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1 Introduction

1.1 Hurwitz series rings

The formal power series rings and polynomial rings have been of interest and have had important applications in
many areas, one of which has been differential algebra. In [1], Keigher introduced a variant of the ring of formal
power series and studied some of its properties. In [2], Keigher called such a ring the ring of Hurwitz series and
examined its ring theoretic properties. Since then, many works on the ring of Hurwitz series have been done ([3-5]).

Let R be a commutative ring with identity, R[X] (resp., R[X]) the formal power series ring (resp., polynomial
ring) over R, and H(R) the set of formal expressions of the form fo;o an X", where a, € R. Define addition and
x-product on H(R) as follows: for f =Y 72 qan X", g => 72 0bnX" € H(R),

o0 o0
f+g=) (an+by)X"and f xg= Y ¢, X",

where ¢, = Y i_o (¢)axbn—k and () = (n+’)‘k' for nonnegative integers n > k. Then H(R) becomes a
commutative ring with identity containing R under these two operations, i.e., H(R) = (R[X], +, *). The ring
H(R) is called the Hurwitz series ring over R. The Hurwitz polynomial ring h(R) over R is the subring of H(R)
consisting of formal expressions of the form Y % _, ax XX, ie, h(R) = (R[X], +. %).

Let R C D be an extension of commutative rings with identity, and let H(R, D) = {f € H(D) | the constant
term of f belongs to R} (resp., h(R, D) = {f € h(D)| the constant term of f belongs to R}). Then H(R, D)
(resp., h(R, D)) is a commutative ring with identity. We call H(R, D) (resp., h(R, D)) a composite Hurwitz series
ring (resp., composite Hurwitz polynomial ring). More precisely, H(R, D) (resp., h(R, D)) is a subring of H(D)
(resp., h(D)) containing H(R) (resp., h(R)), i.e., H(R, D) = (R + XD[X], +, %) (resp., h(R,D) = (R +
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XD[X],+, %)), where R + XD[X] = {f € D[X]| the constant term of f belongs to R} (resp., R + XD[X] =
{f € DI[X]]| the constant term of f belongs to R}). Hence if R & D, then H(R, D) (resp., h(R, D)) gives
algebraic properties of Hurwitz series (resp., Hurwitz polynomial) type rings strictly between two Hurwitz series
rings (resp., Hurwitz polynomial rings). Also, it is easy to see that H(R, D) (resp., h(R, D)) is a pullback of R and

H(D) (resp., h(D)).

1.2 Noetherian rings and related rings

Chain conditions have for many years been important tools in commutative algebra and algebraic geometry because
of their use in producing many theorems and applications. For example, a relation between the ascending chain
conditions on ideals and finitely generatedness of ideals in rings permits an interesting measure of the size and
behavior of such rings, and the Noetherian condition plays a significant role to prove many results on varieties,
homology and cohomology. Recently, Anderson and Dumitrescu [6] introduced the notion of S-Noetherian rings
and gave a number of S-variants of well-known results for Noetherian rings. After them, S-Noetherian rings have
been studied by some mathematicians (see [7-11]).

In [10, 12-14], the authors characterized when composite rings R + XD[X] and R + XD[X] are Noetherian
rings, S-Noetherian rings, or satisfy the ascending chain condition on principal ideals. It was shown that R+ XD[X]
(resp., R+ X D[X]) is a Noetherian ring if and only if R is a Noetherian ring and D is a finitely generated R-module
[13, Theorem 4] (or [12, Proposition 2.1]) (resp., [12, Proposition 2.1] (or [14, Corollary 2.2])); and that R + X D[X]
(resp., R+ XD[X]) is an S-Noetherian ring if and only if R is an S-Noetherian ring and D is an S-finite R-module
[10, Theorems 3.6 and 4.4]. Also, it was shown that if D is a présimplifiable ring, then R + XD[X] satisfies the
ascending chain condition on principal ideals if and only if U(D) N R = U(R) and for each sequence (dy)n>1
of D with the property that for eachn > 1, d,, = dy 417, forsome r, € R, diD € dD C --- is stationary
[12, Proposition 4.21].

