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Abstract: The power graph of a finite group is the graph whose vertex set is the group, two distinct elements being
adjacent if one is a power of the other. The enhanced power graph of a finite group is the graph whose vertex
set consists of all elements of the group, in which two vertices are adjacent if they generate a cyclic subgroup. In
this paper, we give a complete description of finite groups with enhanced power graphs admitting a perfect code.
In addition, we describe all groups in the following two classes of finite groups: the class of groups with power
graphs admitting a total perfect code, and the class of groups with enhanced power graphs admitting a total perfect
code. Furthermore, we characterize several families of finite groups with power graphs admitting a perfect code, and
several other families of finite groups with power graphs which do not admit perfect codes.
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1 Introduction

Every graph T considered in this paper is finite, simple, and undirected with vertex set V(I") and edge set E(I").
A code in T is simply a subset of V(T"). A code C of T is called a perfect code [1] if C is an independent set such
that every vertex in V(T") \ C is adjacent to exactly one vertex in C. A code C is said to be a total perfect code [2]
in " if every vertex of I" is adjacent to exactly one vertex in C.

Since the beginning of coding theory in the late 1940s, perfect codes have been important objects of study
in information theory; see the surveys [3, 4] on perfect codes and related definitions in the classical setting. It is
known in [5] that deciding whether a graph has a total perfect code is NP-complete. Beginning with [1], perfect
codes in general graphs have also attracted considerable attention in the community of graph theory (see [6-9]). In
particular, perfect codes in Cayley graphs of groups are especially charming objects of study (see [10-12]). For more
information on coding applications of algebraic constructions, the readers are referred to [13, §9.1 and §9.2].

Graphs associated with groups and other algebraic structures have been actively investigated, since they have
valuable applications (cf. [14, 15]) and are related to automata theory (cf. [16, 17]). The undirected power graph I'
of a finite group G has the vertex set G and two distinct elements are adjacent if one is a power of the other. The
enhanced power graph Ag of a finite group G is the graph whose vertex set consists of G, in which two distinct
vertices are adjacent if they generate a cyclic subgroup. The concepts of a power graph and an undirected power
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graph were first introduced by Kelarev and Quinn [18] and Chakrabarty et al. [19], respectively. Since the paper
deals only with undirected graphs, we use the term “power graph" to refer to an undirected power graph. In recent
years, the study of power graphs has been growing (see [19-30]). Also, see [31] for a survey of results and open
questions on power graphs. In order to measure how close the power graph is to the commuting graph [32], Aalipour
et al. [33] introduced the enhanced power graph which lies in between. See [34] for some properties of the enhanced
power graphs.

In this paper, we always use G to denote a finite group with the identity e. Denote by G* the set G \ {e}. For
asubset S of G, let I'g[s) (resp. Ag[s)) denote the induced subgraph of I'g (resp. Ag) by S. If the situation is
unambiguous, then we denote I'gs7 (resp. Agrsy) simply by I's (resp. As).

The paper is devoted to studying the perfect codes of the power graph of a finite group. We first give sharp
lower and upper bounds for the size of a subset of G to be a perfect code in I'g+ and characterizer the groups
achieving the bounds (see Theorem 2.2). We also give several families of groups G such that T'g+ admits a perfect
code, and several other families of groups G such that '+ does not admit perfect codes. Furthermore, we obtain a
complete characterization of finite groups whose enhanced power graphs admit a perfect code (see Theorem 2.10).
In particular, we characterize the groups G such that Ag= admits a perfect code with size 1 (see Theorem 2.11),
which answers a question posed by Bera and Bhuniya [34]. Also, we classify all nilpotent groups G such that A g+
admits a perfect code with size 1 (see Proposition 2.12), which extends [34, Theorems 3.2 and 3.3]. In Sect. 3, we
describe all groups in the following two classes of finite groups: the class of groups with power graphs admitting a
total perfect code (see Corollary 3.4), and the class of groups with enhanced power graphs admitting a total perfect
code (see Theorem 3.5).

