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Abstract: A semi-linear boundary-value problem with nonlinear Robin boundary conditions is considered in a thin
3D aneurysm-type domain that consists of thin curvilinear cylinders that are joined through an aneurysm of diameter
O."/: Using the multi-scale analysis, the asymptotic approximation for the solution is constructed and justified as
the parameter " ! 0: Namely, we derive the limit problem ." D 0/ in the corresponding graph, define other terms
of the asymptotic approximation and prove energetic and uniform pointwise estimates. These estimates allow us to
observe the impact of the aneurysm on some properties of the solution.
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1 Introduction

Investigations of various physical and biological processes in channels, junctions and networks are urgent for
numerous fields of natural sciences (see, e.g., [1–14] and the references therein). Especial interest is the investigation
of the influence of a local geometrical heterogeneity in vessels on the blood flow. This is both an aneurysm
(a pathological extension of an artery like bulge) and a stenosis (a pathological restriction of an artery). The
understanding of the impact of a local geometric irregularity on properties of solutions to boundary-value problems
in such domains can have useful applications in medicine and many areas of applied science. In [15] the authors
classified 12 different aneurysms and proposed computational approach for this study. The aneurysm models have
been meshed with 800,000 – 1,200,000 tetrahedral cells containing three boundary layers. It was showed that the
geometric aneurysm form essentially impacts on the hemodynamics of the blood flow. However, as was noted by the
authors, the question how to model blood flow with sufficient accuracy is still open.

This question was the main motivation for us to develop a new approach (asymptotic one) for the study of
boundary-value problems in domains of such type, since numerical methods do not give good approximations
through the presence of a local geometric irregularity. It is clear that such domains are prototypes of many other
biological and engineering structures, but we prefer to call them thin aneurysm-type domains as more comprehensive
and concise.
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There are several asymptotic approaches to study such problems (see [1, 3, 10–13, 16–18]) with special
assumptions, namely: the uniform boundary conditions on the lateral surfaces of the thin cylinders, the right-hand
sides depend only on the longitudinal variable in the direction of the corresponding cylinder and they are constant
in neighbourhoods of the nodes and vertices, the right-hand sides satisfy especial orthogonality conditions (for
more detail see [19, 20]). These assumptions significantly narrow the class of problems that can be studied by such
methods.

In the present paper, we continue to develop the asymptotic method proposed in [19], where the complete
asymptotic expansion was constructed for the solution to a linear boundary-value problem for the Poisson equation
with a nonuniform Neumann boundary conditions in a thin 2D aneurysm-type domain, and in [20], where similar
results were obtained for the Poisson equation in a thin 3D aneurysm-type domain, which does not need the above
mentioned assumptions. Here, we have adapted this method to semi-linear elliptic problems with nonlinear perturbed
Robin boundary conditions in thin aneurysm-type domains. These results were presented on the conference [21].

1.1 Statement of the problem

The model thin aneurysm-type domain �" consists of three thin curvilinear cylinders

�.i/" D

(
x D .x1; x2; x3/ 2 R3 W "` < xi < 1;

3X
jD1

.1 � ıij /x
2
j < "

2h2i .xi /

)
; i D 1; 2; 3;

that are joined through a domain �.0/" (referred in the sequel "aneurysm"). Here " is a small parameter; ` 2 .0; 1
3
/I

the positive functions fhi g3iD1 belong to the space C 1.Œ0; 1�/ and they are equal to some constants in neighborhoods
at the points x D 0 and xi D 1; i D 1; 2; 3; the symbol ıij is the Kroneker delta, i.e., ıii D 1 and ıij D 0 if i ¤ j:

The aneurysm �
.0/
" (see Fig. 1) is formed by the homothetic transformation with coefficient " from a bounded

domain „.0/ 2 R3, i.e., �.0/" D "„.0/: In addition, we assume that its boundary contains the disks

‡ .i/" ."`/ D

(
x 2 R3 W xi D "`;

3X
jD1

.1 � ıij /x
2
j < "

2h2i ."`/

)
; i D 1; 2; 3;

and denote �.0/" WD @�
.0/
" n

n
‡
.1/
" ."`/ [ ‡

.2/
" ."`/ [ ‡

.3/
" ."`/

o
:

Fig. 1. The aneurysm �
.0/
"
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Thus the model thin aneurysm-type domain �" (see Fig. 2) is the interior of the union
S3
kD0�

.k/
" and we assume

that it has the Lipschitz boundary.
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Fig. 2. The model thin aneurysm-type domain �"
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Remark 1.1. We can consider more general thin aneurysm-type domains with arbitrary orientation of thin cylinders
(their number can be also arbitrary). But to avoid technical and huge calculations and to demonstrate the main steps
of the proposed asymptotic approach we consider a such kind of the thin aneurysm-type domain, when the cylinders
are placed on the coordinate axes.

In �"; we consider the following semi-linear elliptic problem:8̂̂̂<̂
ˆ̂:
��u".x/C �0

�
u".x/

�
D f .x/; x 2 �";

@�u".x/ D 0; x 2 �
.0/
" ;

� @�u".x/ � "�i
�
u".x/

�
D '".x/; x 2 �

.i/
" ; i D 1; 2; 3;

u".x/ D 0; x 2 ‡
.i/
" .1/; i D 1; 2; 3;

(1)

where �.i/" D @�
.i/
" \ fx 2 R3 W "` < xi < 1g; @� is the outward normal derivative. The the given functions

satisfy the following assumptions:

1. the functions f�j g3jD0 belong to the space C 1.R/ and there exist positive constants �� > 0 and �C > 0 such
that

�� � �
0
j .s/ � �C for s 2 R; j D 0; 1; 2; 3I (2)

2. '".x/ WD " '.i/
�
xi ;

xi

"

�
; x 2 �

.i/
" ; i D 1; 2; 3; where

xi D

8̂<̂
:
.x2; x3/; i D 1;

.x1; x3/; i D 2;

.x1; x2/; i D 3;

and '.i/ 2 C
�
�
.i/

O"0

�
; i D 1; 2; 3I

3. the function f 2 C
�
�O"0

�
and its restrictions on the curvilinear cylinders �.i/

O"0
belong to the spaces

C 1
xi

�
�
.i/

O"0

�
; i D 1; 2; 3; respectively.

Here O"0 is a fixed positive number and in what follows all values of the small parameter " belong to the interval
.0; O"0/:
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Recall that a function u" from the Sobolev space H" D
˚
u 2 H1.�"/ W uj‡.i/" .1/

D 0; i D 1; 2; 3
	

is called a
weak solution to the problem (1) if it satisfies the integral identityZ

�"

ru" � rv dx C

Z
�"

�0.u"/v dx C "

3X
iD1

Z
�
.i/
"

�i .u"/v d�x D

Z
�"

f v dx �

3X
iD1

Z
�
.i/
"

'" v d�x (3)

for any function v 2 H":

The aim of the present paper is to
– construct the asymptotic approximation for the solution to the problem (1) as the parameter "! 0I

– derive the corresponding limit problem ." D 0/;
– prove the corresponding asymptotic estimates from which the influence of the aneurysm will be observed.