In [4], Benhissi and Koja studied when the Hurwitz rings H(R) and /(R) are Noetherian rings, S-Noetherian
rings or satisfy the ascending chain condition on principal ideals. They showed that if char(R) = 0, then H(R)
is a Noetherian ring if and only if 4(R) is a Noetherian ring, if and only if R a Noetherian ring containing Q
[4, Corollary 7.7]. Also, they proved that for an anti-Archimedean subset S of R with zero characteristic containing
an element so € S divisible in R by all the nonzero positive integers, if R is an S-Noetherian ring, then A(R) is an
S-Noetherian ring [4, Theorem 9.4]; and if R is an S-Noetherian ring and S consists of nonzerodivisors, then H(R)
is an S-Noetherian ring [4, Theorem 9.6].

In this paper, we study chain conditions on composite Hurwitz series rings H(R, D) and composite Hurwitz
polynomial rings h(R, D), where R C D is an extension of commutative rings with identity. In Section 2, we give
necessary and sufficient conditions for the rings H(R, D) and h(R, D) to be Noetherian rings. We show that if
char(R) = 0, then H(R, D) is a Noetherian ring if and only if 2(R, D) is a Noetherian ring, if and only R is a
Noetherian ring and D is a finitely generated R-module containing Q. In Section 3, we give equivalent conditions
for the rings H(R, D) and h(R, D) to be S-Noetherian rings, where S is an anti-Archimedean subset of R. We show
that if char(R) = 0 and S is an anti-Archimedean subset of R consisting of nonzerodivisors of D which contains
an element divisible in D by all the positive integers, then H(R, D) is an S-Noetherian ring if and only if R is an
S-Noetherian ring and D is an S-finite R-module; and if char(R) = 0 and S is an anti-Archimedean subset of R
which contains an element divisible in D by all the positive integers, then #(R, D) is an S-Noetherian ring if and
only if R is an S-Noetherian ring and D is an S-finite R-module. In Section 4, we study when the rings H(R, D)
and h(R, D) are présimplifiable. We prove that H(R, D) is présimplifiable if and only if Z(D) N R € 1 + U(R),
where Z(D) is the set of zero-divisors of D and U(R) is the set of units in R. We also prove that if D is a torsion-
free Z-module, then (R, D) is présimplifiable if and only if D is a domainlike ring. Finally, in Section 5, we
characterize when the rings H(R, D) and h(R, D) satisfy the ascending chain condition on principal ideals. We
show that if D is a présimplifiable ring, then H(R, D) satisfies the ascending chain condition on principal ideals if
and only if U(D) N R = U(R) and for each sequence (d,),>1 of D with the property that for each n > 1, there
exists an element r,, € R such thatd, = d,, 411, di1D € daD C --- is stationary; and if D is a présimplifiable
ring with char(D) > 0, then h(R, D) satisfies the ascending chain condition on principal ideals if and only if
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U(D) N R = U(R) and for each sequence (d;;),>1 of D with the property that for each n > 1, there exists an
element r,, € R suchthatd, = dp41rn,d1D € doD C --- is stationary.

2 Noetherian rings

Let R be a commutative ring with identity. Then the mapping ¢ : R[X] — H(R) (resp., ¢ : R[X] — h(R)) defined
by

Y (XnloanX") = Y nonlan X" (resp., ¢ (Xr—oaxXX) = Y j_oklax X*)

is a ring homomorphism [2, Proposition 2.3]; and v is an isomorphism if and only if ¢ is an isomorphism, if and
only if the Z-module R is divisible and torsion-free, if and only if R contains QQ, where Q is the field of rational
numbers ([2, Proposition 2.4] and [4, Theorem 1.4 and Corollary 1.5]).

We start this section with the following simple observation without proof.

Lemma 2.1. Let R € D be an extension of commutative rings with identity. Then the following conditions are

equivalent.

(1) D contains Q.

(2) The Z-module D is divisible and torsion-free.

(3) The mapping ¥ : R + XD[X] — H(R, D) defined by ¥ (Y n_oanX") = Y n—onlanX" is a ring
isomorphism.

(4) The mapping ¢ : R + XD[X] — h(R, D) defined by ¢ (X j—oarX*) = Y i_oklax XX is a ring
isomorphism.

Let R € D be an extension of commutative rings with identity, and set XD[X] = {f € H(R, D) | the constant
term of f is zero} (resp., XD[X] = {f € h(R, D)| the constant term of f is zero}). Then it is easy to see that
XD[X] (resp., XD[X]) is an H(R, D)-module (resp., #(R, D)-module).