2 Perfect codes

We first remark both Ag and I' admit a perfect code {e}. If G is cyclic, then a generator g of G is adjacent to
every element of G* \ {g} in C'g* and Ag=, and so in this case, both '+ and A+ admit a perfect code {g}.

In the rest of this section, therefore, we always assume that G is noncyclic. We focus on studying the perfect
codes of '+ and Ag+. We first give sharp lower and upper bounds for the size of a subset of G to be a perfect code
in '+, and characterizer the groups achieving the bounds. Next, we give some families of finite groups G such that
'+ admits a perfect code, and give several other families of groups G such that '+ does not admit perfect codes.
Finally, we give a complete characterization of finite groups G such that A g+ admits a perfect code.

2.1 Power graphs

The neighborhood of a vertex x in a graph ", denoted by Nt (x), is the set of vertices which have distance one from
x. If the situation is unambiguous, then we denote Nr(x) simply by N(x). A maximal cyclic subgroup of G is a
cyclic subgroup, which is not a proper subgroup of some proper cyclic subgroup of G. We remark that a finite group
has a unique maximal cyclic subgroup if and only if the group is cyclic of prime power order. Denote by Mg the
set of all maximal cyclic subgroups of G. Note that G is always noncyclic. Write

Mg ={M,M>,...,M;} 1)
where ¢ is a positive integer at least 2.

Lemma 2.1. With reference to (1), if C is a perfect code of I'g=, then for any 1 < i < ¢, there exists precisely one
vertex in C such that it belongs to M;.

Proof. Let x be a generator of M; for some 1 < i < ¢. Suppose that x ¢ C. Since C is a perfect code, there exists
an element a in C such that a is adjacent to x. If (x) < (a), since {x) is maximal cyclic, we have (x) = (a), and
soa € M;. If (a) C (x), then itis clear that a € M;. It follows that there exists at least one vertex in C such that it
belongs to M;.
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Now assume, to the contrary, that C contains two distinct elements y and z with y,z € M;. Since C is an
independent set, x ¢ C. Therefore, x is adjacent to exactly one vertex of C. Since y,z € M; and (x) = M;, it
follows that y, z € N(x), a contradiction. O

With reference to (1), let Mg = U, <; < j<,(M; N M;). Foreach 1 <i <¢, write
M} = M;\ Mg. 2
The generalized quaternion group of order 4n is defined by
Oan =,y :x"=y2x>" =1,y 'xy=x"1, n>2. (3)

By verifying (3), y~! = x"y, |x'y] = 4and (x'y)"! = x?"~Iyfori € {I,...,n — 1}. Now we have the
following theorem.

Theorem 2.2. Suppose that '+ admits a perfect code C. With reference to (1),
I=<|Cl =t (4)

the lower bound holds if and only if G =~ Q.= where Q,m is the generalized quaternion group of order 2" and
m > 3, and the upper bound holds if and only if there exists a set {x,...,x;} € G™* satisfying the conditions:

(i) With reference to (2), x; € M* foreach 1 <i <t;

(if) N(x;) N N(x;) = @ for each two distinct i, j in {1,...,¢};

(i) Uiy N(xi) = G*\ {x1,.... x )

Proof. By Lemma 2.1, we have 1 < |C| < ¢. Clearly, |C| = 1 if and only if there exists an element a in G* such
that N(a) = G™ \ {a}. Since we are assuming that G is not cyclic, it follows from [21, Proposition 4] that |C| = 1
ifand only if G =~ Q»m, as required.

Now write D = {x1,...,x;}. Suppose that D satisfies conditions (i)—(iii). By (iii), D is an independent set of
T'g=. Also, by (ii) and (iii), it is easy to see that every vertex in G* \ D is adjacent to exactly one vertex of D. This
implies that D is a perfect code of '+ of size ¢ , as required.

