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Abstract: The power graph of a finite group is the graph whose vertex set is the group, two distinct elements being

adjacent if one is a power of the other. The enhanced power graph of a finite group is the graph whose vertex

set consists of all elements of the group, in which two vertices are adjacent if they generate a cyclic subgroup. In

this paper, we give a complete description of finite groups with enhanced power graphs admitting a perfect code.

In addition, we describe all groups in the following two classes of finite groups: the class of groups with power

graphs admitting a total perfect code, and the class of groups with enhanced power graphs admitting a total perfect

code. Furthermore, we characterize several families of finite groups with power graphs admitting a perfect code, and

several other families of finite groups with power graphs which do not admit perfect codes.
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1 Introduction

Every graph � considered in this paper is finite, simple, and undirected with vertex set V.�/ and edge set E.�/.

A code in � is simply a subset of V.�/. A code C of � is called a perfect code [1] if C is an independent set such

that every vertex in V.�/ n C is adjacent to exactly one vertex in C . A code C is said to be a total perfect code [2]

in � if every vertex of � is adjacent to exactly one vertex in C .

Since the beginning of coding theory in the late 1940s, perfect codes have been important objects of study

in information theory; see the surveys [3, 4] on perfect codes and related definitions in the classical setting. It is

known in [5] that deciding whether a graph has a total perfect code is NP-complete. Beginning with [1], perfect

codes in general graphs have also attracted considerable attention in the community of graph theory (see [6–9]). In

particular, perfect codes in Cayley graphs of groups are especially charming objects of study (see [10–12]). For more

information on coding applications of algebraic constructions, the readers are referred to [13, �9:1 and �9:2].

Graphs associated with groups and other algebraic structures have been actively investigated, since they have

valuable applications (cf. [14, 15]) and are related to automata theory (cf. [16, 17]). The undirected power graph �G

of a finite group G has the vertex set G and two distinct elements are adjacent if one is a power of the other. The

enhanced power graph �G of a finite group G is the graph whose vertex set consists of G, in which two distinct

vertices are adjacent if they generate a cyclic subgroup. The concepts of a power graph and an undirected power
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graph were first introduced by Kelarev and Quinn [18] and Chakrabarty et al. [19], respectively. Since the paper

deals only with undirected graphs, we use the term “power graph" to refer to an undirected power graph. In recent

years, the study of power graphs has been growing (see [19–30]). Also, see [31] for a survey of results and open

questions on power graphs. In order to measure how close the power graph is to the commuting graph [32], Aalipour

et al. [33] introduced the enhanced power graph which lies in between. See [34] for some properties of the enhanced

power graphs.

In this paper, we always use G to denote a finite group with the identity e. Denote by G� the set G n feg. For

a subset S of G, let �GŒS� (resp. �GŒS�) denote the induced subgraph of �G (resp. �G) by S . If the situation is

unambiguous, then we denote �GŒS� (resp. �GŒS�) simply by �S (resp. �S ).

The paper is devoted to studying the perfect codes of the power graph of a finite group. We first give sharp

lower and upper bounds for the size of a subset of G to be a perfect code in �G� and characterizer the groups

achieving the bounds (see Theorem 2.2). We also give several families of groups G such that �G� admits a perfect

code, and several other families of groups G such that �G� does not admit perfect codes. Furthermore, we obtain a

complete characterization of finite groups whose enhanced power graphs admit a perfect code (see Theorem 2.10).

In particular, we characterize the groups G such that �G� admits a perfect code with size 1 (see Theorem 2.11),

which answers a question posed by Bera and Bhuniya [34]. Also, we classify all nilpotent groups G such that �G�

admits a perfect code with size 1 (see Proposition 2.12), which extends [34, Theorems 3.2 and 3.3]. In Sect. 3, we

describe all groups in the following two classes of finite groups: the class of groups with power graphs admitting a

total perfect code (see Corollary 3.4), and the class of groups with enhanced power graphs admitting a total perfect

code (see Theorem 3.5).

