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Abstract: Let (M3, g) be an almost Kenmotsu 3-manifold such that the Reeb vector field is an eigenvector field
of the Ricci operator. In this paper, we prove that if g represents a Ricci soliton whose potential vector field is
orthogonal to the Reeb vector field, then M 3 is locally isometric to either the hyperbolic space H3(—1) or a non-
unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu structure. In particular, when
g represents a gradient Ricci soliton whose potential vector field is orthogonal to the Reeb vector field, then M3 is
locally isometric to either H3(—1) or H?(—4) x R.
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1 Introduction

Boyer and Galicki [1] proved that a compact Einstein K-contact manifold is Sasakian. Such result can be regarded
as an odd-dimensional analog of the well known Goldberg’s conjecture which says that a compact Einstein almost
Kihler manifold is Kéhler. Since then many authors started to study the generalization of Boyer-Galicki’s result from
various points of view. One of the most attractive methods to extend Boyer-Galicki’s result is weakening Einstein
condition to a Ricci soliton.

In this paper, by a Ricci soliton we mean a Riemannian manifold (M, g) whose Ricci tensor Ric satisfies

1
Eﬁvg—i—Ric—i—wg:O, (1)

where V is a tangent vector field called the potential vector field, w is a constant called the soliton constant
and L is the Lie differentiation. A Ricci soliton is a self-similar solution of the well known Ricci flow equation
%g(t) = —2Ric(g(t)), up to diffeomorphisms and scalings. Usually, a Ricci soliton is said to be shrinking, steady
and expanding according with w is negative, zero and positive respectively. In particular, if the potential vector field
is the gradient of a smooth function — f on M, then (1) becomes

VV f = Ric + wg (2)

and in this case a Ricci soliton is said to be a gradient Ricci soliton and f is called a potential function. It is known
that a compact Ricci soliton is always a gradient Ricci soliton. In (1) or (2), when the potential vector field vanishes
or is Killing, then the soliton becomes an Einstein metric and in this case the soliton is said to be trivial.

Almost contact metric manifolds can be viewed as an odd-dimensional version of almost Hermitian manifolds
(see [2]). Almost Kenmotsu manifolds, viewed as a special class of almost contact metric manifolds, have recently
been increasing interest in contact geometry. For the studies of Ricci solitons on contact metric manifolds, we refer
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the reader to [3-5]. The study of Ricci solitons on Kenmotsu geometry was initiated by Ghosh in [6] in which the
author proved that a Kenmotsu 3-manifold admitting a Ricci soliton is of constant sectional curvature —1. Later, such
result was generalized by Ghosh, in [7], to an n-Einstein Kenmotsu manifold of dimension > 3. Cho in [8] proved
that a Kenmotsu 3-manifold admitting a Ricci soliton with unit potential vector field orthogonal to £ is of constant
sectional curvature —1. This in fact is a special case of Ghosh’s main result in [6].

Recently, the study of Ricci solitons on almost Kenmotsu manifolds was started by the present author and Liu
in [9]. In this paper, we extend Ghosh’s result (see [6]) to n-Einstein almost Kenmotsu 3-manifolds. Obviously,
all Kenmotsu-Ricci solitons mentioned above are trivial. If the metric g of a Riemannian manifold M satisfies (2)
for a smooth function w, then (M, g) is called a gradient Ricci almost soliton. Gradient Ricci almost solitons on
two classes of almost Kenmotsu manifolds were considered by the present author in [10]. It was proved that a
non-Kenmotsu (k, ;t)’-almost Kenmotsu manifold admitting a gradient Ricci almost soliton is locally isometric to
H"+1(—4) x R”. To my best knowledge, such product is the first nontrivial almost Kenmotsu-Ricci soliton.

In this paper, we continue the study of Ricci solitons on an almost Kenmotsu 3-manifold (M3, ¢, £, 1, g). Firstly,
we show that there exists no Ricci soliton on a Kenmotsu 3-manifold such that the potential vector field is pointwise
colinear with the Reeb vector field. Also, we prove that there exists no Ricci soliton on an almost Kenmotsu 3-
manifold such that the potential vector field is a constant multiple of &. This leads us to consider a potential vector
field V orthogonal to £. We prove that when M3 is an almost Kenmotsu 3-manifold with £ an eigenvector field of
the Ricci operator admitting a gradient Ricci soliton (g, V), then the manifold is locally isometric to either H3(—1)
or H?(—4) x R.