Let C = {x1,...,x,} be a perfect code of '+ of size ¢. With reference to (1), if x; € M; N M; and j # [

forsome i, j,/ in{1,...,t}, by the Dirichlet principle, there exist two elements in C such that they both belong to
same maximal cyclic subgroup of G, contrary to Lemma 2.1. We conclude that (i) holds. Also, since C is a perfect
code, it is clear that C satisfies (ii) and (iii). O

Now we give a family of groups G such that T'g+ admits a perfect code C, where |C| satisfies the upper bound
of (4).

Example 2.3. Let G = Z, x Z!, where p and ¢ are two distinct primes and » is a positive integer at least 2. Then
I'g+ admits a perfect code of size qq"__ll . In particular, every perfect code of '+ has size [Mg|.

Proof. Clearly, G has a unique subgroup of order p, say P. Lett = ‘lq"__ll . Then it is not hard to see that G has
t maximal cyclic subgroups M1, ..., M; and each of them is isomorphic to Z,,. Furthermore, the intersection of
each two distinct maximal cyclic subgroups is P. Suppose that C is a perfect code of T'g=. If there exists x in P*

such that x € C, then by Lemma 2.1 |C| = 1, and hence we have a contradiction by Theorem 2.2, since G is neither

cyclic nor generalized quaternion. It follows that if C has an element y € M; forsomei € {1,...,¢},theny € M,
which implies that C has size ¢ by Lemma 2.1.

Now take elements xp,...,x; in Uf=1 M with x; € M* foreachi € {1,...,t}, |x/| = pgq,and |x;| = ¢
foreach 1 < j <t — 1. By Theorem 2.2, it is easy to check that {x1, ..., x;} is a perfect code, as required. O

The following example shows that, although '+ admits a perfect code, the size of each perfect code of '+ dose
not achieve the upper bound of (4).

Example 2.4. Let G = Z% x Z12, where n is a positive integer at least 2. Then I'+ admits a perfect code of size
27+1 _ 1. In particular, T'g+ does not admit a perfect code of size [Mg|.
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Proof. It is evident that G has a unique subgroup P of order 3, and has 2 and 2*+1 — 2 maximal cyclic subgroups
of order 12 and 6, respectively. Moreover, the intersection of each two maximal cyclic subgroups of order 12 has
order 6. Write

Mg ={My,...., M ,Ky,...,Kont1_5},

where | M;| = 12and |K,| = 6forall 1 <i <2"and 1 < j <2"F1—2, 2", M; = Zeand (o) 2 K; = P.

Suppose that C is a perfect code of '+ of size [M¢g|. By Theorem 2.2, there exist x € M; \ M> and
y € M\ My suchthat x,y € C. Take a € M1 N M with |a| = 2. It follows thata ¢ C anda € N(x) N N(»), a
contradiction. We conclude that '+ does not admit perfect codes of size |[Mg]|.

Take x1 in My, xo € Ky and x; € K; foralli € {2,...,2" 1 — 2}, sothat |xo| = 6 and |x;| = 2 for each
1 <j <2"tl _2 Thenitis easy to check that {xo,x1. ..., Xn+1_5} is a perfect code of '+, as required. [

Finally, we remark that many power graphs do not admit perfect codes. In the following we give two families of
examples.

Proposition 2.5. With reference to (1), suppose that G satisfies

t
M; §Z4p, ﬂ Mj EZZP
Jj=1

for some odd prime p and all 1 <i <. Then I'g= dose not admit perfect codes.

Proof. Let ﬂj~=1 M; = P. Suppose for a contradiction that C is a perfect code of I'g+. Note that G is not
isomorphic to a generalized quaternion 2-group. It follows from Theorem 2.2 that |C| > 2. Also, by Lemma 2.1
we deduce C N P* = @, and so there exist x € M| \ P and y € M> \ P such that x, y € C. We conclude that
|x|,|y| € {4p,4}. Take z in P with |z| = 2. Then z € N(x) N N(y), which is a contradiction since C is a perfect
code. O

The following result follows from Proposition 3.3.
Example 2.6. Let G = Qg x Z, for some odd prime p. Then I'g» dose not admit perfect codes.