We are now ready to study when composite Hurwitz rings H(R, D) and h(R, D) are Noetherian rings.

Theorem 2.2. Let R C D be an extension of commutative rings with identity. If char(R) = 0, then the following
statements are equivalent.

(1) H(R, D) (resp., h(R, D)) is a Noetherian ring.

(2) R is a Noetherian ring and D is a finitely generated R-module containing Q.

(3) R is aNoetherian ring and X D[X] (resp., XD[X]) is a Noetherian H(R, D)-module (resp., h(R, D)-module).

Proof. (1) = (2) Suppose that H(R, D) (resp., h(R, D)) is a Noetherian ring, and let p be any prime number.
Since (X, X2,..)is finitely generated, there exists a positive integer n such that XP" e (X, X2,..., Xp"_l);
so we can find suitable elements g1, ...,g,n1—1 € H(R, D) (resp., g1....,8pn—1 € h(R, D)) such that X" =
X*xg1+--+ ), G gpn—1. Comparing the coefficients of XP”" in both sides, we get

p" p"
= ( / )bl - (pn_l)b,,n_l

for some by,...,bpn_1 € D. Note that p divides (1;:) forallk = 1,..., p" — 1[4, Lemma 7.3]; so p is a unit in
D. Since all the prime numbers are units in D, all the nonzero integers are also units in D. Therefore D contains Q,
and hence by Lemma 2.1, R + XD[X] (resp., R + XD[X]) is a Noetherian ring. Thus R is a Noetherian ring and
D is a finitely generated R-module [13, Theorem 4] (or [12, Proposition 2.1]) (resp., [12, Proposition 2.1] (or [14,
Corollary 2.2])).

(2) = (1) Assume that R is a Noetherian ring and D is a finitely generated R-module. Then R + XD[X] (resp.,
R+ XD[X]) is Noetherian [13, Theorem 4] (or [12, Proposition 2.1]) (resp., [12, Proposition 2.1] (or [14, Corollary
2.2])). Since D contains QQ, Lemma 2.1 forces H(R, D) (resp., (R, D)) to be a Noetherian ring.
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(1) & (3) We first show the composite Hurwitz series ring case. Let u : R — D be the natural injection and
v : H(D) — D the canonical projection. Consider the following commutative diagram

H(R,D) = Rxp H(D) —> R
H(D) —~ + D~ H(D)/XD[X].

Then H(R, D) is the pullback of u and v. Thus the equivalence follows from [15, Proposition 4.10].
The proof for the composite Hurwitz polynomial ring case is the same as that for the composite Hurwitz series
ring case. O

When R = D in Theorem 2.2, we obtain

Corollary 2.3 ([4, Corollary 7.7]). Let R be a commutative ring with identity. If char(R) = 0, then the following
assertions are equivalent.

(1) R is a Noetherian ring containing Q.

(2) H(R) is a Noetherian ring.

(3) h(R) is a Noetherian ring.

We next show that in Theorem 2.2, the condition that char(R) = 0 is essential.

Theorem 2.4. Let R C D be an extension of commutative rings with identity and let E be either H(R, D) or
h(R, D). If char(R) > 0, then E is never a Noetherian ring.

Proof. Suppose on the contrary that E is a Noetherian ring. Then (X, X2,...) is a finitely generated ideal of E;
so there exists a positive integer ¢ such that (X, X2,...) = (X, X2,..., X9). Let char(R) = plfl --~p,’§,’", where
D1, ..., Pm are distinct prime numbers. Then we can take a positive integer n such that p?* > g foralli = 1,...,m;
so X7 e (X, X2,..., pr]_l) foralli = 1,...,m. Therefore foreachi = 1, ..., m, there exist suitable elements

git+---»&i(pr—1) € E such that XPl = X xgip 4+ XPI 1y 8i(pr—1)- By comparing the coefficients of

P} Py
1= ( f)b“ +- 4 (ﬂl b l)bi(p{’—l)
1

for some b;1,..., bi(p{’—l) € D. Hence we obtain

- ((pF ! “
(e ()

Note that p; divides (1;,") foralli =1,....,mandall j = 1,..., p!" — 1[4, Lemma 7.3]; so char(R) divides 1 in
D.Hence 1 = 0in D, which is a contradiction. Thus E is not a Noetherian ring. O

X 77 in both sides, we get

3 S-Noetherian rings

Let R be a commutative ring with identity, S a (not necessarily saturated) multiplicative subset of R, and M a unitary
R-module. Recall from [6, Definition 1] that an ideal I of R is S-finite if there exist an element s € S and a finitely
generated ideal J of R such that s/ € J C I; and R is an S-Noetherian ring if each ideal of R is S-finite. Also,
we say that the R-module M is S-finite if sM € F C M for some s € S and some finitely generated R-module F';
and M is S-Noetherian if each R-submodule of M is S-finite.