2 Perfect codes

We first remark both �G and �G admit a perfect code feg. If G is cyclic, then a generator g of G is adjacent to

every element of G� n fgg in �G� and �G� , and so in this case, both �G� and �G� admit a perfect code fgg.

In the rest of this section, therefore, we always assume that G is noncyclic. We focus on studying the perfect

codes of �G� and �G� . We first give sharp lower and upper bounds for the size of a subset of G to be a perfect code

in �G� , and characterizer the groups achieving the bounds. Next, we give some families of finite groups G such that

�G� admits a perfect code, and give several other families of groups G such that �G� does not admit perfect codes.

Finally, we give a complete characterization of finite groups G such that �G� admits a perfect code.

2.1 Power graphs

The neighborhood of a vertex x in a graph � , denoted by N�.x/, is the set of vertices which have distance one from

x. If the situation is unambiguous, then we denote N�.x/ simply by N.x/. A maximal cyclic subgroup of G is a

cyclic subgroup, which is not a proper subgroup of some proper cyclic subgroup of G. We remark that a finite group

has a unique maximal cyclic subgroup if and only if the group is cyclic of prime power order. Denote by MG the

set of all maximal cyclic subgroups of G. Note that G is always noncyclic. Write

MG D fM1; M2; : : : ; Mt g (1)

where t is a positive integer at least 2.

Lemma 2.1. With reference to (1), if C is a perfect code of �G� , then for any 1 � i � t , there exists precisely one

vertex in C such that it belongs to Mi .

Proof. Let x be a generator of Mi for some 1 � i � t . Suppose that x … C . Since C is a perfect code, there exists

an element a in C such that a is adjacent to x. If hxi � hai, since hxi is maximal cyclic, we have hxi D hai, and

so a 2 Mi . If hai � hxi, then it is clear that a 2 Mi . It follows that there exists at least one vertex in C such that it

belongs to Mi .
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Now assume, to the contrary, that C contains two distinct elements y and z with y; z 2 Mi . Since C is an

independent set, x … C . Therefore, x is adjacent to exactly one vertex of C . Since y; z 2 Mi and hxi D Mi , it

follows that y; z 2 N.x/, a contradiction.

With reference to (1), let MG D
S

1�i<j�t .Mi \Mj /: For each 1 � i � t , write

M ?
i DMi nMG : (2)

The generalized quaternion group of order 4n is defined by

Q4n D hx; y W xn
D y2; x2n

D 1; y�1xy D x�1
i; n � 2: (3)

By verifying (3), y�1 D xny, jxi yj D 4 and .xi y/�1 D x2n�i y for i 2 f1; : : : ; n � 1g. Now we have the

following theorem.

Theorem 2.2. Suppose that �G� admits a perfect code C . With reference to (1),

1 � jC j � t; (4)

the lower bound holds if and only if G Š Q2m where Q2m is the generalized quaternion group of order 2m and

m � 3, and the upper bound holds if and only if there exists a set fx1; : : : ; xt g � G� satisfying the conditions:

.i/ With reference to (2), xi 2M ?
i

for each 1 � i � t ;

.ii/ N.xi / \N.xj / D ; for each two distinct i; j in f1; : : : ; tg;

.iii/
St

iD1 N.xi / D G� n fx1; : : : ; xt g.

Proof. By Lemma 2.1, we have 1 � jC j � t . Clearly, jC j D 1 if and only if there exists an element a in G� such

that N.a/ D G� n fag. Since we are assuming that G is not cyclic, it follows from [21, Proposition 4] that jC j D 1

if and only if G Š Q2m , as required.

Now write D D fx1; : : : ; xt g. Suppose that D satisfies conditions .i/–.iii/. By .iii/, D is an independent set of

�G� . Also, by .ii/ and .iii/, it is easy to see that every vertex in G� nD is adjacent to exactly one vertex of D. This

implies that D is a perfect code of �G� of size t , as required.