Generalizing the above result, we show that an almost Kenmotsu 3-manifold with £ an eigenvector field of the
Ricci operator admitting a Ricci soliton (g, V) is locally isometric to either H3(—1) or a non-unimodular Lie group
(whose Lie algebra is given in Theorem 3.6). Our main results mentioned above are natural generalizations of those
in [6] and [8, 9].

2 Three-dimensional almost Kenmotsu manifolds

An almost contact structure on a smooth differentiable manifold M 2”11 of dimension 2n + 1 means a triple (¢, £, 1)
satisfying
¢> = —id+n®E nE) = 1. 3)

where ¢ is a (1, 1)-type tensor field, & is a vector field called the Reeb vector field and 7 is a 1-form called the almost
contact 1-form. If there exists a Riemannian metric g on an almost contact manifold M 27 %1 such that

g@X,9Y) =g(X.Y) —n(X)n(Y) 4

for any vector fields X, Y, then M2" 1 is said to be an almost contact metric manifold and g is said to be a
compatible metric with respect to the almost contact structure (see [2]).

From Janssens and Vanhecke [11], in this paper by an almost Kenmotsu manifold we mean an almost contact
metric manifold (M 2711, ¢ & 1, g) satisfying dy = 0 and d® = 2 A ®, where the fundamental 2-form ® of
the almost contact metric manifold M2+ is defined by ®(X,Y) = g(X, ¢Y) for any vector fields X and ¥ on
M2+

We consider the product M27+1 x R of an almost contact metric manifold M27+! and R and define on it an

d d
J X, f— =X - fEn(X)— ],
(57 8) = (pr—ss.002)
where X denotes a vector field tangent to M2+ 1 ¢ is the coordinate of R and f is a C*°-function on M 2" +1 x R.
We denote by [¢, ¢] the Nijenhuis tensor of ¢. If

almost complex structure J by

[$.9] = 2dn®§

holds, then the almost contact metric structure is said to be normal.
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A normal almost Kenmotsu manifold is said to be a Kenmotsu manifold (cf. [11, 12]). It is well known that an
almost Kenmotsu manifold is a Kenmotsu manifold if and only if

(Vx @)Y = g(@X.Y)§ —n(Y)pX

for any vector fields X, Y.

Let M2"*! be an almost Kenmotsu manifold. We consider three tensor fields | = R(-, )&, h = %qu') and
I’ = ho¢ on M?"F1 where R is the Riemannian curvature tensor of g and £ is the Lie differentiation. From Dileo
and Pastore [13, 14], we know that the three (1, 1)-type tensor fields /, &’ and & are symmetric and satisfy 2§ = 0,
1§ =0,tth =0,tr(h') =0, hp + ¢ph = 0 and

Vx€=X-nX)E+n'X (&)

for any vector field X.

In this paper, we denote by Ric and Q the Ricci tensor and the Ricci operator with respect to the metric g
respectively, that is, Ric(X,Y) = g(QX,Y).

The following proposition was proved in [13].

Proposition 2.1. A 3-dimensional almost Kenmotsu manifold is Kenmotsu if and only if h vanishes.

Let U; be the open subset of a 3-dimensional almost Kenmotsu manifold M3 such that 1 # 0 and U/ the open
subset of M3 which is defined by U = {p € M3 : h = 0 in a neighborhood of p}. Therefore, {; U U5 is an open
and dense subset of M3 and there exists a local orthonormal basis {£, e, ¢e} of three smooth unit eigenvectors of &
for any point p € Uy U U>. On U, we may set he = Ae and hence hgpe = —A e, where A is a positive function on
U . Note that the eigenvalue function A is continuous on M 3 and smooth on U] U Us.

Lemma 2.2 ([15, Lemma 6]). On Uy we have
VeE =0, Vee = age, Ve = —ae,
Ve = e — Ape, Vee = —E — bope, Vope = AE + be, (6)
VpeE = —de + ge, Vypee = AE + cpe, Vypepe = —& — ce,

where a, b, ¢ are smooth functions.
Moreover, applying Lemma 2.2 we have (see also [15]) the following

Lemma 2.3. On U, the Ricci operator can be written as

08 = —2(3% + D — o (e)e — o (de)e,
Qe = —0(e)f — (A + 2 a)e + (E(A) + 2A) e, @)
Qpe = —o(pe)é + (E(A) +20)e — (A —21a)pe,
with respect to the local basis {£, e, pe}, where we set A = e(c)+¢pe(b)+b%+c2+2, 0(e) == —g(QE, e)=pe(L)+
2Ab and o (¢pe) := —g(QE&, pe)=e(X) + 2Ac.