Proposition 2.7. Suppose that G satisfies
Mg = {My1, M2, M1, M2a, ..., Mgy, Mi2},

where k is a positive integer at least 2, ﬂf-;l Miy = Zp, Mjy N M = Zop and M;; = Z4, for some odd prime
p,alll <i <kandall1 <j <2.Then I'g+ does not admit perfect codes.

Proof. It is clear that G has a unique subgroup of order p, say P. Suppose that C is a perfect code of I'g*, we
work to obtain a contradiction. Clearly, G is not a generalized quaternion 2-group. By Theorem 2.2, |C| > 2, and
it follows from Lemma 2.1 that P* N C = @. Also, Lemma 2.1 implies that there exist x in M1 and y in M»
suchthat x,y € C.If x # y,thenx € My \ M2 and y € M2 \ M1, and so |x|, |y| € {4p, 4}, which implies
that for the involution z of M11 N M1,, we have z € N(x) N N(y), a contradiction. We deduce x = y, and hence
x € (M11 N My2) \ P, which implies that |x| = 2 or 2p. Since C is a perfect code, the element of order 4 of M,
is adjacent to x in T'g=, and thus |x| = 2. Similarly, considering M;; and M;, for each 2 < i < k, we conclude
that every element of C is an involution. It follows that there does not exist an element in C such that it is adjacent
to a generator of P, which is a contradiction. O

By Proposition 2.7, we have the following example.

Example 2.8. T'(z,xz,,)* dose not admit perfect codes.
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2.2 Enhanced power graphs

In this subsection, we give a complete characterization of finite groups whose enhanced power graphs admit a perfect
code. We begin with the following lemma. Since I'f; is a subgraph of A+, the proof of Lemma 2.9 is similar to the
proof of Lemma 2.1.

Lemma 2.9. With reference to (1), if C is a perfect code of Ag+, then forany 1 <i < t, there exists precisely one
element in C such that it belongs to M;.

Suppose that G is a group with the property that each two maximal cyclic subgroups of G have trivial intersection,
or that if

l
() M # {e}
i=1
for some maximal cyclic subgroups M1, ..., M; of G (here [ may be 1), and there exists My in Mg \{M1,..., M;}
such that My N My, is nontrivial for some m € {1,2,...,1}, then

1
() Mi) N M # e}
i=1
Then G is said to satisfy the intersection property. For example, both the elementary abelian p-group Zj; and Z,, xZ
satisfy the intersection property, where p and ¢ are distinct primes.

Theorem 2.10. A+ admits a perfect code if and only if G satisfies the intersection property.

Proof. First, assume that G satisfies the intersection property. Write
Mg ={Mi1.Mia,..., My, M1, Maa,...,.Mapy,... . Mpm1, M2, ..., Mpy,,,
Mm—l—ly Mm+2s e Mm—l—n},

where /; > 2 and ﬂj"zl M;; is nontrivial for each 1 < i < m, and every two of the rest have trivial intersection. For
each1 <i <mand1 <k <n, takea; € ﬂjf:l M7 andbg € M}, LetC = {a1.az.....am.b1.ba.....by}.

Suppose that a1 and a, are adjacent in Ag=. Then (a1, a2) is cyclic, and so there exists a maximal cyclic
subgroup M of G such that (a1,a2) € M. Since G satisfies the intersection property, a; must belong to one of
{M11,M12,...., My, } and ax must belong to one of {M>1, M2>, ..., M2, }, which implies that

M e {My1. Mi2,.... My} N {Ma1, M2>,..., M>y,},

a contradiction.