Let C D fx1; : : : ; xt g be a perfect code of �G� of size t . With reference to (1), if xi 2 Mj \Ml and j ¤ l

for some i; j; l in f1; : : : ; tg, by the Dirichlet principle, there exist two elements in C such that they both belong to

same maximal cyclic subgroup of G, contrary to Lemma 2.1. We conclude that .i/ holds. Also, since C is a perfect

code, it is clear that C satisfies .ii/ and .iii/.

Now we give a family of groups G such that �G� admits a perfect code C , where jC j satisfies the upper bound

of (4).

Example 2.3. Let G D Zp � Zn
q , where p and q are two distinct primes and n is a positive integer at least 2. Then

�G� admits a perfect code of size qn�1
q�1

. In particular, every perfect code of �G� has size jMG j.

Proof. Clearly, G has a unique subgroup of order p, say P . Let t D qn�1
q�1

. Then it is not hard to see that G has

t maximal cyclic subgroups M1; : : : ; Mt and each of them is isomorphic to Zpq . Furthermore, the intersection of

each two distinct maximal cyclic subgroups is P . Suppose that C is a perfect code of �G� . If there exists x in P �

such that x 2 C , then by Lemma 2.1 jC j D 1, and hence we have a contradiction by Theorem 2.2, since G is neither

cyclic nor generalized quaternion. It follows that if C has an element y 2Mi for some i 2 f1; : : : ; tg, then y 2M ?
i

,

which implies that C has size t by Lemma 2.1.

Now take elements x1; : : : ; xt in
St

iD1 M ?
i

with xi 2 M ?
i

for each i 2 f1; : : : ; tg, jxt j D pq, and jxj j D q

for each 1 � j � t � 1. By Theorem 2.2, it is easy to check that fx1; : : : ; xt g is a perfect code, as required.

The following example shows that, although �G� admits a perfect code, the size of each perfect code of �G� dose

not achieve the upper bound of (4).

Example 2.4. Let G D Zn
2
� Z12, where n is a positive integer at least 2. Then �G� admits a perfect code of size

2nC1 � 1. In particular, �G� does not admit a perfect code of size jMG j.
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Proof. It is evident that G has a unique subgroup P of order 3, and has 2n and 2nC1 � 2 maximal cyclic subgroups

of order 12 and 6, respectively. Moreover, the intersection of each two maximal cyclic subgroups of order 12 has

order 6. Write

MG D fM1; : : : ; M2n ; K1; : : : ; K2nC1�2g;

where jMi j D 12 and jKj j D 6 for all 1 � i � 2n and 1 � j � 2nC1�2,
T2n

iD1 Mi Š Z6 and
T2nC1�2

iD1 Ki D P .

Suppose that C is a perfect code of �G� of size jMG j. By Theorem 2.2, there exist x 2 M1 n M2 and

y 2M2 nM1 such that x; y 2 C . Take a 2M1 \M2 with jaj D 2. It follows that a … C and a 2 N.x/ \N.y/, a

contradiction. We conclude that �G� does not admit perfect codes of size jMG j.

Take x1 in M1, x0 2 K1 and xi 2 Ki for all i 2 f2; : : : ; 2nC1 � 2g, so that jx0j D 6 and jxj j D 2 for each

1 � j � 2nC1 � 2. Then it is easy to check that fx0; x1; : : : ; x2nC1�2g is a perfect code of �G� , as required.

Finally, we remark that many power graphs do not admit perfect codes. In the following we give two families of

examples.

Proposition 2.5. With reference to (1), suppose that G satisfies

Mi Š Z4p;

t\
jD1

Mj Š Z2p

for some odd prime p and all 1 � i � t . Then �G� dose not admit perfect codes.

Proof. Let
Tt

jD1 Mj D P . Suppose for a contradiction that C is a perfect code of �G� . Note that G is not

isomorphic to a generalized quaternion 2-group. It follows from Theorem 2.2 that jC j � 2. Also, by Lemma 2.1

we deduce C \ P � D ;, and so there exist x 2 M1 n P and y 2 M2 n P such that x; y 2 C . We conclude that

jxj; jyj 2 f4p; 4g. Take z in P with jzj D 2. Then z 2 N.x/ \ N.y/, which is a contradiction since C is a perfect

code.