1.2 Existence and uniqueness of the weak solution

In order to obtain operator statement for the problem (1) we introduce the new norm k � k" in H", which is generated
by the scalar product

.u; v/" D

Z
�"

ru � rv dx; u; v 2 H":

Due to the uniform Dirichlet condition on‡ .i/" .1/; i D 1; 2; 3; the norm k �k" and the ordinary norm k �kH1.�"/
are

uniformly equivalent, i.e., there exist constants C1 > 0 and "0 > 0 such that for all " 2 .0; "0/ and for all u 2 H"
the following estimates hold:

kuk" � kukH1.�"/
� C1kuk": (4)

Remark 1.2. Here and in what follows all constants fCi g and fci g in inequalities are independent of the
parameter ":

In the following we will often use the identities (see [22])

"

Z
�
.i/
"

v2 d�x � C1

 
"2

Z
�
.i/
"

jrxi vj
2 dx C

Z
�
.i/
"

v2 dx

!
; 8v 2 H1.�.i/" /; i D 1; 2; 3I (5)

and inequalities

�� s
2
C �j .0/s � �j .s/s � �C s

2
C �j .0/s 8 s 2 R; j D 0; 1; 2; 3; (6)

that can be deduced from the conditions (2) (see [22]).
Denote by H�" the dual space to H" and define a nonlinear operator A" W H" �! H�" through the relation

˝
A".u/; v

˛
"
D

Z
�"

ru � rv dx C

Z
�"

�0.u/v dx C "

3X
iD1

Z
�
.i/
"

�i .u/v d�x 8u; v 2 H"; (7)

where h�; �i" is the duality pairing of H�" and H".
In this case the integral identity (3) can be rewritten as follows˝

A".u"/; v
˛
"
D
˝
F"; v

˛
"

8v 2 H";

where F" 2 H�" is defined by

˝
F"; v

˛
"
D

Z
�"

f v dx �

3X
iD1

Z
�
.i/
"

'" v d�x 8v 2 H":

To prove the well-posedness result, we verify some properties of the operator A".
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1. With the help of (6) and Cauchy’s inequality with ı .ab � ıa2 C b2

4ı
; a; b > 0/; we obtain˝

A".v/; v
˛
"

�

Z
�"

jrvj2 dx C

Z
�"

�� jvj
2 dx C

Z
�"

�0.0/ jvj dx C "

3X
iD1

0B@ Z
�
.i/
"

�� jvj
2 d�x C

Z
�
.i/
"

�i .0/ jvj d�x

1CA
� kvk2" � ı

0B@j�0.0/j Z
�"

v2 dx C "

3X
iD1

j�i .0/j

Z
�
.i/
"

v2 d�x

1CA � 1

4ı

 
j�0.0/jj�"j C "

3X
iD1

j�i .0/jj�
.i/
" j

!
:

Then using (5), we can select appropriate ı such that˝
A".v/; v

˛
"
� C2kvk

2
" � C3 8v 2 H":

This inequality means that the operator A" is coercive.
2. Let us show that it is monotone. Taking into account (2), we get˝

A".u1/ �A".u2/; u1 � u1
˛
"

�

Z
�"

jru1 � ru2j
2 dx C ��

Z
�"

ju1 � u2j
2 dx C �� "

3X
iD1

Z
�
.i/
"

ju1 � u2j
2 d�x � ku1 � u2k

2
" :

3. The operator A" is hemicontinuous. Ineed, the real valued function

Œ0; 1� 3 � !
˝
A".u1 C �v/; u2

˛
"

is continuous on Œ0; 1� for all fixed u1; u2; v 2 H" due to the continuity of the functions �j ; j D 0; 1; 2; 3 and
Lebesque’s dominated convergence theorem.

4. Let us prove that operator A" is bounded. Using Cauchy-Bunyakovsky integral inequality, (4) and (6), we
deduce the following inequality: ˝

A".u/; v
˛
"

�

Z
�"

ru � rv dx C

Z
�"

�
�C juj C j�0.0/j

�
jvj dx C "

3X
iD1

Z
�
.i/
"

�
�C juj C j�i .0/j

�
jvj d�x

� kuk"kvk" C �C kukL2.�"/kvkL2.�"/ C j�0.0/j
p
j�"j kvkL2.�"/

C"

3X
iD1

�
�C kukL2.�.i/" /

kvk
L2.�

.i/
" /
C j�i .0/j

qˇ̌
�
.i/
"

ˇ̌
kvk

L2.�
.i/
" /

�
Now with the help of (5), we obtain˝

A".u/; v
˛
"
� C5

�
1C kuk"

�
kvk" 8u; v 2 H":

Thus, the existence and uniqueness of the weak solution for every fixed value " follow directly from Theorem 2.1
(see [23, Section 2]).
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2 Formal asymptotic approximation

In this section we assume that the functions f and '" are smooth enough. Following the approach of [19, 20], we
propose ansatzes of the asymptotic approximation for the solution to the problem (1) in the following form:

1. the regular part of the approximation

!
.i/

0
.xi /C "!

.i/

1
.xi /C "

2u
.i/

2

�
xi ;

xi

"

�
C "3u

.i/

3

�
xi ;

xi

"

�
(8)

is located inside each thin cylinder �.i/" and their terms depend both on the corresponding longitudinal variable

xi and so-called “fast variables”
xi

"
.i D 1; 2; 3/I

2. and the inner part of the approximation

N0

�x
"

�
C "N1

�x
"

�
C "2N2

�x
"

�
(9)

is located in a neighborhood of the aneurysm �
.0/
" .