We conclude that @ and a, are nonadjacent in Ag=. Similarly, we can obtain that C is an independent set
of Ag~. Let y be an arbitrary element of G* \ C. Without loss of generality, let y € M \ C. Clearly, a; and
y are adjacent in Ag=. Suppose that there exists z € C \ {a} such that y is adjacent to z. If z = a; for some
2 < i =< m,then (z,y) is contained in one of {M;;, M;>,..., M;;, }, and by the intersection property of G, it
follows that M1 N M; is nontrivial, contrary to the hypotheses of M. Similarly, we can show that z # b; for
some 1 <i < n.We conclude, therefore, that y is adjacent to exactly one vertex in C. It follows that C is a perfect
code, as required.

Conversely, assume that A g+ admits a perfect code D. Suppose for a contradiction that G dose not satisfy the
intersection property. In other words, there exist 3 distinct maximal cyclic subgroups M, M», M3 of G such that

My N M| # 1, My 0 M3|#1, M0 M0 Mz| = 1.

If D N M; N M, is trivial, then by Lemma 2.9, there exist m; € M; \ M, and mp € M, \ M; such that
mi,my € D, and hence x € N(m1) N N(my2) for some x € M N M}, a contradiction. We conclude that there
existsu € M N M} suchthatu € D.By Lemma 2.9 again, there exists v € M3 N D such that both u and v belong
to same maximal cyclic subgroup. Take w € M;" N M3 Clearly, w # v, so we deduce w € N(v) N N(u), and this
contradiction completes the proof. O
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A graph T is said to satisfy the cone property if " has a vertex which is adjacent to every vertex except itself. Bera
and Bhuniya [34] posed the question: Characterize all finite non-abelian groups G such that A= satisfies the cone
property. Now we give an answer to the question.

Theorem 2.11. The following are equivalent for any group G with
Mg ={M,M>, ..., M;}.

(i) A~ satisfies the cone property.
(i) N~ M; is nontrivial.
(iii) A= admits a perfect code of size 1.

Proof. First, assume (i), and let x be a vertex with |[N(x)| = |G|—2 in Ag=. Without loss of generality, let x € M.
Choose a generator x» of M. Since x is adjacent to x2, (x, x2) = (x2), which implies x € M. Similarly, we
deduce that x belongs to M; for each 3 <i <. It follows that x € ﬂf=1 M; , proving (ii).

Now assume (ii), so that y € ﬂ§=1 M. Forsome z € G* \ {y}, let z € M; forsome 1 < i < t. Then
v,z € M;, and thus (y, z) is cyclic, and it follows that y and z are adjacent in Ag=. This implies that {y} is a
perfect code of Ag=, and (iii) follows.

Finally, since it is obvious that (iii) implies (i), the proof is complete. O

Next, we classify all finite nilpotent groups G such that Ag+ admits a perfect code of size 1, which extends [34,
Theorems 3.2 and 3.3].

Proposition 2.12. Let G be a nilpotent group. Then A+ admits a perfect code of size 1 if and only if
G x~ an XHOI’me x K,

wheren > 3, m > 1, pisaprime, and both H and K are nilpotent with 2 } |H|and p } |K]|.

Proof. First, assume that A= admits a perfect code {x}. Let g be a prime divisor of |x| and let y be an element of
G with |y| = p. If y ¢ (x), since x and y are adjacent, (x, y) is cyclic, and so (x, y) has two distinct subgroups
of order p, a contradiction. It follows that G has a unique subgroup of order p. Now let P be the unique Sylow
p-subgroup of G. By [35, Theorem 5.4.10], a p-group having a unique subgroup of order p is either cyclic or a
generalized quaternion, so it follows that P is either cyclic or a generalized quaternion. Since G is nilpotent, the
desired result follows.