The following result follows from Proposition 3.3.

Example 2.6. Let G D Q8 � Zp for some odd prime p. Then �G� dose not admit perfect codes.

Proposition 2.7. Suppose that G satisfies

MG D fM11; M12; M21; M22; : : : ; Mk1; Mk2g;

where k is a positive integer at least 2,
Tk

iD1 Mi1 Š Zp , Mi1 \Mi2 Š Z2p and Mij Š Z4p for some odd prime

p, all 1 � i � k and all 1 � j � 2. Then �G� does not admit perfect codes.

Proof. It is clear that G has a unique subgroup of order p, say P . Suppose that C is a perfect code of �G� , we

work to obtain a contradiction. Clearly, G is not a generalized quaternion 2-group. By Theorem 2.2, jC j � 2, and

it follows from Lemma 2.1 that P � \ C D ;. Also, Lemma 2.1 implies that there exist x in M11 and y in M12

such that x; y 2 C . If x ¤ y, then x 2 M11 nM12 and y 2 M12 nM11, and so jxj; jyj 2 f4p; 4g, which implies

that for the involution z of M11 \M12, we have z 2 N.x/ \ N.y/, a contradiction. We deduce x D y, and hence

x 2 .M11 \M12/ n P , which implies that jxj D 2 or 2p. Since C is a perfect code, the element of order 4 of M11

is adjacent to x in �G� , and thus jxj D 2. Similarly, considering Mi1 and Mi2 for each 2 � i � k, we conclude

that every element of C is an involution. It follows that there does not exist an element in C such that it is adjacent

to a generator of P , which is a contradiction.

By Proposition 2.7, we have the following example.

Example 2.8. �.Z4�Z12/� dose not admit perfect codes.
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2.2 Enhanced power graphs

In this subsection, we give a complete characterization of finite groups whose enhanced power graphs admit a perfect

code. We begin with the following lemma. Since ��
G

is a subgraph of �G� , the proof of Lemma 2.9 is similar to the

proof of Lemma 2.1.

Lemma 2.9. With reference to (1), if C is a perfect code of �G� , then for any 1 � i � t , there exists precisely one

element in C such that it belongs to Mi .

Suppose that G is a group with the property that each two maximal cyclic subgroups of G have trivial intersection,

or that if
l\

iD1

Mi ¤ feg

for some maximal cyclic subgroups M1; : : : ; Ml of G (here l may be 1), and there exists Mk in MGnfM1; : : : ; Mlg

such that Mk \Mm is nontrivial for some m 2 f1; 2; : : : ; lg, then� l\
iD1

Mi

�
\Mk ¤ feg:

Then G is said to satisfy the intersection property. For example, both the elementary abelian p-group Zn
p and Zp�Zn

q

satisfy the intersection property, where p and q are distinct primes.

Theorem 2.10. �G� admits a perfect code if and only if G satisfies the intersection property.

Proof. First, assume that G satisfies the intersection property. Write

MG D fM11; M12; : : : ; M1l1
; M21; M22; : : : ; M2l2

; : : : ; Mm1; Mm2; : : : ; Mmlm
;

MmC1; MmC2; : : : ; MmCng;

where li � 2 and
Tli

jD1
Mij is nontrivial for each 1 � i � m, and every two of the rest have trivial intersection. For

each 1 � i � m and 1 � k � n, take ai 2
Tli

jD1
M�

ij
and bk 2M�

mCk
. Let C D fa1; a2; : : : ; am; b1; b2; : : : ; bng.

Suppose that a1 and a2 are adjacent in �G� . Then ha1; a2i is cyclic, and so there exists a maximal cyclic

subgroup M of G such that ha1; a2i � M . Since G satisfies the intersection property, a1 must belong to one of

fM11; M12; : : : ; M1l1
g and a2 must belong to one of fM21; M22; : : : ; M2l2

g, which implies that

M 2 fM11; M12; : : : ; M1l1
g \ fM21; M22; : : : ; M2l2

g;

a contradiction.

