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Abstract: As a generalization of the class of inverse semigroups, the class of Ehresmann semigroups is introduced
by Lawson and investigated by many authors extensively in the literature. In particular, Gomes and Gould construct
a fundamental Ehresmann semigroup Cg from a semilattice £ which plays for Ehresmann semigroups the role that
Tk plays for inverse semigroups, where Tx is the Munn semigroup of a semilattice E. From a varietal perspective,
Ehresmann semigroups are derived from reduction of inverse semigroups. In this paper, from varietal perspective
Ehresmann semigroups are extended to generalized Ehresmann semigroups derived instead from normal orthodox
semigroups (i.e. regular semigroups whose idempotents form normal bands) with an inverse transversal. We present
here a semigroup C(s. A o) from an admissible triple (I, A, E°) that plays for generalized Ehresmann semigroups
the role that Cg from a semilattice E plays for Ehresmann semigroups. More precisely, we show that a semigroup is
a fundamental generalized Ehresmann semigroup whose admissible triple is isomorphic to (Z, A, E°) if and only if
itis (2,1,1,1)-isomorphic to a quasi-full (2,1,1,1)-subalgebra of C(; A ge). Our results generalize and enrich some
results of Fountain, Gomes and Gould on weakly E-hedges semigroups and Ehresmann semigroups.

Keywords: Generalized Ehresmann semigroup, Fundamental semigroup, Fundamental representation

MSC: 20M10

1 Introduction

Let S be a semigroup. We denote the set of all idempotents of S by E(S) and the set of all inverses of x € S by
V(x). Recall that
V(x) ={a € S|xax = x,axa = a}

for all x € S. A semigroup S is called regular if V(x) # @ for any x € S, and a regular semigroup S is called
inverse it E(S) is a commutative subsemigroup (i.e. a subsemilattice) of S, or equivalently, the cardinal of V(x) is
equal to 1 forall x € S.

Recall that a regular semigroup S is fundamental if the largest congruence contained in 4 on S is trivial.
Structure theorems for certain important subclasses of the class of fundamental regular semigroups are already
known. Munn [1] initiated the work in this direction. He proved that given a semilattice E, the Munn semigroup
TEg of all isomorphisms of principal ideals of E is “maximal” in the class of all fundamental inverse semigroups
whose semilattices of idempotents are E, that is, every semigroup belonging to this class is isomorphic to a full
inverse subsemigroup of 7g. Further from Munn [1] if S is an inverse semigroup such that E(S) is isomorphic to a
given semilattice E, then there exists a homomorphism f : S — Tg and the kernel of f is the largest congruence
contained in # on S.

The pioneer work of Munn was generalized firstly by Hall in 1971 to orthodox semigroups (i.e. regular
semigroups whose idempotents form subsemigroups) in [2] in which the Hall semigroup Wp of a band B was
constructed. Recall that a band is a semigroup in which every element is idempotent. The Hall semigroup Wp
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has properties analogous to those described above for Tr (see Hall [2] for details). As another direction, Fountain
[3] generalized Munn’s result to a class of non-regular semigroup, namely ample semigroups. The next step in
this direction was made by Fountain, Gomes and Gould in [4] where by using of a completely fresh technology
they considered the class of weakly E-hedged semigroups which is a special class of Ehresmann semigroups first
defined by Lawson in [5]. The natural next step in this direction is to look at the whole class of Ehresmann
semigroups. This is done by Gomes and Gould in [6] in which they removed the “weakly E-hedged" condition
from [4] and considered the whole calss of Ehresmann semigroups. For a given semilattice E, in [6] the authors have
constructed a semigroup Cg which plays the T role for Ehresmann semigroups and generalized the main results
in [4]. Furthermore, El-Qallali-Fountain-Gould [7], Gomes-Gould [8] and Wang [9] went a step further to extend
Hall’s approach for orthodox semigroups to some classes of non-regular semigroups having a band of idempotents.
It is worth remarking that the class of Ehresmann semigroups and its subclasses are investigated extensively in
literature by many famous semigroup researchers (see [10-13] for example). In particular, Jones [12] provided a
common framework for Ehresmann semigroups and regular *-semigroups from varietal perspective. More recent
developments in this area can be found in good survey articles by Gould [11, 14] and Hollings [15, 16].