2.1 Regular part

Substituting the representation (8) for each fixed index i 2 f1; 2; 3g into the differential equation of the problem (1),
using Taylor’s formula for the function �0 at s D !.i/

0
.xi / and the function f at the point xi D .0; 0/; and collecting

coefficients at "0, we obtain

��
�i
u
.i/

2
.xi ; �i / D

d2!
.i/

0

dxi 2
.xi / � �0

�
!
.i/

0
.xi /

�
C f

.i/

0
.xi /; (10)

where �i D
xi

"
and f .i/

0
.xi / WD f .x/jxiD.0;0/:

It is easy to calculate the outer unit normal to �.i/" W

�.i/.xi ; �i / D
1q

1C "2jh0
i
.xi /j2

�
� "h0i .xi /; �i .�i /

�
D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�
� "h0

1
.x1/; �

.1/

2
.�1/; �

.1/

3
.�1/

�q
1C "2jh0

1
.x1/j2

; i D 1;�
�
.2/

1
.�2/; �"h

0
2
.x2/; �

.2/

3
.�2/

�q
1C "2jh0

2
.x2/j2

; i D 2;�
�
.3/

1
.�3/; �

.3/

2
.�3/; �"h

0
3
.x3/

�q
1C "2jh0

3
.x3/j2

; i D 3;

where �i .
xi
"
/ is the outward normal for the disk ‡ .i/" .xi / WD f�i 2 R2 W j�i j < hi .xi /g:

Taking the view of the outer unit normal into account and putting the sum (8) into the third relation of the
problem (1), we get with the help of Taylor’s formula for the function �i at s D !.i/

0
.xi / the following relation:

�"@
�i .�i /

u
.i/

2
.xi ; �i / D �h

0
i .xi /"

d!
.i/

0

dxi
.xi /C "

�
�i

�
!
.i/

0
.xi /

�
C '.i/.xi ; �i /

�
: (11)

Relations (10) and (11) form the linear inhomogeneous Neumann boundary-value problem8̂̂̂̂
<̂̂
ˆ̂̂̂:
��

�i
u
.i/

2
.xi ; �i / D

d 2!
.i/

0

dxi 2
.xi / � �0

�
!
.i/

0
.xi /

�
C f

.i/

0
.xi /; �i 2 ‡i .xi /;

�@�
�i
u
.i/

2
.xi ; �i / D � h

0
i
.xi /

d!
.i/

0

dxi
.xi /C �i

�
!
.i/

0
.xi /

�
C '.i/.xi ; �i /; �i 2 @‡i .xi /;

hu
.i/

2
.xi ; �/i‡i .xi / D 0;

(12)
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to define u.i/
2
: Here hu.xi ; �/i‡i .xi / WD

R
‡i .xi /

u.xi ; �i /d�i ; the variable xi is regarded as a parameter from the

interval I .i/" WD fx W xi 2 ."`; 1/; xi D .0; 0/g: We add the third relation in (12) for the uniqueness of a solution.
Writing down the necessary and sufficient conditions for the solvability of the problem (12), we derive the

differential equation

� �
d

dxi

 
h2i .xi /

d!
.i/

0

dxi
.xi /

!
C �h2i .xi /�0

�
!
.i/

0
.xi /

�
C 2�hi .xi /�i

�
!
.i/

0
.xi /

�
D �h2i .xi /f

.i/

0
.xi / �

Z
@‡i .xi /

'.i/.xi ; �i / d l�i ; xi 2 I
.i/
" ; (13)

to define !.i/
0

.i 2 f1; 2; 3g/:

Let !.i/
0

be a solution of the differential equation (13) (the existence will be proved in the subsection 2.2.1).
Thus, there exists a unique solution to the problem (12) for each i 2 f1; 2; 3g:

For determination of the coefficients u.i/
3
; i D 1; 2; 3; we similarly obtain the following problems:8̂̂̂̂

<̂̂
ˆ̂̂̂:
��

�i
u
.i/

3
.xi ; �i / D

d 2!
.i/

1

dxi 2
.xi / � �

0
0

�
!
.i/

0
.xi /

�
!
.i/

1
.xi /C f

.i/

1
.xi ; �i /; �i 2 ‡i .xi /;

�@�
�i
u
.i/

3
.xi ; �i / D � h

0
i
.xi /

d!
.i/

1

dxi
.xi /C �

0
i

�
!
.i/

0
.xi /

�
!
.i/

1
.xi /; �i 2 @‡i .xi /;

hu
.i/

3
.xi ; �/i‡i .xi / D 0;

(14)

for each i 2 f1; 2; 3g: Here

f
.i/

1
.xi ; �i / D

3X
jD1

.1 � ıij / �j
@

@xj
f .x/jxiD.0;0/: (15)

Repeating the previous reasoning, we find that the coefficients f!.i/
1
g3
iD1

have to be solutions to the respective linear
ordinary differential equation

� �
d

dxi

 
h2i .xi /

d!
.i/

1

dxi
.xi /

!
C �h2i .xi /�

0
0

�
!
.i/

0
.xi /

�
!
.i/

1
.xi /C 2�hi .xi /�

0
i

�
!
.i/

0
.xi /

�
!
.i/

1
.xi /

D

Z
‡i .xi /

f
.i/

1
.xi ; �i / d�i ; xi 2 I

.i/
" .i 2 f1; 2; 3g/: (16)

2.2 Inner part

To obtain conditions for the functions f!.i/
k
g; i D 1; 2; 3; k 2 f0; 1g at the point .0; 0; 0/; we introduce the inner

part of the asymptotic approximation (9) in a neighborhood of the aneurysm �
.0/
" . If we pass to the “fast variables”

� D x
"

and tend " to 0; the domain �" is transformed into the unbounded domain „ that is the union of the
domain „.0/ and three semibounded cylinders

„.i/ D f� D .�1; �2; �3/ 2 R3 W ` < �i < C1; j�i j < hi .0/g; i D 1; 2; 3;

i.e., „ is the interior of
S3
iD0„

.i/ (see Fig. 3).
Let us introduce the following notation for parts of the boundary of the domain „:

– �i D f� 2 R3 W ` < �i < C1; j�i j D hi .0/g; i D 1; 2; 3;

– �0 D @„n
�S3

iD1 �i

�
:
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Fig. 3. Domain „

0 

ξ 1

ξ 2

ξ 3

Substituting (9) into the problem (1) and equating coefficients at the same powers of ", we derive the following
relations for Nk ; .k 2 f0; 1; 2g/ W8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

���Nk.�/ D Fk.�/; � 2 „;

@��Nk.�/ D 0; � 2 �0;

�@�
�i
Nk.�/ D B

.i/

k
.�/; � 2 �i ; i D 1; 2; 3;

Nk.�/ � !
.i/

k
.0/C‰

.i/

k
.�/; �i !C1; �i 2 ‡i .0/; i D 1; 2; 3:

(17)

Here
F0 � F1 � 0; F2.�/ D ��0.N0/C f .0/; � 2 „;

B
.i/

0
� B

.i/

1
� 0; B

.i/

2
.�/ D �i .N0/C '

.i/.0; �i /; � 2 �i ; i D 1; 2; 3:

The right hand sides in the differential equation and boundary conditions on f�i g of the problem (17) are obtained
with the help of the Taylor decomposition of the functions f and '.i/ at the points x D 0 and xi D 0; i D 1; 2; 3;
respectively.

The fourth condition in (17) appears by matching the regular and inner asymptotics in a neighborhood of
the aneurysm, namely the asymptotics of the terms fNkg as �i ! C1 have to coincide with the corresponding
asymptotics of the terms f!.i/

k
g as xi D "�i ! C0; i D 1; 2; 3; respectively. Expanding formally each term of the

regular asymptotics in the Taylor series at the points xi D 0 and collecting the coefficients of the same powers of ";
we get

‰
.i/

0
� 0; ‰

.i/

1
.�/ D �i

d!
.i/

0

dxi
.0/; i D 1; 2; 3;

‰
.i/

2
.�/ D

�2
i

2

d2!
.i/

0

dx2
i

.0/C �i
d!