Our first result in this section gives a necessary condition for composite Hurwitz rings H(R, D) and h(R, D)
to be S-Noetherian rings, where R € D is an extension of commutative rings with identity and .S is a multiplicative
subset of R.
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Proposition 3.1. Let R C D be an extension of commutative rings with identity, S be a (not necessarily saturated)
multiplicative subset of R, and E be either H(R, D) or h(R, D). If E is an S-Noetherian ring, then the following
assertions hold.

(1) S contains an element s divisible in D by all the prime numbers.

(2) char(R) = 0.

Proof. (1) Suppose that E is an S-Noetherian ring. Then (X, X2,. ..) is S-finite; so there exist s € S and
fioooosfm € (X, X?,...) such that s % (X, X2%,...) € (f1..... fm). Let p be any prime number. Since
fiv.oo) fm € (X, X2, ...), we can find a positive integer n such that s % (X, X2,...) € (X,X2,...,X?"~1).
Therefore sX ?" € (X, X2, .. .,Xp"_l), and hence we can write sX?" = X x* g1+ + XP'1 gpn—1 for
some g1, ...,Zgpn—1 € E. Comparing the coefficients of X P" in both sides, we obtain

" "
s = ( 1 )dl + e+ (p”-])dpn_l

for some dy,...,dpn—1 € D. Note that p divides (’;Cn) forallk =1,..., p" — 1[4, Lemma 7.3]; so p divides s in
D. Thus s is divisible in D by all the prime numbers.

(2) Suppose on the contrary that char(R) # 0, and let char(R) = p‘l’” oo pSm . where p1, ..., pm are distinct
prime numbers. Fix ani € {l,...,m}. Since E is an S-Noetherian ring, by (1), there exist elements s; € S and
d; € D suchthats; = p;d;. Since char(R) = char(D), we get

s?' s = char(R)dfl1 ceedBm =0,
which indicates that 0 € S. However this is absurd. Thus char(R) = 0. O

Let R be a commutative ring with identity and S a (not necessarily saturated) multiplicative subset of R. We say
that S is anti-Archimedean if (ﬂn>1 s R) NS # @ for every s € S. We also say that an integral domain R is
an anti-Archimedean domain if ﬂ,;l aR # 0 foreach O # a € R (see [16]). Thus R is an anti-Archimedean
domain if and only if R \ {0} is an anti-Archimedean subset of R. Clearly, every multiplicative subset consisting of
units is anti-Archimedean. Also, if V' is a valuation domain with no height-one prime ideal (or equivalently, every
nonzero prime ideal of ' has infinite height), then " \ {0} is an anti-Archimedean subset of V' [16, Proposition 2.1].

We next characterize when a composite Hurwitz series ring H(R, D) is an S-Noetherian ring under the
assumption that § is an anti-Archimedean subset of R.

Theorem 3.2. Let R € D be an extension of commutative rings with identity and char(R) = 0, and let S be an
anti-Archimedean subset of R consisting of nonzerodivisors of D. If S contains an element divisible in D by all the
positive integers, then the following statements are equivalent.

(1) H(R, D) is an S-Noetherian ring.

(2) R is an S-Noetherian ring and XD[X] is an S-Noetherian H(R, D)-module.

(3) R is an S-Noetherian ring and D is an S-finite R-module.

Proof. (1) < (2) Consider the following commutative diagram

H(R,D) = Rxp H(D) ——> R
H(D) — "+ D~ H(D)/XD[X],

where u is the natural injection and v is the canonical projection. Then H(R, D) is the pullback of u and v. Thus
the equivalence follows from [9, Proposition 2.3].