We conclude that a1 and a2 are nonadjacent in �G� . Similarly, we can obtain that C is an independent set

of �G� . Let y be an arbitrary element of G� n C . Without loss of generality, let y 2 M�
11
n C . Clearly, a1 and

y are adjacent in �G� . Suppose that there exists z 2 C n fa1g such that y is adjacent to z. If z D ai for some

2 � i � m, then hz; yi is contained in one of fMi1; Mi2; : : : ; Mili
g, and by the intersection property of G, it

follows that M11 \Mi1 is nontrivial, contrary to the hypotheses of MG . Similarly, we can show that z ¤ bi for

some 1 � i � n. We conclude, therefore, that y is adjacent to exactly one vertex in C . It follows that C is a perfect

code, as required.

Conversely, assume that �G� admits a perfect code D. Suppose for a contradiction that G dose not satisfy the

intersection property. In other words, there exist 3 distinct maximal cyclic subgroups M1; M2; M3 of G such that

jM1 \M2j ¤ 1; jM1 \M3j ¤ 1; jM1 \M2 \M3j D 1:

If D \ M1 \ M2 is trivial, then by Lemma 2.9, there exist m1 2 M1 n M2 and m2 2 M2 n M1 such that

m1; m2 2 D, and hence x 2 N.m1/ \ N.m2/ for some x 2 M�
1
\M�

2
, a contradiction. We conclude that there

exists u 2M�
1
\M�

2
such that u 2 D. By Lemma 2.9 again, there exists v 2M3\D such that both u and v belong

to same maximal cyclic subgroup. Take w 2M�
1
\M�

3
. Clearly, w ¤ v, so we deduce w 2 N.v/\N.u/, and this

contradiction completes the proof.
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A graph � is said to satisfy the cone property if � has a vertex which is adjacent to every vertex except itself. Bera

and Bhuniya [34] posed the question: Characterize all finite non-abelian groups G such that �G� satisfies the cone

property. Now we give an answer to the question.

Theorem 2.11. The following are equivalent for any group G with

MG D fM1; M2; : : : ; Mt g:

(i) �G� satisfies the cone property.

(ii)
Tt

iD1 Mi is nontrivial.

(iii) �G� admits a perfect code of size 1.

Proof. First, assume (i), and let x be a vertex with jN.x/j D jGj�2 in �G� . Without loss of generality, let x 2M1.

Choose a generator x2 of M2. Since x is adjacent to x2, hx; x2i D hx2i, which implies x 2 M2. Similarly, we

deduce that x belongs to Mi for each 3 � i � t . It follows that x 2
Tt

iD1 Mi , proving (ii).

Now assume (ii), so that y 2
Tt

iD1 M�
i

. For some z 2 G� n fyg, let z 2 Mi for some 1 � i � t . Then

y; z 2 Mi , and thus hy; zi is cyclic, and it follows that y and z are adjacent in �G� . This implies that fyg is a

perfect code of �G� , and (iii) follows.

Finally, since it is obvious that (iii) implies (i), the proof is complete.

Next, we classify all finite nilpotent groups G such that �G� admits a perfect code of size 1, which extends [34,

Theorems 3.2 and 3.3].

Proposition 2.12. Let G be a nilpotent group. Then �G� admits a perfect code of size 1 if and only if

G Š Q2n �H or Zpm �K;

where n � 3, m � 1, p is a prime, and both H and K are nilpotent with 2 − jH j and p − jKj.

Proof. First, assume that �G� admits a perfect code fxg. Let q be a prime divisor of jxj and let y be an element of

G with jyj D p. If y … hxi, since x and y are adjacent, hx; yi is cyclic, and so hx; yi has two distinct subgroups

of order p, a contradiction. It follows that G has a unique subgroup of order p. Now let P be the unique Sylow

p-subgroup of G. By [35, Theorem 5.4.10], a p-group having a unique subgroup of order p is either cyclic or a

generalized quaternion, so it follows that P is either cyclic or a generalized quaternion. Since G is nilpotent, the

desired result follows.