.i/

1

dxi
.0/C u

.i/

2
.0; �i /; i D 1; 2; 3:

(18)

A solution of the problem (17) at k D 1; 2 is sought in the form

Nk.�/ D

3X
iD1

‰
.i/

k
.�/�i .�i /C eNk.�/; (19)

where �i 2 C1.RC/; 0 � �i � 1 and

�i .�i / D

8<: 0; if �i � 1C `;

1; if �i � 2C `;
i D 1; 2; 3:
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Then eNk has to be a solution of the problem8̂̂̂<̂
ˆ̂:
���eNk.�/ D eF k.�/; � 2 „;

@��
eNk.�/ D 0; � 2 �0;

�@��i
eNk.�/ D eB.i/

k
.�/; � 2 �i ; i D 1; 2; 3;

(20)

where eF 1.�/ D 3X
iD1

�
�i
d!

.i/

0

dxi
.0/�00i .�i /C 2

d!
.i/

0

dxi
.0/�0i .�i /

�
;

eF 2.�/ D 3X
iD1

"�
�2
i

2

d2!
.i/

0

dx2
i

.0/C �i
d!

.i/

1

dxi
.0/C u

.i/

2
.0; �i /

�
�00i .�i /C 2

�
�i
d2!

.i/

0

dx2
i

.0/C
d!

.i/

1

dxi
.0/

�
�0i .�i /

#

C

�
1 �

3X
iD1

�i .�i /
�
f .0/ � �0

�
N0
�
C

3X
iD1

�0
�
!
.i/

0
.0/
�
�i .�i /

and

eB.i/
1
� 0; eB.i/

2
.�/ D

�
1 � �i .�i /

�
'.i/.0; �i /C �i

�
N0
�
�

3X
iD1

�i
�
!
.i/

0
.0/
�
�i .�i /; i D 1; 2; 3:

In addition, we demand that eNk satisfies the following stabilization conditions:

eNk.�/! !
.i/

k
.0/ as �i !C1; �i 2 ‡i .0/; i D 1; 2; 3: (21)

The existence of a solution to the problem (20) in the corresponding energetic space can be obtained from general
results about the asymptotic behavior of solutions to elliptic problems in domains with different exits to infinity (see
e.g. [8, 24]). We will use approach proposed in [6, 8].

Let C1
0;�
.„/ be a space of functions infinitely differentiable in „ and finite with respect to � , i.e.,

8 v 2 C10;�.„/ 9R > 0 8 � 2 „ �i � R; i D 1; 2; 3 W v.�/ D 0:

We now define a space H WD
�
C1
0;�
.„/; k � kH

�
, where

kvkH D

vuutZ
„

jrv.�/j2 d� C

Z
„

jv.�/j2j�.�/j2 d� ;

and the weight function � 2 C1.R3/; 0 � � � 1 and

�.�/ D

(
1; if � 2 „.0/;

j�i j
�1; if �i � `C 1; � 2 „

.i/; i D 1; 2; 3:

Definition 2.1. A function eNk from the space H is called a weak solution of the problem (20) if the identityZ
„

reNk � rv d� D Z
„

eF k v d� � 3X
iD1

Z
�i

eB.i/
k
v d�� : (22)

holds for all v 2 H.

Similarly as in [6], we prove the following proposition.
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Proposition 2.2. Let ��1eF k 2 L2.„/; ��1eB.i/k 2 L2.�i /; i D 1; 2; 3: Then there exists a weak solution of
problem (20) if and only if Z

„

eF k d� D 3X
iD1

Z
�i

eB.i/
k
d�� : (23)

This solution is defined up to an additive constant. The additive constant can be chosen to guarantee the existence
and uniqueness of a weak solution of problem (20) with the following differentiable asymptotics:

bNk.�/ D
8̂̂̂<̂
ˆ̂:

O.exp.�
1�1// as �1 !C1;

ı
.2/

k
CO.exp.�
2�2// as �2 !C1;

ı
.3/

k
CO.exp.�
3�3// as �3 !C1;

(24)

where 
i ; i D 1; 2; 3 are positive constants.

The constants ı.2/
k

and ı.3/
k

in (24) are defined as follows:

ı
.i/

k
D

Z
„

Ni eF k.�/ d� � 3X
jD1

Z
�j

Ni eB.j/k .�/ d�� ; i D 2; 3; k 2 f0; 1; 2g; (25)

where N2 and N3 are special solutions to the corresponding homogeneous problem

���N D 0 in „; @�N D 0 on @„; (26)

for the problem (20).

Proposition 2.3. The problem (26) has two linearly independent solutions N2 and N3 that do not belong to the
space H and they have the following differentiable asymptotics:

N2.�/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�
�1

�h2
1
.0/
CO.exp.�
1�1// as �1 !C1;

C
.2/

2
C

�2

�h2
2
.0/
CO.exp.�
2�2// as �2 !C1;

C
.3/

2
CO.exp.�
3�3// as �3 !C1;

(27)

N3.�/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
�1

�h2
1
.0/
CO.exp.�
1�1// as �1 !C1;

C
.2/

3
CO.exp.�
2�2// as �2 !C1;

C
.3/

3
C

�3

�h2
3
.0/
CO.exp.�
3�3// as �3 !C1;

(28)

Any other solution to the homogeneous problem, which has polynomial growth at infinity, can be presented as a
linear combination ˛1 C ˛2N2 C ˛3N3:

Proof. The solution N2 is sought in the form of a sum

N2.�/ D �
�1

�h2
1
.0/

�1.�1/C
�2

�h2
2
.0/

�2.�2/C eN2.�/;
where eN2 2 H and eN2 is the solution to the problem (20) with right-hand sides

eF �2.�/ D
8̂̂̂̂
<̂̂
ˆ̂̂̂:

1

�h2
1
.0/

��
�1 �
0
1
.�1/

�0
C �0

1
.�1/

�
; � 2 „.1/;

�
1

�h2
2
.0/

��
�2 �
0
2
.�2/

�0
C �0

2
.�2/

�
; � 2 „.2/;

0 ; � 2 „.0/ [„.3/:
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It is easy to verify that the solvability condition (23) is satisfied. Thus, by virtue of Proposition 2.1 there exist a
unique solution eN2 2 H that has the asymptotics

eN2.�/ D .1 � ı1j /C .j/2
CO.exp.�
j �j // as �j !C1; j D 1; 2; 3:

Similarly we can prove the existence of the solution N3 with the asymptotics (28).
Obviously, N2 and N3 are linearly independent and any other solution to the homogeneous problem, which has

polynomial growth at infinity, can be presented as ˛1 C ˛2N2 C ˛3N3:

Remark 2.4. To obtain formulas (25) for the constants ı.2/
k

and ı.3/
k
; it is necessary to substitute the functionsbNk ;N2 and bNk ;N3 in the second Green-Ostrogradsky formulaZ

„R

�bN ��N �N��bN � d� D Z
@„R

�bN @��N �N @�� bN � d��
respectively, and then pass to the limit as R!C1: Here „R D „ \ f� W j�i j < R; i D 1; 2; 3g:

2.2.1 Limit problem

The problem (17) at k D 0 is as follows:8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

���N0.�/ D 0; � 2 „;

@��N0.�/ D 0; � 2 �0;

�@��i
N0.�/ D 0; � 2 �i ; i D 1; 2; 3;

N0.�/ �! !
.i/

0
.0/; �i !C1; �i 2 ‡i .0/; i D 1; 2; 3;

(29)

It is easy to verify that ı.2/
0
D ı

.3/

0
D 0 and bN 0 � 0: Thus, this problem has a solution in H if and only if

!
.1/

0
.0/ D !

.2/

0
.0/ D !

.3/

0
.0/I (30)

in this case N0 � eN 0 � !.1/0 .0/:

In the problem (20) at k D 1 the solvability condition (23) reads as follows:

�h21.0/
d!

.1/

0

dx1
.0/C �h22.0/

d!
.2/

0

dx2
.0/C �h23.0/

d!
.3/

0

dx3
.0/ D 0: (31)

Substituting (8) into the fourth condition in (1) and neglecting terms of order of O."/; we arrive at the following
boundary conditions:

!
.i/

0
.1/ D 0; i D 1; 2; 3: (32)

Thus, taking into account (13), (30), (31) and (32), we obtain for f!.i/
0
g3
iD1

the following semi-linear problem:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

��
d

dxi

 
h2
i
.xi /

d!
.i/

0

dxi
.xi /

!
C�h2

i
.xi /�0

�
!
.i/

0
.xi /

�
C 2�hi .xi /�i

�
!
.i/

0
.xi /

�
D bF .i/

0
.xi /; xi 2 Ii ; i D 1; 2; 3;

!
.i/

0
.1/ D 0; i D 1; 2; 3;

!
.1/

0
.0/ D !

.2/

0
.0/ D !

.3/

0
.0/;

3P
iD1

�h2
i
.0/
d!

.i/

0

dxi
.0/ D 0;

(33)
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where Ii WD fx W xi 2 .0; 1/; xi D .0; 0/g and

bF .i/
0
.xi / WD �h

2
i .xi / f .x/

ˇ̌
xiD.0;0/

�

Z
@‡i .xi /

'.i/.xi ; �i / d l�i ; x 2 Ii : (34)

The problem (33) is called limit problem for problem (1).
For functions

e�.x/ D
8̂<̂
:
�.1/.x1/; if x1 2 I1;
�.2/.x2/; if x2 2 I2;
�.3/.x3/; if x3 2 I3;

defined on the graph I1 [ I2 [ I3; we introduce the Sobolev space

H0 WD
ne� W �.i/ 2 H1.Ii /; �.i/.1/ D 0; i D 1; 2; 3; and �.1/.0/ D �.2/.0/ D �.3/.0/

o
with the scalar product

.e�;e /0 WD 3X
iD1

�

1Z
0

h2i .xi /
d�.i/

dxi

d .i/

dxi
dxi ; e�; e 2 H0:

Definition 2.5. A function e! 2 H0 is called a weak solution to the problem (33) if it satisfies the integral identity

.e!;e /0 C 3X
iD1

0@� 1Z
0

h2i .xi /�0.!
.i/.xi // 

.i/.xi / dxi C 2�

1Z
0

hi .xi /�i .!
.i/.xi // 

.i/.xi / dxi

1A
D

3X
iD1

1Z
0

bF .i/
0
.xi /  

.i/.xi / dxi 8e 2 H0: (35)

Similarly as was done in Section 1.2, the integral identity (35) can be rewritten as follows˝
A0.e!/;e ˛0 D ˝F0;e ˛0 8e 2 H0: (36)

where the nonlinear operator A0 W H0 �! H�
0

is defined through the relation

˝
A0.�.i//;  .i/

˛
0
D .e�;e /0 C 3X

iD1

0@� 1Z
0

h2i �0.�
.i// .i/ dxi C 2�

1Z
0

hi�i .�
.i// .i/ dxi

1A 8e�;e 2 H0;

and F0 2 H�
0

is defined by ˝
F0;e ˛0 D 3X

iD1

1Z
0

bF .i/
0
 .i/ dxi 8e 2 H0;

where h�; �i0 is the duality pairing of the dual space H�
0

and H0.
Using (2) and (6), we can prove that the operator A0 is bounded, strongly monotone, hemicontinuous and

coercive. As a result, the existence and uniqueness of the weak solution to the problem (33) follow directly from
Theorem 2.1 (see [23, Section 2]).

2.2.2 Problem for f!1g

Let us verify the solvability condition (23) for the problem (20) at k D 2. Knowing that N0 � !
.1/

0
.0/ and taking

into account the third relation in problem (12), the equality (23) can be re-written as follows:

3X
iD1

"
�h2i .0/

`C2Z
`C1

�
�i
d2!

.i/

0

dx2
i

.0/C
d!

.i/

1

dxi
.0/

�
�0i .�i / d�i
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C

`C2Z
`

.1 � �i .�i //

Z
‡i .0/

�
f .0/ � �0

�
!
.i/

0
.0/
��
d�id�i

�

`C2Z
`

.1 � �i .�i //

Z
@‡i .0/

�
'.i/.0; �i /C �i

�
!
.i/

0
.0/
��
dl
�i
d�i

#

C

Z
„.0/

�
f .0/ � �0

�
!
.i/

0
.0/
��
d� D 0:

Whence, integrating by parts in the first integrals with regard to (13), we obtain the following relations for f!.i/
1
g W

3X
iD1

�h2i .0/
d!

.i/

1

dxi
.0/ D d�1 ; (37)

where

d�1 D `

3X
iD1

0B@�h2i .0/ �f .0/ � �0�!.i/0 .0/
��
� 2�hi .0/ �i

�
!
.i/

0
.0/
�
�

Z
@‡i .0/

'.i/.0; �i / d l�i

1CA
�
ˇ̌
„.0/

ˇ̌ �
f .0/ � �0

�
!
.i/

0
.0/
��
: (38)

Hence, if the functions f!.i/
1
g3
iD1

satisfy (37), then there exists a weak solution eN 2 of the problem (20). According
to Proposition 2.2, it can be chosen in a unique way to guarantee the asymptotics (24).

