√
σ2t

⎫⎪⎪⎬⎪⎪⎭
{ 1
σ2t

∂2σ2t
∂θi∂θj

}

+
⎧⎪⎪⎨⎪⎪⎩
1 − ∣εt − 1∣√

σ̃2t

⎫⎪⎪⎬⎪⎪⎭
{( 1
σ2t

− 1
σ̃2t

) ∂2σ2t
∂θi∂θj

+ 1
σ̃2t

( ∂2σ2t
∂θi∂θj

− ∂2σ̃2t
∂θi∂θj

)}

+
⎧⎪⎪⎨⎪⎪⎩

3
2
∣εt − 1∣√

σ2t
− 3
2
∣εt − 1∣√

σ̃2t

⎫⎪⎪⎬⎪⎪⎭
{ 1
σ2t
∂σ2t
∂θi

}{ 1
σ2t
∂σ2t
∂θj

}

+
⎧⎪⎪⎨⎪⎪⎩

3
2
∣εt − 1∣√

σ̃2t
− 1

⎫⎪⎪⎬⎪⎪⎭
{( 1
σ2t

− 1
σ̃2t

) ∂σ
2
t

∂θi
+ 1
σ̃2t

(∂σ
2
t

∂θi
− ∂σ̃

2
t

∂θi
)}{ 1

σ2t
∂σ2t
∂θj

}

+
⎧⎪⎪⎨⎪⎪⎩

3
2
∣εt − 1∣√

σ̃2t
− 1

⎫⎪⎪⎬⎪⎪⎭
{ 1
σ̃2t
∂σ̃2t
∂θi

}{( 1
σ2t

− 1
σ̃2t

) ∂σ
2
t

∂θj
+ 1
σ̃2t

(∂σ
2
t

∂θj
− ∂σ̃

2
t

∂θj
)} ∣

≤ 1
2Kn

−1
n
∑
t=1
ρtNt .

As a consequence,

Nt = sup
θ∈V(θ0)

⎧⎪⎪⎨⎪⎪⎩
1 + ∣εt − 1∣√

σ2t

⎫⎪⎪⎬⎪⎪⎭
{1 + 1

σ2t
∂2σ2t
∂θi∂θj

+ 1
σ2t
∂σ2t
∂θi

1
σ2t
∂σ2t
∂θj

} .

By (iii) and Holder inequality, Nt was integrable for some neighbourhood V(θ0). So, it follows from the
Markov inequality that the second part of (iv) is true.

(v) The proof of (v) is easily obtained from the central limit theorem for martingale di�erence. Suppose
that Ft is σ-domain generated from varibles {εt−i , i ≥ 0}. As Eθ0(∂lt(θ0)/∂θ∣Ft) = 0, varθ0(∂lt(θ0)/∂θ)
exists. FromAssumption 3 and (ii), 0 < τ−1 < ∞ and J is non-singular. Hence, thematrix varθ0(∂lt(θ0)/∂θ) is
non-degenerate. Thus, λ ∈ Rp+q+1, {λT(∂/∂θ)lt(θ0),Ft is a martingale di�erence sequence. From the central
limit theorem and the Wold-Cramer device, the asymptotic normality result (v) is established.

(vi) To prove (vi), we �rstly prove that the second-order derivatives of lt(θ) exists. For all i, j,

n−1
n
∑
t=1

∂2

∂θi∂θj
lt(θ∗ij) = n

−1
n
∑
t=1

∂2

∂θi∂θj
lt(θ0) + n−1

n
∑
t=1

∂
∂θT

{ ∂2

∂θi∂θj
lt(θ̃ij)}(θ∗ij − θ0), (25)

Here, θ̃ij locates between θ∗ij and θ0 . As θ̃ij almost certainly converges to θ0, it follows from the ergodic theorem
and (iii) that

lim
n→∞

sup∥n−1
n
∑
t=1

∂
∂θT

{ ∂2

∂θ i∂θj
lt(θ̃ij)}∥

≤ lim
n→∞

sup n−1
n
∑
t=1

sup
θ∈V(θ0)

∥ ∂
∂θT

{ ∂2

∂θi∂θj
lt(θ)}∥

= Eθ0 sup
θ∈V(θ0)

∥ ∂
∂θT

{ ∂2

∂θi∂θj
lt(θ)}∥ < ∞.

Since ∥θ∗ij − θ0∥ → 0 a.s., the second term on the right-hand side of (25) converges to 0 with probability 1. The
�rst term on the right-hand side of (25) is also proved by the ergodic theorem. As a result, the conclusion of
(vi) is obtained immediately.

Finally, the Slutsky lemma, (iv), (v), and (vi) are used to produce (17) and (18), i.e. the conclusion of
Theorem 2.2 is established. Here, we complete the proof.
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