On the other hand, Blyth-McFadden [17] introduced the concept of inverse transversals for regular semigroups.
A subsemigroup S° of a regular semigroup S is called an inverse transversal of S if V(x) N S° contains exactly
one element for all x € S. Clearly, in this case, S is an inverse subsemigroup of S. Since an inverse semigroup
can be regarded as an inverse transversal of itself, the class of regular semigroups with inverse transversals contains
the class of inverse semigroups as a proper subclass. Regular semigroups with inverse transversals are investigated
extensively by many authors (see [18-21] and their references) and some generalizations of inverse transversals are
proposed, see [22, 23] for example.

Inspired by the approach used in Jones [12], in this paper a common framework, termed generalized Ehresmann
semigroups, for Ehnresmann semigroups and normal orthodox semigroups with an inverse transversal is introduced
from varietal perspective, where a normal orthodox semigroup means a regular semigroup whose idempotents form
a normal band. We construct a semigroup C(s A go) from the so-called admissible triple (I, A, E°) that plays for
generalized Ehresmann semigroups the role that Cg from a semilattice £ plays for Ehresmann semigroups. More
precisely, we show that a semigroup is a fundamental generalized Ehresmann semigroup whose admissible triple
is isomorphic to (I, A, E°) if and only if it is (2,1,1,1)-isomorphic to a so-called quasi-full (2,1,1,1)-subalgebra
of C(s.A,E°). This generalizes and enriches some results of Fountain, Gomes and Gould on weakly E-hedges
semigroups and Ehresmann semigroups obtained in texts [4] and [6].

2 Generalized Ehresmann semigroups

In this section, after giving some preliminary results on Ehresmann semigroups and inverse transversals, we introduce
generalized Ehresmann semigroups and consider some basic properties of this class of semigroups. Firstly, we
consider Ehresmann semigroups. Let S be a semigroup and let £ € E(S). The relation R is defined on S by
the rule that for any x, y € S, we have x7~25y if

ex = x ifandonlyifey = y foralle € E.

Dually, we have the relation ZE on S. Observe that both R £ and ZE are equivalences on S but R E (resp. z E) may
not be a left congruence (resp. a right congruence). From Lawson [5], a semigroup S is an Ehresmann semigroup
with respect to E (or (S, E) is an Ehresmann semigroup) if

(1) E is a subsemilattice of .S,

(2) every R E-class contains a unique element of £ and R E 1s a left congruence,

(3) every L i -class contains a unique element of £ and Lrisa right congruence.

If this is the case, E is called the distinguished semilattice of S. We say that a semigroup S is Ehresmann in the
sequel if (S, E) is an Ehresmann semigroup for some £ C E(S). From Lemma 2.2 and its dual in Gould [14], we
have the following characterization of Ehresmann semigroups from a varietal perspective.
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Lemma 2.1. A semigroup (S, -) is Ehresmann if and only if there are two unary operations “+ " and “* " on S such
that the following identities hold:

x+x — x’x-i-y-l- — y+x+’(x+y+)+ — x+y+7(xy)+ — (xy+)+;

xxt = xx Tyt =y ()T =t ()t = e = x L (o) = x

In this case, S is an Ehresmann semigroup with distinguished semilattice {xt|x € S}(= {x*|x € S}), and we shall
call (S -, T, *) an Ehresmann semigroup.