(1) = (3) Suppose that H(R, D) is an S-Noetherian ring. Since R is a homomorphic image of H(R, D), R
is an S-Noetherian ring [11, Lemma 2.2]. Note that XD[X] is an ideal of H(R, D); so there exist s € S and
f1,-.., fu € D[X] such that s * XD[X] € (Xf1,..., Xfn). Therefore for any d € D, we have

sxdX = Xfixg1+-+ Xfu*gn
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for some g1,...,g, € H(R, D). Comparing the coefficients of X in both sides, we get

sd = f1(0)g1(0) + -+ + fu(0)gn (0).

where for each i = 1,...,n, f;(0) and g;(0) denote the constant terms of f; and g;, respectively. Note that
fi(0) € D and g;(0) € Rforalli = 1,...,n. Hence sD C f1(0)R + --- + f»(0)R. Thus D is an S-finite
R-module.

(3) = (1) Suppose that R is an S-Noetherian ring and D is an S-finite R-module. Then D is an S-Noetherian
R-module [10, Lemma 3.5(2)]; so D is an S-Noetherian ring. Since D is an S-finite R-module, there exist s € S
and dq,...,d; € D suchthatsD C d{R + ---+ d, R; so we have

sx*xHD) Cdi«HQR)+ -+ dm * HR)
CdixH(R, D)+ +dnx* H(R,D).

Hence H(D) is an S-finite H(R, D)-module. Clearly, S is an anti-Archimedean subset of D. Note that char(D) =
char(R) = 0; so by our assumption, H(D) is an S-Noetherian ring [4, Theorem 9.6]. Since H(D) is an S-finite
H(R, D)-module, H(R, D) is an S-Noetherian ring [6, Corollary 7] (or [10, Lemma 3.5(3)]). O

Recall that if R is an S-Noetherian ring with char(R) = 0 and § is an anti-Archimedean subset of R which contains
an element divisible in R by all the positive integers, then &(R) is also an S-Noetherian ring [4, Theorem 9.4]. By
combining this result with a similar argument as in the proof of Theorem 3.2, we obtain equivalent conditions for a
composite Hurwitz polynomial ring 2(R, D) to be an S-Noetherian ring.

Theorem 3.3. Let R C D be an extension of commutative rings with identity and char(R) = 0, and let S be an
anti-Archimedean subset of R. If S contains an element divisible in D by all the positive integers, then the following
statements are equivalent.

(1) h(R, D) is an S-Noetherian ring.

(2) R isan S-Noetherian ring and XD[X] is an S-Noetherian h(R, D)-module.

(3) R is an S-Noetherian ring and D is an S-finite R-module.

Remark 3.4. Let R C D be an extension of commutative rings with identity and S a multiplicative subset of R. If
R contains Q, then all the integers are units in D; so every element in S is divisible in D by all the positive integers.
Hence if R contains Q, then it follows from Lemma 2.1 that Theorems 3.2 and 3.3 are nothing but parts of [10,
Theorems 4.4 and 3,6].

By Proposition 3.1 and Theorems 3.2 and 3.3, we may ask the following question.
Question 3.5. Do Theorems 3.2 and 3.3 still hold if S contains an element divisible in D by all the prime numbers?

We end this section with an example satisfying the conditions in Theorems 3.2 and 3.3. More precisely, we construct
an integral domain R, not containing QQ, with char(R) = 0 such that there exists an anti-Archimedean subset S of R
containing an element divisible in R by all the positive integers.

Example 3.6. Let 7 be the ring of integers and G the weak direct sum of {Z;}72 | which has the reverse

lexicographic order, where Z; = 7. for all positive integers i. Let {X;}72, U {Y;}72, be a set of indeterminates

over Q and v be the valuation on Q ({Xi}?il’{yi}?il) induced by the mapping X; — 0 and Y; + e;, of

{Xi372, UYii92, into G, where e; is an element of G whose i-th component is 1 and j-th component is 0 for