Conversely, assume that G =~ Qn x H or Zpm x K, wheren > 3, m > 1, p is a prime, and both H and K
are nilpotent with 2 4 |H| and p t |K|. Then G has a unique subgroup P of order 2 or p, and so we conclude that
every maximal cyclic subgroup of G contains P. It follows that the intersection of all maximal cyclic subgroups is
nontrivial. Now the desired result follows from Theorem 2.11. O

2.3 Examples

In this subsection, we give some families of finite groups whose power graphs or enhanced power graphs admit a
perfect code.

Proposition 2.13. If every two maximal cyclic subgroups of G have trivial intersection, then both Ag+ and I'g=
admit a perfect code.

Proof. By Theorem 2.10, A+ admits a perfect code. In the following we prove that T'g+ admits a perfect code.
With reference to (1), let (x;) = M; forall 1 <i <t andletC = {x1,x2,...,x;}. Since M; is maximal cyclic,
C is an independent set of I'g+. Let x be an arbitrary element of G* \ C. Without loss of generality, say x € M.
Clearly, x; and x are adjacent. Since |[M1 N M;| = 1 foreach2 < j <, x is not adjacent to each of C \ {x;}. So
C is a perfect code of '+, as required. O
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A finite group is called a P-group [36] if every nontrivial element of the group has prime order. For example, Z}}
is a P-group for some prime p. Also, it is clear that every two maximal cyclic subgroups of a P-group have trivial
intersection. A finite group is called a CP-group [37] if every nontrivial element of the group has prime power order.
For example, every p-group is a CP-group. Certainly, a P-group is also a CP-group.

By Proposition 2.13 we see that both Az« and Tz« admit a perfect code for each P-group H. What is more,
here we prove that both Ag= and I'g+ admit a perfect code for each CP-group G.

Theorem 2.14. Let G be a CP-group. Then both Ag+ and '+ admit a perfect code.

Proof. For two distinct elements x, y of G*, if x is a power of y, or y is a power of x, then (x, y) is cyclic. Also, if
(x, y) is cyclic, since G is a CP-group, {x, y) is isomorphic to a cyclic group of prime power order, which implies
that one of {x, y} is a power of the other. It follows that A= and '+ are the same, and hence it suffices to prove
A+ admits a perfect code.

As refer to (1), assume that there exist two distinct indices 7, j in {1,...,¢} such that M; N M; is nontrivial.
Letx € M; N M; with |x| = p, where p is a prime. If there exists M; in Mg \ {M;. M;} such that M; N M; is
nontrivial, then x € M;, and so we deduce M; N M; N M, is nontrivial. This implies that G satisfies the intersection
property. It follows from Theorem 2.10 that A g+ admits a perfect code. O

For n > 3, denote by D,,, the dihedral group of order 2x, where
Dsp = {a,b:a" =b*>=e,bab=a"").

It is not hard to see that Mp,, = {({a),(ab), (a®b),...,(a"b)} and |a’h| = 2 foreach 1 < i < n. It follows
that every two maximal cyclic subgroups of D»; have trivial intersection. The following result is immediate by
Proposition 2.13.

Example 2.15. Both Ips and Aps, admit a perfect code.

For the generalized quaternion group Qax, by (3) we have

n—1
V(Fo,,) = {e.x,.... x> yu (| J 'y, "™,

i=0
n—1

E(Tg,,) = E(Ti) U | E(Tiy)-
i=0

The structure of I'p,,, is shown in Figure 1. Now we study the perfect codes of Fox and Ao -

Fig. 1. T'g,,
y zy
zy :L,Qn—ly
»—y
n
T i In—17
Ty T Y
—————o
[
| R 2"y "ty
—

Example 2.16. (i) Foranyn > 2, Tox admits a perfect code if and only if n is a power of 2.
(i) Forany n > 2, Aox, admits a perfect code.
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Proof. (i) If n is a power of 2, then Q4,, is a CP-group, and so Lox admits a perfect code by Theorem 2.14.
Conversely, let C be a perfect code of Lox . Suppose that » is not a power of 2, we work to obtain a contradiction.
With reference to (3), we deduce that

n
Moy, = (), (xp). (2y) @) 2 e () ().
i=1

If x" € C, since x" € (x), C = {x"} by Lemma 2.1, contrary to Theorem 2.2. We conclude that x”” ¢ C.
By Lemma 2.1 again, there exist b,c in C such that b € (xy) and ¢ € (x2y). Since |xy| = |x%y| = 4 and
(xy)? = (x2y)? = x" ¢ C, it follows that x” is adjacent to both b and c. This is a contradiction since C is a
perfect code.