Now we consider regular semigroups with an inverse transversal. Let S be a regular semigroup and S° an inverse
transversal of S. For any x € S, we use x° to denote the unique inverse of x in S° and let x°° = (x°)°. We can
consider the induced tri-unary semigroup (S, -, + ), where

e} [eJe]

xt = xx% x* = x°x, ¥ = x

Observe that x°°° = x° and x°°x°, x°x°° € E(S°). Here we are only interested in normal orthodox semigroups
with an inverse transversal. Recall that a normal orthodox semigroup means a regular semigroup whose idempotents
form a normal band, and a band B is called left normal (resp. right normal, normal) if efg = eg f (resp. efg = feg,
efge = egfe)foralle, f,g € B.Observe that aband B is normal if and only if e fgh = egfhforalle, f,g,h € B.
The following proposition can be deduced from the text [20]. However, we give its direct proof for the sake of

completeness.

Proposition 2.2. Let S be a normal orthodox semigroup with an inverse transversal S°. The tri-unary semigroup
(s, -, + = 7)) satisfies the following identities:

Table 1. Generalized Ehresmann conditions

1 xtx=x 1y xx*=x

(2 xTytxt =xtyt Q)  x*y*x*=y*x*
@) (TyH)T =xtyt @Y (x*yP)* =x*y*
@ @t =@EyHT @  (xy)*=(x*y)*

G @hH*=x" Gy (T =3

©6 xt=xt 6y IT*=x*

(7 x=xtxx* ® x*yt=x3t

Proof. By symmetry, we only need to show (1)—(8).
(1) This is equivalent to the equality (xx°)x = x.
(2) As E(S) is a normal band, we have

x Pyt = ex)y)OYOGY°) = (x )y )y (r°°y°) = xx°y°°y°. (1
This implies that
xtytat =xt(tat) = xx®(yy°x°°x°) = (xx°yy°)(x*°x°)
— xx0(yooy0)(xoox0) — xxO(xOOxO)(yOOyO) — xxoyooyo — X+y+.

(3) We first observe that
(xy)° = y°x°forall x,y € S. )

In fact, since S is orthodox, y°x° is an inverse of xy. But y°x° € §°, s0 (xy)° = y°x°. By (1) and (2), we have
(x+y+)+ — (xxoyooyO)(xxoyooyO)o — xxoyooyoyooyoooxooxo

— xxoyooyoxooxo — xxoxooxoyooyo — xxoyooyo — X+y+.
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(4) By (2), we have

0, 00_0O_O

)T = (xyy®)(xyy©)° = xyy°y°°y°x° = xyy°x° = xy(xy)° = (xy)T.

(xy
(5) From (2),
(x—|—)>k — (XXO)O(XXO) — XOOXOXXO — XOO)CO — xooxooo — f—i_.

(6) It follows that xT = (xx°)°° = x°°x° = x°°(x°°)° = X from (2).
(7) This is equivalent to the statement x = (xx°)x°°(x°x).
(8) Since E(S) is a normal band, using (1) and its dual, we have

0,00 _ O O _ 00 _ O o _ .00

Xyt = xCxyy® = x°x°°x%xyy°y°°y° = (x°x°°yy°)(x°xy°°y°)
— (xOxOOyOOyO)(xOxOOyOOyO) — xOxOOyOOyO — ((XOO)OXOO)(yOO(yOO)O) =Y*y+’
as required. O

We shall term any tri-unary semigroup (S, -, T, *, 7) that satisfies the identities in Table 1 a generalized Ehresmann
semigroup. By Proposition 2.2, any normal orthodox semigroup S with an inverse transversal S° induces the
generalized Ehresmann semigroup (S, -, T, *, 7) by setting x T = xx°, x* = x°x and ¥ = x°°. The following
example gives a very special case of this kind of generalized Ehresmann semigroups.

Example 2.3. Let S be a rectangular band. Fix an element u in S. Consider the tri-unary semigroup
(S, - +, ) where xt = xu,x* = ux,X = u. Then it is routine to check that the identities in Table 1
are satisfied and so (S, -, T, *, ) is a generalized Ehresmann semigroup. In fact, S is indeed a normal band and
{u} is an inverse transversal of S.