Throughout the paper, we denote by D the distribution {£}- = ker 7.

3 Ricci solitons on almost Kenmotsu 3-manifolds

Firstly, we present the following propositions which explain explicitly why we study a potential vector field
orthogonal to the Reeb vector field £ on an almost Kenmotsu 3-manifold.

Proposition 3.1. On a Kenmotsu 3-manifold there exists no non-trivial Ricci soliton with potential vector field
pointwise colinear with the Reeb vector field.
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Proof. Let M3 be a Kenmotsu 3-manifold admitting a Ricci soliton whose potential vector field V is pointwise
colinear with £. We may set V' = «f, where « is a non-zero smooth function on M3. In this case, applying
Proposition 2.1 and (5), we have Vx & = X — n(X)& and hence R(X,Y)¢é = n(X)Y — n(Y)X for any vector
fields X, Y. It follows directly that Q& = —2£. Putting V' = «£ into (1) gives

OX = —(@+ )X +an(X)§ — 3 X(@§ — 31(X)Des ®

where D denotes the gradient operator.

Let X in the above relation be orthogonal to &; then we obtain QX = —(a + w)X — %X (a)&. Taking the inner
product of this relation with £ and using Q§ = —2§&, we obtain Do = £(«)&. Using this again in (8), because of
Q& = —2&, we get £(a) = 2 — w. Thus, we have QX = —(o + w)X for any X € D and hence the scalar curvature
r = —2(a¢ + w + 1). Let us recall the well known formula Z?:] 8((Ve; Q)ei, X) = %X(r) for any vector field
X and any local orthonormal basis {e;,i = 1,2,3}. In this formula, considering X = § we have o = 1 — %w, a
constant. In view of £ (o) = 2—w, we obtain @ = 2 and hence @ = 0, a contradiction. This completes the proof. [

Proposition 3.2. Let (M3, g) be a non-Kenmotsu almost Kenmotsu 3-manifold. If g is a non-trivial Ricci soliton
with potential vector field pointwise colinear with the Reeb vector field, then we have

ey =22 40— - -
25(0{) =21 4+2—w, e(a) =20(e), pe(x) = 20(¢e), ©
A=a+w, a=0, la =£(A) +2A.

Proof. Suppose that the potential vector field V' is given by V = «&, where « is a non-zero smooth function on M 3.
As M3 is assumed to be non-Kenmotsu, 41 is nonempty and Lemmas 2.2 and 2.3 are true. Using (5) in (1) we have

0X = —(@+w)X +an(X)é —ah’'X — %X(a)z; - %n(X)Dot. (10)

Replacing X in (10) by £ we have Q& = —(w + %S(oz))é — %Da. Comparing this with the first term of (7) we get
the first term of (9). Similarly, replacing X in (10) by e we have Qe = —(«¢ + w)e + Aage — %e(a)é. Comparing
this with the second term of (7) we get @« + w = A + 2Aa and A = £(L) + 2A. Also, replacing X in (10) by ¢e we
have Q¢e = —(a + w)e + Aae — %qbe(oz)g. Comparing this with the third term of (7) we obtain@ +w = A —2Aa
and Aa = £(A) + 2A. This implies the second term of (9). O

Applying the above two propositions, we have

Corollary 3.3. On an almost Kenmotsu 3-manifold there exists no Ricci soliton such that the potential vector field
is given by o, where o is a function invariant along the Reeb vector field.

Proof. Suppose that there exists a Ricci soliton on an almost Kenmotsu 3-manifold such that the potential vector
field V = «f satisfies £(«) = 0, where « is a smooth function. Because of Proposition 3.1, next we need only to
consider non-Kenmotsu case. From the first term of (9) we have A2 + 1 = %w and hence A is a positive constant.
From the second term of (9) we have ¢ = 2. Applying this again in the first term of (9) we have o(e) = 0 and
o(¢e) = 0 and hence b = ¢ = 0. By Lemma 2.3 we have A = 2. Because of ¢ = 2, from the second term of (9)
we have = A — a = 0. This is impossible since it implies that A% + 1 = 0. This completes the proof. O

Corollary 3.4. On an almost Kenmotsu 3-manifold there exists no Ricci soliton whose potential vector field is
constant multiple of the Reeb vector field.

Corollary 3.4 follows directly from Corollary 3.3.

Corollary 3.5. On an almost Kenmotsu 3-manifold satisfying Veh = 0, there exists no Ricci soliton whose potential
vector field is pointwise colinear with the Reeb vector field.