Conversely, assume that G Š Q2n �H or Zpm � K, where n � 3, m � 1, p is a prime, and both H and K

are nilpotent with 2 − jH j and p − jKj. Then G has a unique subgroup P of order 2 or p, and so we conclude that

every maximal cyclic subgroup of G contains P . It follows that the intersection of all maximal cyclic subgroups is

nontrivial. Now the desired result follows from Theorem 2.11.

2.3 Examples

In this subsection, we give some families of finite groups whose power graphs or enhanced power graphs admit a

perfect code.

Proposition 2.13. If every two maximal cyclic subgroups of G have trivial intersection, then both �G� and �G�

admit a perfect code.

Proof. By Theorem 2.10, �G� admits a perfect code. In the following we prove that �G� admits a perfect code.

With reference to (1), let hxi i D Mi for all 1 � i � t and let C D fx1; x2; : : : ; xt g. Since Mi is maximal cyclic,

C is an independent set of �G� . Let x be an arbitrary element of G� n C . Without loss of generality, say x 2 M1.

Clearly, x1 and x are adjacent. Since jM1 \Mj j D 1 for each 2 � j � t , x is not adjacent to each of C n fx1g. So

C is a perfect code of �G� , as required.
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A finite group is called a P-group [36] if every nontrivial element of the group has prime order. For example, Zm
p

is a P -group for some prime p. Also, it is clear that every two maximal cyclic subgroups of a P -group have trivial

intersection. A finite group is called a CP-group [37] if every nontrivial element of the group has prime power order.

For example, every p-group is a CP-group. Certainly, a P -group is also a CP-group.

By Proposition 2.13 we see that both �H� and �H� admit a perfect code for each P -group H . What is more,

here we prove that both �G� and �G� admit a perfect code for each CP-group G.

Theorem 2.14. Let G be a CP-group. Then both �G� and �G� admit a perfect code.

Proof. For two distinct elements x; y of G�, if x is a power of y, or y is a power of x, then hx; yi is cyclic. Also, if

hx; yi is cyclic, since G is a CP-group, hx; yi is isomorphic to a cyclic group of prime power order, which implies

that one of fx; yg is a power of the other. It follows that �G� and �G� are the same, and hence it suffices to prove

�G� admits a perfect code.

As refer to (1), assume that there exist two distinct indices i; j in f1; : : : ; tg such that Mi \Mj is nontrivial.

Let x 2 Mi \Mj with jxj D p, where p is a prime. If there exists Mt in MG n fMi ; Mj g such that Mt \Mi is

nontrivial, then x 2Mt , and so we deduce Mi \Mj \Mt is nontrivial. This implies that G satisfies the intersection

property. It follows from Theorem 2.10 that �G� admits a perfect code.

For n � 3, denote by D2n the dihedral group of order 2n, where

D2n D ha; b W an
D b2

D e; bab D a�1
i:

It is not hard to see that MD2n
D fhai; habi; ha2bi; : : : ; hanbig and jai bj D 2 for each 1 � i � n. It follows

that every two maximal cyclic subgroups of D2n have trivial intersection. The following result is immediate by

Proposition 2.13.

Example 2.15. Both �D�2n
and �D�2n

admit a perfect code.

For the generalized quaternion group Q4n, by (3) we have

V.�Q4n
/ D fe; x; : : : ; x2n�1

g [ .

n�1[
iD0

fxi y; .xi y/�1
g/;

E.�Q4n
/ D E.�hxi/ [

n�1[
iD0

E.�hxi yi/:

The structure of �Q4n
is shown in Figure 1. Now we study the perfect codes of �Q�4n

and �Q�4n
.

Fig. 1. �Q4n

Example 2.16. (i) For any n � 2, �Q�4n
admits a perfect code if and only if n is a power of 2.

(ii) For any n � 2, �Q�4n
admits a perfect code.
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Proof. (i) If n is a power of 2, then Q4n is a CP-group, and so �Q�4n
admits a perfect code by Theorem 2.14.

Conversely, let C be a perfect code of �Q�4n
. Suppose that n is not a power of 2, we work to obtain a contradiction.