j#i

(1) Let V be the valuation ring of v and set V* = V \ {0}. Then V is a valuation domain containing Q with no
height-one prime ideals [17, page 254, Exercise 20] and V* is an anti-Archimedean subset of V [16, Proposition
2.1]. Clearly, V is a V*-Noetherian ring; so V[X] (resp., V[X]) is a V*-Noetherian ring [6, Proposition 10]
(resp., [6, Proposition 9]). Since V contains Q, H(V) (resp., h(V)) is isomorphic to V[X] (resp., V[X]) [4,
Theorem 1.4] (resp., [4, Corollary 1.5]). Hence H(V) (resp., h(V')) is a V *-Noetherian ring.
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(2) Let R = Z + M, where M is the maximal ideal of V. Then R is an anti-Archimedean ring [16, Proposition
2.6] and each ideal of R is comparable with M under the set theoretic inclusion [17, page 202, Exercise 12].
For any integer n, nR = nZ + nM = nZ + M contains M (since QM = M, nM = M ). Hence every
element in M is divisible in R by all the positive integers. Note that H(R) (resp., h(R)) is not isomorphic to
R[X] (resp., R[X]) because R does not contain Q. Since R* = R \ {0} is anti-Archimedean subset of R and
R is R*-Noetherian, it follows from [4, Theorem 9.6] (resp., [4, Theorem 9.4]) that H(R) (resp., h(R)) is an
R*-Noetherian ring.

(3) Let R C D be an extension of integral domains, where R is defined in (2). If D is a finitely generated R-module,
then D is an R*-finite R-module. Hence H(R, D) (resp., h(R, D)) is an R*-Noetherian ring.

4 Présimplifiable rings

Let R be a commutative ring with identity, U(R) the set of units of R, and Z(R) the set of zero-divisors of R. Recall
that R is présimplifiable if whenever a, b € R satisfy ab = a, eithera = 0 or b € U(R). It was shown in [18] that
R is présimplifiable if and only if Z(R) C 14 U(R). In [4], the authors studied when Hurwitz rings H(R) and i (R)
are présimplifiable. In this section, we modify some properties of elements (units and nilpotent) of H(R) and /(R)
in [4] to give equivalent conditions for composite Hurwitz series rings and composite Hurwitz polynomial rings to
be présimplifiable.

Our first result in this section is a necessary and sufficient condition for a composite Hurwitz series ring H(R, D)
to be présimplifiable, where R C D is an extension of commutative rings with identity.

Proposition 4.1. Let R € D be an extension of commutative rings with identity. Then H(R, D) is présimplifiable
ifandonly if Z(D) N R C 1 4+ U(R).

Proof. (=) Letr € Z(D) N R. Since H(R, D) is présimplifiable, we obtain
reZ(H(R,D)) S 14+ U(H(R, D)).

Thus r € 1 + U(R) [19, Lemma 2.2(1)].
(&) Let f =372, a; X' € Z(H(R, D)). Then by the assumption, we obtain

ap€ Z(R) S Z(D)NR C 1+ U(R).
Therefore f — 1 € U(H(R, D)) [19, Lemma 2.2(1)], and hence f € 1 4+ U(H(R, D)). Thus H(R, D) is
présimplifiable. O

Remark 4.2. For an extension R C D of commutative rings with identity, Z(R) € Z(D) N R. Hence if H(R, D)
is présimplifiable, then so is H(R). However, the converse does not hold in general. Consider R = 7. C D =
Z[Y]/(3Y). Then clearly H(R) is présimplifiable but H(R, D) is not présimplifiable because 3 € Z(H(R, D)) and
341+ U(H(R, D)).

We next study when a composite Hurwitz polynomial ring 4 (R, D) is présimplifiable, where R C D is an extension
of commutative rings with identity. To do this, we need two lemmas.

Lemma 4.3. Let R C D be an extension of commutative rings with identity and f = > 7_ a; X' € h(R, D).
Then the following assertions hold.

(1) f is nilpotent if and only if ag is nilpotent and for eachi = 1, ...,n, a; is nilpotent or some power of a; is with
torsion.

(2) f is aunit if and only if ag is a unit in R and for eachi = 1,...,n, a; is nilpotent or some power of a; is with
torsion.

Proof. (1) The proof is identical to that of [4, Theorem 2.4].
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(2) (=) Assume that f is a unit in 2(R, D). Then we can find an element g = 7. b; X’ € h(R, D) such
that f % g = 1;s0 apbo = 1. Hence ag is a unit in R. Since h(R, D) € h(D), f is a unit in A(D); so for each

i =1,...,n,a; is nilpotent or some power of a; is with torsion [4, Theorem 3.1].
(&) Assume that for each i = 1,...,n, a; is nilpotent or some power of a; is with torsion. Then by (1),
er'l=1 a; X' is nilpotent in 2(R, D). Since ag is a unit in A(R, D), f is a unitin h(R, D). O

Lemmad4.4. Let R C D be an extension of commutative rings with identity. Then the following assertions are
equivalent.