(ii) With reference to (3), x” belongs to each maximal cyclic subgroup of Q4. The desired result follows from
Theorem 2.11. O

3 Total perfect codes

In this section we characterize all finite groups whose power graphs or enhanced power graphs admit a total perfect
code. The following observation follows easily from the definition of a total perfect code.

Observation 3.1. Let I" be a graph. A code C of T" is a total perfect code if and only if the subgraph of T induced
by C is a matching and {N(u) \ C : u € C} is a partition of V(I') \ C.

Theorem 3.2. Suppose that T is a graph containing a vertex x of degree n — 1, where n = |V(I")|. Then T" admits
a total perfect code if and only if T" has a leaf. In particular, C is a total perfect code of T" if and only if C = {a, b}
for some a,b € V(') with |[N(a)| =n —1and |[N(b)| = 1.

Proof. If I' has a leaf y, then by Observation 3.1 {x, y} is a total perfect code, as desired. Now suppose that I" admits
a total perfect code C. Since [N(x)| = n —1, x € C. Also, since the subgraph of I" induced by C is a matching, we
may assume that C = {x, z} for some z € V(I"). It follows that {N(x) \ {z}, N(2) \ {x}} is a partition of V(T") \ C,
and hence N(z) \ {x} = @. This implies that z is a leaf, as required. O

An involution x of G is maximal if the only cyclic subgroup containing x is (x). For example, each involution of
D5, is maximal for some odd number m. We remark that Z,, has a maximal involution if and only if » = 2. The
proof of the following result is straightforward.

Proposition 3.3. The following are equivalent.
(i) T has a leaf.

(if) Ag has a leaf.

(iii) G has a maximal involution.

Since in T'g and Ag, e has degree |G| — 1. The following result is immediate by Theorem 3.2 and Proposition 3.3.

Corollary 3.4. The following are equivalent.
(i) ' admits a total perfect code.

(if) A admits a total perfect code.

(iii) G has a maximal involution.

The exponent of G is the least common multiple of the orders of the elements of G. Next, we characterize all finite
groups G such that I'g+ or Ag+ admits a total perfect code.

Theorem 3.5. The following are equivalent.
(i) T+ admits a total perfect code.
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(ii) G is afinite group of exponent 3.
(iii) A+ admits a total perfect code.

Proof. First, suppose that I'g+ admits a total perfect code C. Let x,y € C with {x,y} € E(T'g=*). Assume
that one of {x, y} has order at least 4, without loss of generality, let |x| > 4. If y # x—!, by Observation 3.1
x~1 e V(I'g+) \ C, and thus we deduce x~1 € N(x) N N(y), a contradiction. It follows that y = x~1. Also, it is
clear x2 ¢ C, and so x2 € N(x) N N(y), a contradiction.

We conclude that both x and y have order at most 3. Observe that |x| = 3 and y = x~!. It follows that every
element of C has order 3 and C is inverse-closed. If V(I'g+) \ C has an element u, then there exists z € C such that
u and z are adjacent, however, u~! and z are adjacent and u—! € C, a contradiction. It follows that VV(I'g+) = C,
and so every nontrivial element of G has order 3, hence (ii) follows.

Now if G is a finite group of exponent 3, then G™* is a total perfect code of I'+. It follows that (i) and (ii) are
equivalent. Similarly, we can conclude that (ii) and (iii) are equivalent. O
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