It remains to satisfy the stabilization conditions (21) at k D 1. For this, we represent a weak solution of the
problem (20) in the following form: eN 1 D !.1/1 .0/C bN 1:
Taking into account the asymptotics (24), we have to put

!
.1/

1
.0/ D !

.2/

1
.0/ � ı

.2/

1
D !

.3/

1
.0/ � ı

.3/

1
: (39)

As a result, we get the solution of the problem (17) with the following asymptotics:

N1.�/ D !
.i/

1
.0/C‰

.i/

1
.�/CO.exp.�
i�i // as �i !C1; i D 1; 2; 3: (40)

Let us denote by
G1.�/ WD !

.i/

1
.0/C‰

.i/

1
.�/; � 2 „.i/; i D 1; 2; 3:

Remark 2.6. Due to (40), the function N1 �G1 is exponentially decrease as �i !C1; i D 1; 2; 3:

Relations (39) and (37) are the first and second transmission conditions for f!.i/
1
g3
iD1

at x D 0: Thus, the coefficients
f!
.1/

1
; !

.2/

1
; !

.3/

1
g are determined from the linear problem8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

��
d

dxi

 
h2
i
.xi /

d!
.i/

1

dxi
.xi /

!
C�h2

i
.xi /�

0
0

�
!
.i/

0
.xi /

�
!
.i/

1
.xi /

C2�hi .xi /�
0
i

�
!
.i/

0
.xi /

�
!
.i/

1
.xi / D bF .i/

1
.xi /; xi 2 Ii ; i D 1; 2; 3;

!
.i/

1
.1/ D 0; i D 1; 2; 3;

!
.1/

1
.0/ D !

.2/

1
.0/ � ı

.2/

k
D !

.3/

1
.0/ � ı

.3/

k
;

3P
iD1

�h2
i
.0/
d!

.i/

1

dxi
.0/ D d�

1
;

(41)
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where bF .i/
1
.xi / D

Z
‡i .xi /

f
.i/

1
.xi ; �i / d�i ; x 2 Ii ; i D 1; 2; 3:

The constants ı.2/
1

and ı.3/
1

are uniquely determined (see Remark 2.4) by formula

ı
.i/

1
D

Z
„

Ni

3X
jD1

�
�j
d!

.j/

0

dxj
.0/�00j .�j /C 2

d!
.j/

0

dxj
.0/�0j .�j /

�
d�; i D 2; 3: (42)

With the help of the substitutions

�
.1/

1
.x1/ D !

.1/

1
.x1/; �

.2/

1
.x2/ D !

.2/

1
.x2/ � ı

.2/

1
.1 � x2/; �

.3/

1
.x3/ D !

.3/

1
.x3/ � ı

.3/

1
.1 � x3/;

we reduce the problem (41) to the respective integral identity in the space H0 and then the existence and uniqueness
of a solution of this identity (and hence the problem (41)) follows from the Riesz representation theorem.

3 Justification

With the help of the coefficients f!.i/
0
g; f!

.i/

1
g; N1 and smooth cut-off functions defined by formulas

�
.i/

`
.xi / D

(
1; if xi � 3 `;
0; if xi � 2 `;

i D 1; 2; 3; (43)

we construct the following asymptotic approximation:

U .1/" .x/ D

3X
iD1

�
.i/

`

� xi
"˛

� �
!
.i/

0
.xi /C " !

.i/

1
.xi /

�
C

 
1 �

3X
iD1

�
.i/

`

� xi
"˛

�!�
!
.1/

0
.0/C "N1

�x
"

��
; x 2 �";

(44)
where ˛ is a fixed number from the interval .2

3
; 1/:

Theorem 3.1. Let assumptions made in the statement of the problem .1/ be satisfied. Then the sum .44/ is the
asymptotic approximation for the solution u" to the boundary-value problem .1/ in the Sobolev space H1.�"/; i.e.,

9C0 > 0 9 "0 > 0 8 " 2 .0; "0/ W ku" � U
.1/
" kH1.�"/

� C0 "
1C˛2 : (45)

Proof. Substituting U .0/" in the equations and the boundary conditions of problem (1), we find8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

��U
.1/
" C �0

�
U
.1/
"

�
� f D bR" in �";

�@�U
.1/
" � "�i

�
U
.1/
"

�
� '" D MR";.i/ on �.i/" ; i D 1; 2; 3;

U
.1/
" D 0 on ‡ .i/" .1/; i D 1; 2; 3;

@�U
.1/
" D 0 on �.0/" ;

(46)

where

bR".x/ D � 3X
iD1

 
2"�˛

d�
.i/

`

d�i
.�i /

ˇ̌̌̌
�iD

xi
"˛

�
d!

.i/

0

dxi
.xi /�

d!
.i/

0

dxi
.0/C "

d!
.i/

1

dxi
.xi /�

�@N1
@�i

.�/�
@G1

@�i
.�/
�ˇ̌̌
�D x"

�
C "�2˛

d2�
.i/

`

d�2
i

.�i /

ˇ̌̌̌
�iD

xi
"˛

�
!
.i/

0
.xi / � !

.i/

0
.0/ � xi

d!
.i/

0

dxi
.0/C "!

.i/

1
.xi / � "!

.i/

1
.0/ � "N1

�x
"

�
C "G1

�x
"

��
C �

.i/

`

� xi
"˛

��d2!.i/
0

dx2
i

.xi /C "
d2!

.i/

1

dx2
i

.xi /

�!
C �0

�
U .1/" .x/

�
� f .x/; (47)
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and

MR";.i/.x/ D
"h0
i
.xi /q

1C "2jh0
i
.xi /j2

�
.i/

`

� xi
"˛

� d!.i/
0

dxi
.xi /C "

d!
.i/

1

dxi
.xi /

!
� "�i

�
U .1/" .x/

�
� '".x/: (48)

From (46) we derive the following integral relation:Z
�"

rU .1/" � rv dx C

Z
�"

�0.U
.1/
" /v dx C "

3X
iD1

Z
�
.i/
"

�i .U
.1/
" /v d�x

�

Z
�"

f v dx C

3X
iD1

Z
�
.i/
"

'" v d�x D R".v/ 8v 2 H"; (49)

where

R".v/ D

Z
�"

bR" v dx � 3X
iD1

Z
�
.i/
"

MR";.i/ v d�x :

From (12) and (14) we deduce that integral identitiesZ
‡i .xi /

d2!
.i/

0

dx2
i

� d�i D

Z
‡i .xi /

r
�i
u
.i/

2
� r
�i
� d�i �

Z
@‡i .xi /

h0i
d!

.i/

0

dxi
� dl

�i

C

Z
‡i .xi /

�0
�
!
.i/

0

�
� d�i C

Z
@‡i .xi /

�i
�
!
.i/

0

�
� dl

�i
�

Z
‡i .xi /

f
.i/

0
� d�i C

Z
@‡i .xi /

'.i/� dl
�i

(50)

and Z
‡i .xi /

d2!
.i/

1

dx2
i

� d�i D

Z
‡i .xi /

r
�i
u
.i/

3
� r
�i
� d�i �

Z
@‡i .xi /

h0i
d!