(1) Foreach f € Z(h(R, D)), there exists an element d € D \ {0} such thatd = f = 0.

(2) D is a torsion-free Z-module.

Proof. (1) = (2) Let a be any nonzero element in D. If there exists a positive integer n such that na = 0, then
0 = naX" = aX * X" 1;s0 X" ! is a zero-divisor of #(R, D). By the assumption, we can find an element
d € D\ {0} such that X"~ = 0, which is absurd. Thus D is a torsion-free Z-module.

(2) = (1) Since h(R, D) C h(D), the implication follows directly from [4, Theorem 4.1]. O

Let R be a commutative ring with identity. Recall that R is a domainlike ring if every zero-divisor of R is nilpotent.
It is easy to see that R is domainlike if and only if (0) is primary.

Proposition 4.5. Let R C D be an extension of commutative rings with identity. If D is a torsion-free Z-module,
then h(R, D) is présimplifiable if and only if D is a domainlike ring.

Proof. (=) Letd € Z(D). Since h(R, D) is présimplifiable, we have
dX € Z(h(R,D)) € 1 + U(h(R, D));

so —1 + dX € U(h(R, D)). Since D is a torsion-free Z-module, d is nilpotent by Lemma 4.3(2). Thus D is a
domainlike ring.

(&) Let f =Y7_, a; X' € Z(h(R, D)). Since D is a torsion-free Z-module, by Lemma 4.4, there exists an
elementd € D \ {0} such thatd * f = 0. Hence foralli =0, ...,n, a; is a zero-divisor of D. By the assumption,
a; is nilpotent for alli = 0,...,n; so by Lemma 4.3(1), f is nilpotent. Therefore f — 1 is a unit in #(R, D), and
hence f € 1 + U(h(R, D)). Thus h(R, D) is présimplifiable. O

We next show that in Proposition 4.5, the condition that D is a torsion-free Z-module is essential.

Proposition 4.6. Let R € D be an extension of commutative rings with identity and char(D) = 0. If D is not a
torsion-free Z-module, then h(R, D) is never présimplifiable.

Proof. Assume that D is not a torsion-free Z-module. Then we can find an element d € D \ {0} and a positive
integer n such that nd = 0;s0 X * dX"~! = ndX™ = 0. Hence X € Z(h(R, D)).If h(R, D) is présimplifiable,
then Z(h(R, D)) € 1 4+ U(h(R, D)); so —1 + X is a unit in A(R, D). Hence by Lemma 4.3(2), 1 is with torsion.
However, this is impossible because char(D) = 0. Thus & (R, D) is not présimplifiable. O

Let R € D be an extension of commutative rings with identity. Then it follows directly from Lemma 4.3(2) that if
char(R) > 0, then Z?=O a; X' € h(R, D) is a unit if and only if ag is a unit in R. Hence a similar argument as in
the proof of Proposition 4.1 shows the following result.

Proposition 4.7. Let R € D be an extension of commutative rings with identity. If char(D) > 0, then h(R, D) is
présimplifiable if and only if Z(D) N R € 1 + U(R).
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5 Rings satisfying ascending chain condition on principal ideals

Let R be a commutative ring with identity. We say that R satisfies the ascending chain condition on principal ideals
(ACCP) if there does not exist a strict ascending chain of principal ideals of R. It was shown in [19, Theorem 2.4]
that if R € D is an extension of integral domains with char(D) = 0, then H(R, D) satisfies ACCP if and only
if h(R, D) satisfies ACCP, if and only if (),,~; 71 ---7» D = (0) for each infinite sequence (rn),>1 consisting of
nonzero nonunits of R. In this section, we study an equivalent condition for H(R, D) and h(R, D) to satisfy ACCP,
where R C D is an extension of présimplifiable rings with identity.

Theorem 5.1. Let R € D be an extension of commutative rings with identity. If D is a présimplifiable ring, then

the following statements are equivalent.

(1) H(R, D) satisfies ACCP.

(2) U(D) N R = U(R) and for each sequence (dn)n>1 of D with the property that for each n > 1, there exists an
element ry, € R such thatdp, = dp1rn, diD S daD C --- is stationary.

Proof. (1) = (2) Letu € U(D) N R. Then X % H(R,D) € -5 X  H(R,D) C --- is an ascending chain of
principal ideals of H(R, D). Since H(R, D) satisfies ACCP, there exists a positive integer m such that W%X *
H(R,D) = M%X * H(R, D). Hence u € U(R). Clearly, U(R) C U(D)N R, which shows that U(D)N R = U(R).