Example 2.4. Any Ehresmann semigroup (S, -, 7, *) also induces a generalized Ehresmann semigroup, which
justifies our term “generalized Ehresmann semigroups”. In fact, for an Ehresmann semigroup (S, -, T, *), we

w—n

define the third unary operation on S by X = x. Then we have the tri-unary semigroup (S, -, ¥, *, 7) and it

is easy to see that the identities in Table 1 are all satisfied by Lemma 2.1.

Since a rectangular band having more than one element must not be an Ehresmann semigroup, the class of
generalized Ehresmann semigroups contains the class of Ehresmann semigroups and the class of rectangular bands as
proper subclasses by the above two examples. We also observe that a generalized Ehresmann semigroup which is also
regular may not contain any inverse transversal. In fact, any monoid S with the identity 1 is always a (generalized)
Ehresmann semigroup by setting xt = x* = 1 and X = x for all x € S. Obviously, a regular monoid may not
contain any inverse transversal. Here is an example.

Example 2.5. Let M = {1, b, ¢, x}(taken from Exercise 10 in Chapter VI of [24]) with the multiplication

M ‘ 1 b ¢ «x
1 1 b ¢ x
b |b b b b
clc ¢ ¢ ¢
x | x ¢ b 1

Then M is a monoid and
EM) ={1.b,c}. V(1) ={1},V(b) = {b.c} = V(c). V(x) = {x}.
It is easy to check that M contains no inverse transversal.

In the remainder of this section, we consider some properties associated to generalized Ehresmann semigroups which
will be used in the next sections. Let (S, -, T, *, 7) be a generalized Ehresmann semigroup. Denote

Is ={xT|x e S}, As = (x*|x € S}, ES = (xT|x € S}.
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Lemma 2.6. Let (S, -, ., *, 7) be a generalized Ehresmann semigroup.

(@) it =i i*=iand \* = A, AT = Aforalli € Is and A € Ag.

(b) Eg ={x"|xeS}=1IsNAg,

(¢) xtrxT and x*Rx*.

(d) Is is aleft normal band, A s is a right normal band and Eg is a subsemilattice of S, respectively.
Proof. (a) Using identities (1),(4) and (3) in Table 1, we have

= (Tt = ettt = x et
and so xT € E(S). Take i € Is. Theni = xt for some x € S. This implies that
it = (H)T = (txt)yt = xtat = 2t
by xT € E(S) and the identity (3). Moreover,
i*=@h)*=xt=xt =7

by the identities (5) and (6). By symmetry, A* = A and AT = A forall A € Ag.

(b) By identity (5), xt = (xH)* elsnNAgforallx € S.Nowletu = x+ € Is N Ag forsome x € S. Using
item (a) and the identity (5), we have

u=u*=@xhH*=xTe¢ ES.
Thus Eg = Is N Ag. Dually, {x*|x € S} = Is N As.
(c) Using identities (7), (4), (3), (4), (5)" and (1)’ in Table 1 in that order, we have
xt = (TR T = TE) )T = xTE )T = xTEREH )T =xTEIH)T = xTxT.
Since ¥ € Ag by (b), we have (x T)* = X1 by (a). Using the identities (5), (8) and (6), we have

shxt=ahH)xt =)t =cH*st =xtxt =xt.

This shows that x T £XT. Dually, x*RX*.

(d) In view of the proof of item (a), every element in /g is idempotent. By the identity (3), xt y+ = (x+ y+)+ elg
for all x T, y"’ € Is. So I is a subband of S. By the identity (2) and (2)" and item (b), Eg is a subsemilattice of
S. Moreover, for x, y,z € S, by identities (5), (8) and (6) and items (b) and (a), we have

J— 7*7 — J— J— J—
x+y+ — (x+)*y+ = x+ y+ — (x+)*y+ — x+y+.
Similarly, y""z"' = y"'f"". In view of item (c) and the fact that F g is a subsemilattice,

xtytot = ptxtytot o xtyetytot = pbxtytet

= xtxtytzt = xtytzt = xtztyt

Similarly, we have x Tz Tyt = xtZT5T. This yields that /s is a left normal band. Dually, A s is a right normal
band. O