With reference to (3), we deduce that

MQ4n
D fhxi; hxyi; hx2yi; : : : ; hxnyig; xn

2

n\
iD1

hxi yi:

If xn 2 C , since xn 2 hxi, C D fxng by Lemma 2.1, contrary to Theorem 2.2. We conclude that xn … C .

By Lemma 2.1 again, there exist b; c in C such that b 2 hxyi and c 2 hx2yi. Since jxyj D jx2yj D 4 and

.xy/2 D .x2y/2 D xn … C , it follows that xn is adjacent to both b and c. This is a contradiction since C is a

perfect code.

(ii) With reference to (3), xn belongs to each maximal cyclic subgroup of Q4n. The desired result follows from

Theorem 2.11.

3 Total perfect codes

In this section we characterize all finite groups whose power graphs or enhanced power graphs admit a total perfect

code. The following observation follows easily from the definition of a total perfect code.

Observation 3.1. Let � be a graph. A code C of � is a total perfect code if and only if the subgraph of � induced

by C is a matching and fN.u/ n C W u 2 C g is a partition of V.�/ n C .

Theorem 3.2. Suppose that � is a graph containing a vertex x of degree n � 1, where n D jV.�/j. Then � admits

a total perfect code if and only if � has a leaf. In particular, C is a total perfect code of � if and only if C D fa; bg

for some a; b 2 V.�/ with jN.a/j D n � 1 and jN.b/j D 1.

Proof. If � has a leaf y, then by Observation 3.1 fx; yg is a total perfect code, as desired. Now suppose that � admits

a total perfect code C . Since jN.x/j D n� 1, x 2 C . Also, since the subgraph of � induced by C is a matching, we

may assume that C D fx; zg for some z 2 V.�/. It follows that fN.x/ n fzg; N.z/ n fxgg is a partition of V.�/ nC ,

and hence N.z/ n fxg D ;. This implies that z is a leaf, as required.

An involution x of G is maximal if the only cyclic subgroup containing x is hxi. For example, each involution of

D2m is maximal for some odd number m. We remark that Zn has a maximal involution if and only if n D 2. The

proof of the following result is straightforward.

Proposition 3.3. The following are equivalent.

(i) �G has a leaf.

(ii) �G has a leaf.

(iii) G has a maximal involution.

Since in �G and �G , e has degree jGj � 1. The following result is immediate by Theorem 3.2 and Proposition 3.3.

Corollary 3.4. The following are equivalent.

(i) �G admits a total perfect code.

(ii) �G admits a total perfect code.

(iii) G has a maximal involution.

The exponent of G is the least common multiple of the orders of the elements of G. Next, we characterize all finite

groups G such that �G� or �G� admits a total perfect code.

Theorem 3.5. The following are equivalent.

(i) �G� admits a total perfect code.
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(ii) G is a finite group of exponent 3.

(iii) �G� admits a total perfect code.

Proof. First, suppose that �G� admits a total perfect code C . Let x; y 2 C with fx; yg 2 E.�G�/. Assume

that one of fx; yg has order at least 4, without loss of generality, let jxj � 4. If y ¤ x�1, by Observation 3.1

x�1 2 V.�G�/ n C , and thus we deduce x�1 2 N.x/ \N.y/, a contradiction. It follows that y D x�1. Also, it is

clear x2 … C , and so x2 2 N.x/ \N.y/, a contradiction.

We conclude that both x and y have order at most 3. Observe that jxj D 3 and y D x�1. It follows that every

element of C has order 3 and C is inverse-closed. If V.�G�/nC has an element u, then there exists z 2 C such that

u and z are adjacent, however, u�1 and z are adjacent and u�1 2 C , a contradiction. It follows that V.�G�/ D C ,

and so every nontrivial element of G has order 3, hence (ii) follows.

Now if G is a finite group of exponent 3, then G� is a total perfect code of �G� . It follows that (i) and (ii) are

equivalent. Similarly, we can conclude that (ii) and (iii) are equivalent.
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