Let (dn)n>1 be a sequence of D with the property that for each n > 1, there exists an element 7, € R such
that d, = dp+41rn. Then d1 X « H(R,D) € d»X x H(R, D) C --- is an ascending chain of principal ideals of
H(R, D). Since H(R, D) satisfies ACCP, the chain d1 X * H(R, D) C d>X « H(R, D) C --- is stationary; so we
can find a positive integer m such that d,, X * H(R, D) = d; X * H(R, D) for alln > m. Hence d,, D = d,;; D for
all n > m. Thus the chain d; D € d>D C --- stops.

2) = (1) Let f1 * H(R,D) C f> * H(R,D) C --- be an ascending chain of nonzero principal ideals of
H(R, D). Then foreachn > 1, f;, = fn41 *gn forsome g, € H(R, D). If f, is a unit for some n > 1, then there
is nothing to prove; so we assume that f; is a nonunit for all n > 1. For each n > 1, write f;; = anc; Kk, 4n mX™
and g, = Zf;lozo bumX'™, where a,, # 0. Since f;, is a multiple of f, 41, k1 > k2 > --- > 0; so there exists a
positive integer ¢ such that k, = kg forall n > q. Hence anx,, = an+1k,,bno for all n > q. By the assumption,
the chain agx, D € ag+1k,,, D C --- is stationary; so we can find an integer p > ¢ such that ay,x,, D = apk, D
for all m > p. Therefore for each n > p, there exists an element d,, € D such that ay41x,,, = dnk,dn.
Hence a,x, = ank,dnbno for all n > p. Since D is présimplifiable and a,,, # 0, dnbyo is a unit in D, which
indicates that b, € U(D) N R = U(R). Hence g, is a unit in H(R, D) [19, Lemma 2.2(1)], which shows that
fn*H(R,D)= fp+* HQR,D)foralln > p. Thus H(R, D) satisfies ACCP. O

Let R € D be an extension of commutative rings with identity. Note that by Lemma 4.3(2), if char(R) > 0, then
Y oai X! € h(R, D) is a unit if and only if ag is a unit in R. Hence a similar argument as in the proof of Theorem
5.1 shows the following result.

Theorem 5.2. Let R € D be an extension of commutative rings with identity. If D is a présimplifiable ring with

char(D) > 0, then the following statements are equivalent.

(1) h(R, D) satisfies ACCP.

(2) U(D) N R = U(R) and for each sequence (dn)n=>1 of D with the property that for each n > 1, there exists an
element ry, € R such thatdp, = dp1rn, diD S daD C --- is stationary.

When R = D in Theorems 5.1 and 5.2, we obtain

Corollary 5.3. Let R be a présimplifiable ring with identity. Then the following assertions hold.
(1) R satisfies ACCP if and only if H(R) satisfies ACCP.
(2) If char(R) > 0, then R satisfies ACCP if and only if h(R) satisfies ACCP.
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We are closing this paper with an example which shows that if a ring has characteristic zero, then ACCP property
does not ascend into the Hurwitz polynomial ring extension.

Example 5.4. Let K be a field with char(K) = 0, {Ay};2 | a set of indeterminates over K, and set S =
K[{An}52 1/ {An+1(An — An+1)}n2))- Let an be the image of Ay, in S and R be the localization of S at
the ideal (a1, as,...)S.

(1) R is a présimplifiable ring which satisfies ACCP ([12, Remark 4.17] and [20, Example]).

(2) Note that foralln > 1, anX +1 = (ap+1X + 1) * ((an —an4+1)X + 1); so (@1 X + 1) * h(R) C (a2X +
1) *xh(R) C --- is an ascending chain of principal ideals of h(R). Suppose on the contrary that the chain stops.
Then there exists a positive integer m such that a1 X + 1 = (X + 1) * f for some f € h(R). Now, an
easy calculation shows that f = Zflo:() bu X", where bo = 1 and b, = (—l)”"‘ln!a”m_1 (@m+1 — am) for
alln > 1. Since char(K) = 0, b, # 0 for all nonnegative integers n [20, Example]. Hence f & h(R), which is
absurd. Thus h(R) does not satisfy ACCP.
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