.i/

1

dxi
� dl

�i

C

Z
‡i .xi /

�00
�
!
.i/

0

�
!
.i/

1
� d�i C

Z
@‡i .xi /

�0i
�
!
.i/

0

�
!
.i/

1
� dl

�i
�

Z
‡i .xi /

f
.i/

1
� d�i (51)

hold for all � 2 H1.‡i .xi // and for all xi 2 I
.i/
" ; i D 1; 2; 3:

Using (50) and (51), we rewrite R" in the form

R".v/ D

10X
jD1

R";j .v/;

where

R";1.v/ D

Z
�"

 
�0
�
U .1/" .x/

�
�

3X
iD1

�
.i/

`

� xi
"˛

� �
�0
�
!
.i/

0
.xi /

�
C "�00

�
!
.i/

0
.xi /

�
!
.i/

1
.xi /

�!
v.x/ dx;

R";2.v/ D "

3X
iD1

Z
�
.i/
"

�
�i
�
U .1/" .x/

�
� �

.i/

`

� xi
"˛

� �
�i
�
!
.i/

0
.xi /

�
C "�0i

�
!
.i/

0
.xi /

�
!
.i/

1
.xi /

��
v.x/ d�x ;

R";3.v/ D �

Z
�"

 
f .x/ �

3X
iD1

�
.i/

`

� xi
"˛

��
f
.i/

0
.xi /C "f

.i/

1

�
xi ;

xi

"

��!
v.x/ dx;

R";4.v/ D

3X
iD1

Z
�
.i/
"

�
1 � �

.i/

`

� xi
"˛

��
'".x/ v.x/ d�x ;
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R";5.v/ D "

3X
iD1

Z
�
.i/
"

h0i .xi /

 
d!

.i/

0

dxi
.xi /C "

d!
.i/

1

dxi
.xi /

!0B@1 � 1q
1C "2jh0

i
.xi /j2

1CA�.i/` � xi
"˛

�
v.x/ d�x ;

R";6.v/ D �2"
�˛

3X
iD1

Z
�"

d�
.i/

`

d�i
.�i /

ˇ̌̌̌
�iD

xi
"˛

�
d!

.i/

0

dxi
.xi / �

d!
.i/

0

dxi
.0/C "

d!
.i/

1

dxi
.xi /

�
v.x/ dx;

R";7.v/ D �"
�2˛

3X
iD1

Z
�"

d2�
.i/

`

d�2
i

.�i /

ˇ̌̌̌
�iD

xi
"˛

�
!
.i/

0
.xi /�!

.i/

0
.0/�xi

d!
.i/

0

dxi
.0/C "!

.i/

1
.xi /� "!

.i/

1
.0/

�
v.x/ dx;

R";8.v/ D �"
2

3X
iD1

Z
I
.i/
"

Z
‡i .xi /

�
.i/

`

� xi
"˛

�
r
�i
u
.i/

2
.xi ; �i / � r�i v.x/ d�i dxi ;

R";9.v/ D �"
3

3X
iD1

Z
I
.i/
"

Z
‡i .xi /

�
.i/

`

� xi
"˛

�
r
�i
u
.i/

3
.xi ; �i / � r�i v.x/ d�i dxi ;

R";10.v/ D �

3X
iD1

Z
�"

 
2"�˛

d�
.i/

`

d�i
.�i /

�
@N1

@�i
.�/ �

@G1

@�i
.�/

�

C "1�2˛
d2�

.i/

`

d�2
i

.�i /
�
N1.�/ �G1.�/

�!ˇ̌̌̌ˇ
�iD

xi
"˛
; �D x"

v.x/ dx:

Let us estimate the value R": Using (5) and (6), we deduce the following estimates:

jR";1.v/j � LC

vuutj„.0/j C 3�` 3X
iD1

h2
i
.0/ "1C

˛
2 kvkL2.�"/; (52)

jR";j .v/j � LC

3X
iD1

p
6�`hi .0/ "

1C˛2 kvkH1.�"/
; j D 2; 4; (53)

jR";3.v/j � LC

0@ 3X
iD1

r
� max
xi2Ii

h2
i
.xi / "

2
C

vuutj„.0/j C 2�` 3X
iD1

h2
i
.0/ "1C

˛
2

1A kvkL2.�"/; (54)

jR";5.v/j � LC

3X
iD1

r
2� max

xi2Ii

hi .xi / "
3
kvkH1.�"/

; (55)

jR";j .v/j � LC

3X
iD1

q
�`h2

i
.0/ "1C

˛
2 kvkL2.�"/; j D 6; 7; (56)

jR";8.v/j � LC"
2
krxvkL2.�"/; jR";9.v/j � LC"

3
krxvkL2.�"/: (57)

Due to the exponential decreasing of functionN1�G1 (see Remark 2.6) and the fact that the support of the derivative
of �.i/

`
belongs to the set fxi W 2`"˛ � xi � 3`"˛g; we arrive at

jR";10.v/j � LC

3X
iD1

q
�`h2

i
.0/ "1�

˛
2 exp

�
�

2`

"1�˛
min

iD1;2;3

i

�
kvkL2.�"/: (58)

Subtracting the integral identity .3/ from .49/, we obtain
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Z
�"

r

�
U .1/" � u"

�
� rv dx C

Z
�"

�
�0.U

.1/
" / � �0.u"/

�
v dx

C "

3X
iD1

Z
�
.i/
"

�
�i .U

.1/
" / � �i .u"/

�
v d�x D R".v/ 8v 2 H": (59)

Now set v D U .1/" � u" in (59). Then, taking into account (2) and (52)–(58), we arrive at the inequalityZ
�"

ˇ̌̌
r

�
U .1/" � u"

�ˇ̌̌2
dx � C"1C

˛
2




U .1/" � u"





H1.�"/

; (60)

whence thanks to (4) it follows (45).

Corollary 3.2. The differences between the solution u" of problem .1/ and the sum

U .0/" .x/ D

3X
iD1

�
.i/

`

� xi
"˛

�
!
.i/

0
.xi /C

 
1 �

3X
iD1

�
.i/

`

� xi
"˛

�!
!
.1/

0
.0/; x 2 �"

admit the following asymptotic estimates:

ku" � U
.0/
" kH1.�"/

� eC 0 "1C˛2 ; ku" � U
.0/
" kL2.�"/ �

eC 0 "1C˛2 ; (61)

where ˛ is a fixed number from the interval .2
3
; 1/:

In thin cylinders �.i/";˛ WD �
.i/
" \

˚
x 2 R3 W xi 2 I .i/";˛ WD .3`"˛; 1/

	
; i D 1; 2; 3; the following estimates

hold:
ku" � !