Proof. By (6) we know that on a non-Kenmotsu almost Kenmotsu 3-manifold M3 the condition Veh = 0 is
equivalent to a = 0 and (1) = 0. Thus, if there exists a Ricci soliton whose potential vector field is pointwise
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colinear with the Reeb vector field, i.e., V = af, a a function, we have from the second term of (9) that « = 2. The
remaining proof is similar with that of Corollary 3.3. O

The conclusion in Corollary 3.5 is still true even when Vgh = 0 is replaced by a weaker condition & (trh?) = 0.

In view of the above results, it is reasonable to consider a potential vector orthogonal to the Reeb vector field
on an almost Kenmotsu 3-manifold under a condition that & is an eigenvector field of the Ricci operator. Notice that
such condition holds naturally on any Kenmotsu 3-manifold (see proof of Proposition 3.1). Next we construct some
examples of non-Kenmotsu almost Kenmotsu 3-manifolds such that the Reeb vector field is an eigenvector field of
the Ricci operator.

A 3-dimensional almost Kenmotsu manifold is called a (k, u, v)-almost Kenmotsu manifold if the Reeb vector
field satisfies the (k, i, v)-nullity condition, that is,

R(X.Y)§ =k(n(¥Y)X —n(X)Y)
+ (Y )hX —n(X)hY) +v(n(Y)'X — n(X)h'Y)

for any vector fields X, ¥ and some smooth functions &, y, v. It was shown in [17] that a (k, i, v)-almost Kenmotsu
manifold with k& < —1 is non-Kenmotsu and £ is an eigenvector field of the Ricci operator, i.e, Q& = 2k§&. For some
concrete examples of (k, i, v)-almost Kenmotsu manifolds we refer the reader to [18]. Moreover, from Theorem 3.2
of [17] one can check that the Reeb vector field of the almost Kenmotsu structure defined on any non-unimodular
Lie group of dimension three is an eigenvector field of the Ricci operator.

Now we are ready to give our main results.

Theorem 3.6. Let (M3, g) be an almost Kenmotsu 3-manifold with & an eigenvector field of the Ricci operator: If g
is a gradient Ricci soliton with potential vector field orthogonal to the Reeb vector field, then M3 is locally isometric
to either H3(—1) or H2(—4) x R.

Proof. Ghosh in [6] proved that a Kenmotsu 3-manifold admitting a Ricci soliton is of constant sectional curvature
—1 with soliton constant @ = 2. Thus, next we need only to consider M3 a non-Kenmotsu 3-manifold and in this
case Lemmas 2.2 and 2.3 are applicable. Since the metric g of M3 is assumed to be a gradient Ricci soliton, (2) can
be written as the following form

0X = Vx Df —owX (11)

for any vector field X. Suppose that the potential vector field is orthogonal to the Reeb vector field £. We set
Df = fre + fape, where f> and f3 are smooth functions. Replacing X in (11) by £ and using (6) we have

0§ = —wé§ + (§(f2) —afz)e + (§(f3) + af2)pe.

Since £ is an eigenvector field of the Ricci operator, we have o(¢) = o(¢pe) = 0. Thus, comparing the previous
relation with the first term of (7) gives

o =202 +1), £(f2) = afs. £E(f3) = —af>. (12)

The first term of (12) means that A is a positive constant. Therefore, because of o(¢) = o(¢pe) = 0, we obtain
b =c =0andhence 4 = 2.
Similarly, replacing X in (11) by e and using (6) we have

Qe = (Af3 — f2)§ + (e(f2) —w)e + e(f3)pe.
Comparing this relation with the second term of (7) gives
f2=Af3. e(f2) =2A(A —a). e(f3) = 2. (13)
Similarly, replacing X in (11) by ¢e and using (6) we have

O¢e = (Af2 = f3)§ + de(f2)e + (pe(f3) — w)pe.
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Comparing this relation with the second term of (7) gives

f3 = Afa. pe(f2) =24, pe(f3) = 24(A + a). (14)

Since A is a positive constant, putting the first term of (14) into that of (13) we obtain (A% — 1) > = 0. Assuming
that A% # 1 holds, it follows that f> = 0 and using this in the second term of (14) we have A = 0, a contradiction.
Consequently, we conclude that A = 1 and hence w = 2. By the first term of (14), it is easy to see f> = f3. Thus,
from the last two terms of (14) we have a = 0. In this context, applying Lemma 2.3, by a direct calculation we see
that the Ricci operator is parallel. This is equivalent to the fact that the manifold is locally symmetric. The present
author in [16] and Cho in [19] proved that any non-Kenmotsu almost Kenmotsu 3-manifold is locally symmetric if
and only if it is locally isometric to the Riemannian product H?(—4) x R. This completes the proof. O

Note that the product H?(—4) x R is a rigid gradient Ricci soliton (see [20, 21]). For other results on existence of
quasi-Einstein metrics on this product we refer the reader to [22].

Theorem 3.7. Let (M3, g) be an almost Kenmotsu 3-manifold with £ an eigenvector field of the Ricci operator.
If g is a Ricci soliton with potential vector field orthogonal to the Reeb vector field, then M3 is locally isometric
to either H3(—1) or a non-unimodular Lie group equipped with a left invariant non-Kenmotsu almost Kenmotsu
structure whose Lie algebra is given by (25).

Proof. As seen in the proof of Theorem 3.6, the proof for the Kenmotsu case has been considered in [6]. Now let
M3 be a non-Kenmotsu almost Kenmotsu 3-manifold. Since g is a Ricci soliton, from (1) we have

%g(VXV, Y)—I—%g(VyV,X)—I—g(QX, Y)+wg(X,Y)=0 (15)

for any vector fields X, Y. Next we assume that V = fre + fage, where f> and f3 are smooth functions. Also, by
the hypothesis we have o (e) = o (¢e) = 0.
Replacing X =Y in (1) by £ and using (6) we have

w=2A%+1). (16)

This means that A is a positive constant. Thus, in view of 6 (¢) = o(¢pe) = 0, we have b = ¢ = 0 and hence 4 = 2.
Replacing X = Y in (1) by e and using (6) we have

e(f2) +2A(A —a) = 0. (17)
Replacing X = Y in (1) by $e and using (6) we have
pe(f3) + 20X +a) = 0. (18)
Putting X = £ and Y = e into (15) and using (6) we have
A—a)f3+&(f2)— f2=0. (19)

Putting X = e and Y = ¢e into (15) and using (6) we have

e(f3) + ge(f2) +41 =0. (20)
Putting X = £ and Y = ¢e into (15) and using (6) we have
A +a)f2+E(f3)— f3=0. 2n
Applying Lemma 2.2 we have the following Lie brackets.
[e.£] = e — (A + a)pe, [e.pe] =0, [pe,&] = (a — e + de. (22)

Applying (22) in the well known Jacobi identity
[le. £]. el + [[. pel. e] + [[ge.e].§] =0



1242 — Y. Wang DE GRUYTER OPEN

we have e(a) = ¢e(a) = 0. Therefore, by a direct calculation, using (21) and (17) we have

e((f3)) —E(e(f3) = e(f3) + 24X —a)(A + a) — E(e(f3)).

However, by (18) and the first term of (22) we obtain e(£§(f3)) — £(e(f3)) = e(f3) — (A + a)pe(f3) = e(f3) +
2A(A 4 a)?. Comparing this with the previous relation and using (18) we have

§(e(f3)) +44a(X +a) = 0. (23)

Similarly, by a direct calculation, using (19) and (18) we have

pe(§(f2)) —§(de(f2)) = pe(f2) + 24 —a)(A + a) — §(¢e(f2)).

However, by (17) and the third term of (22) we obtain ¢ge(E(f2)) — E(de(f2)) = de(f2) + (@ — Ve(fr) =
de(f>) + 2A(A — a)?. Comparing this with the previous relation and using (17) we have

§(¢e(/2)) —4ra(A —a) = 0. 24

From (20) we know that e( f3) + ¢e(f2) = —4A is a negative constant. Therefore, differentiating this relation with
respect to & we have £(e(f3)) = —&(¢e(f2)). Finally, since A is a positive constant, using the previous relation,
(23) and (24) we have a = 0. In this context, (22) becomes

[e’g] =e— )&QSE, [e? ¢€] = 0’ [¢€,g] = —\e + ¢€. (25)

According to Milnor’s classification (see [23]), we see that M3 is locally isometric to a non-unimodular Lie group
equipped with a left invariant non-Kenmotsu almost Kenmotsu structure. For more details regarding the construction
of such structure we refer the reader to [14, Theorem 5.2]. This completes the proof. O

Note that if A = 1 for the non-unimodular Lie group whose Lie algebra is given by (25), then M3 is in fact locally
isometric to the product H?(—4) x R.

Since on a Kenmotsu 3-manifold we have Q& = —2§, Theorem 3.6 generalizes naturally Cho’s result (see [8,
Theorem 3]).
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