.i/

0
k
H1.�

.i/
";˛/
� eC 1 "1C˛2 ; i D 1; 2; 3; (62)

where f!.i/
0
g3
iD1

is the solution of the limit problem .33/:

In the neighbourhood �.0/
";`
WD �" \

˚
x W xi < 2`"; i D 1; 2; 3

	
of the aneurysm �

.0/
" ; we get estimates

krxu" � r� N1kL2.�.0/
";`
/
� ku" � !

.i/

0
.0/ � "N1kH1.�

.0/

";`
/
� eC 4 "1C˛2 ; (63)

Proof. Denote by �.i/
`;˛;"

.�/ WD �
.i/

`
. �
"˛
/ (the function �.i/

`
is determined in (43)). Using the smoothness of the

functions f!.i/
1
g and the exponential decay of the functions fN1 � G1g; i D 1; 2; 3; at infinity, we deduce the

inequalities (61) from estimate (45):


u" � U .0/" 



H1.�"/

�




u" � U .1/" 



H1.�"/

C "






 3X
iD1

�
.i/

`;˛;"
!
.i/

1
C

�
1 �

3X
iD1

�
.i/

`;˛;"

�
N1







H1.�"/

� C1 "
1C˛2 C "

3X
iD1





 ��.i/`;˛;"!.i/1 C �1 � �.i/`;˛;"�N1� 




H1.�

.i/
" /

C " kN1kH1.�
.0/
" /

� C1 "
1C˛2 C

3X
iD1





�1 � �.i/`;˛;"� xi d!.i/0dxi .0/





H1.�

.i/
" /

C "

3X
iD1





�1 � �.i/`;˛;"� �!.i/1 .0/ � !
.i/

1

�




H1.�

.i/
" /

C"

3X
iD1




!.i/1 



H1.�

.i/
" /
C "

3X
iD1




 �1 � �.i/`;˛;"� .N1 �G1/



H1.�

.i/
" /
C "

3
2 kN1kH1.„.0// �

eC 0 "1C˛2 :
With the help of estimate (45), we deduce


u" � !.i/0 




H1.�
.i/
";˛/
�




u" � U .1/" 



H1.�"/

C "



!.i/1 




H1.�
.i/
";˛/
� eC 2 "1C˛2 ;

whence we get (62).
The energetic estimate (63) in a neighbourhood of the aneurysm �

.0/
" follows directly from (45).
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Using the Cauchy-Buniakovskii-Schwarz inequality and the continuously embedding of the space H1.I .i/";˛/ in

C
�
I
.i/
";˛

�
; from (62) we get the following corollary.

Corollary 3.3. If hi .xi / � hi � const; .i D 1; 2; 3/; then

kE.i/" .u"/ � !
.i/

0
k
H1.I

.i/
";˛/
� eC 2 "˛2 ; (64)

max
xi2I

.i/
";˛

ˇ̌̌
E.i/" .u"/.xi / � !

.i/

0
.xi /

ˇ̌̌
� eC 3 "˛2 ; i D 1; 2; 3; (65)

where �
E.i/" u"

�
.xi / D

1

�"2 h2
i

Z
‡
.i/
" .0/

u".x/ dxi ; i D 1; 2; 3:

4 Conclusions

1. An important problem of existing multi-scale methods is their stability and accuracy. The proof of the error
estimate between the constructed approximation and the exact solution is a general principle that has been applied
to the analysis of the efficiency of a multi-scale method. In our paper, we have done this for the solution to the
problem (1).

The results of Theorem 3.1 and Corollary 3.2 showed the possibility to replace the complex boundary-value
problem (1) with the corresponding one-dimensional boundary-value problem (33) in the graph I D [3

iD1
Ii with

sufficient accuracy measured by the parameter " characterizing the thickness and the local geometrical irregularity.
In this regard, the uniform pointwise estimates (65), which are important for applied problems, also confirm this
conclusion.

2. In [16], the authors considered the boundary-value problem8̂<̂
:
�u".x/ D f .x1/ in Q";
@�u".x/ D 0 on the lateral side of Q";
u".x/ D ˙t as x1 D ˙a;

where Q" is a thin 2D rod with a small local geometric irregularity in the middle.
The energetic estimate (61) partly confirms the first formal result of [16] (see p. 296) that the local geometric

irregularity of the analyzed structure does not significantly affect the global-level properties of the framework, which
are described by the limit problem (33) and its solution f!.i/

0
g3
iD1

(the first terms of the asymptotics). But thanks
to estimates (45) and (63) it has become possible to identify the impact of the geometric irregularity and material
characteristics of the aneurysm on the global level through the second terms f!.i/

1
g3
iD1

of the regular asymptotics
(8). They depend on the constants d�

1
; ı
.2/

1
and ı.3/

1
that take into account all those factors (see (38) and (42)). This

conclusion does not coincide with the second main result of [16] (see p. 296) that “the joints of normal type manifest
themselves on the local level only”.

In addition, in [16] the authors stated that the main idea of their approach “is to use a local perturbation corrector
of the form "N.x="/du0

dx1
with the condition that the function N.y/ is localized near the joint ”, i.e., N.y/ ! 0 as

jyj ! C1; and the main assumption of this approach is that ryN 2 L1.Q1/:
As shown the coefficients fNkg of the inner asymptotics (9) behave as polynomials at infinity and do not

decrease exponentially (see (40)). Therefore, they influence directly the terms of the regular asymptotics beginning
with the second terms. Thus, the main assumption made in [16] is not correct.

3. From the first estimate in (61) it follows that the gradient ru" is equivalent to fd!
.i/
0

dxi
g3
iD1

in the L2-norm over

whole junction�" as "! 0: Obviously, this estimate is not informative in the neighbourhood�.0/
";`

of the aneurysm

�
.0/
" :
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Thanks to estimates (45) and (63), we get the approximation of the gradient (flux) of the solution both in the
curvilinear cylinders �.i/";˛; i D 1; 2; 3:

ru".x/ �
d!

.i/

0

dxi
.xi /C "

d!
.i/

1

dxi
.xi / as "! 0

and in the neighbourhood �.0/
";`

of the aneurysm:

ru".x/ � r�
�
N1.�/

�ˇ̌̌
�D x"

as "! 0:

4. We hope that this asymptotic approach can be applied to the study of the blood flow in vessels with a local
geometric heterogeneity what we are going to do in our further studies. Nevertheless, the results obtained in this
article can be considered as the first steps in this direction, since it is known that for the incompressible flow it is
possible in some cases to couple pressure and velocity through the Poisson equation .�0 � 0/ for pressure. Also
the pressure Poisson equation with Neumann boundary conditions is encountered in the time-discretization of the
incompressible Navier-Stokes equations.
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