Let S be a semigroup. Recall that the natural partial order “ < " on E(S) is defined as follows:
e < fifandonlyifef = fe =eforalle, f € E(S). 3)

Lemma 2.7. Let (S, -, ., *, 7) be a generalized Ehresmann semigroup and x, yes.
(@ et =xt@EHT e =Ey*
(b) (xn)t <xF, (ey)* < y*.
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(c) Xy =X7Y.
Proof. (a) Using the identities (4), (7), (8), (1), (4) and (3) in that order, we have
et =yHt =t yhHt = txxeyht
=txyht =aTxpt =atenhHt =xFan®
Dually, (xy)* = (X y)*y*.
(b) Since (xy)T = xT (X 7)T by item (a), we have x T (xy)T = (xy) . Moreover, by the identity (2),
ntxt =xTEyptxt =xtEyn® =t
So (xy)T < xT. Dually, (xy)* < y*.

(c) In view of the identity (8) and items (b), (d) in Lemma 2.6, we have (x T)*(x )+ = xT* ﬁ_l_ € E% so that
(xH*Ey)T)* = (xT)*(® ¥)T by Lemma 2.6 (a). Using the identity (5), item (a) of this lemma, the identities
Y, (5), (3), (4), (1) in that order, we obtain that

ot =H* =crtenhH =ehH*aEnhH*
=ehHrant=xtaent=ctapHt=ctxnt=cnt
Dually, Xy™ = (¥ ¥)*. Using the identities (1) and (1)’, Lemma 2.6 (c), the identities (7), (8), (1), (1Y, item (b) of
this lemma, Lemma 2.6 (c), the identities (1) and (1)’ in that order, we get

=ty w =t ety @)t = otont = ottty Tyt

=oxtx eyt ot =ttt = @ttty e
=E)TX T Y EY =@ty ey =T yEnt =37,

as required. O

3 The semigroup C; k-

We call a generalized Ehresmann semigroup (S, -, T, *, 7) fundamental if the largest semigroup congruence s
contained in the equivalence
{(a,b) e S x Slat =bT,a* =b*}

is the identity relation on §. In this section, we shall construct a fundamental generalized Ehresmann semigroup
which plays the similar role in the class of generalized Ehresmann semigroups as the Munn semigroup of a
semilattice in the class of inverse semigroups. To do this, we need to introduce the notion of admissible triples,
which is motivated by Lemma 2.6.

Definition 3.1. Ler I (resp. A) be a left normal band (resp. a right normal band), E° = I N A a subsemilattice of
I and A. The triple (I, A, E®) is called admissible if for all g € I and f € A, there exist g°, f° € E° such that
gLg® and fRfC.

Remark 3.2. Let (I, A, E°) be an admissible triple. Since E° is a subsemilattice, the elements g° and f° in
Definition 3.1 are uniquely determined by g and f, respectively. In particular, i € E° if and only if i°® = i.

Remark 3.3. Let (S, -, T, *, 7) be a generalized Ehresmann semigroup. By Lemma 2.6 (b), (c¢) and (d),
(Is,As, Eg) is an admissible triple which will be called the admissible triple of S. In this case, for alli € Ig
and X € A, we have i° = i* and \° = AV Infact, if xT € Ig, then by the identity (5) in Table I and Lemma 2.6
(c), we have xt LxT = (x1)*. The case for A € As can be showed dually.
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To construct the semigroup C(s A ge) of an admissible triple (/, A, E°®), we need some preliminaries. First, we
have the following basic facts on admissible triples.

Lemma 3.4. Let (I, A, E°) be an admissible triple and e, g € I, f,h € A. Then
eg = eg°.(eg)° = e°¢°. fh= f°h.(fh)° = f°h°.
Moreover, we have eE°e = eE° and fE° f = E° f, which are subsemilattices of I and A, respectively.

Proof. Since g£g° and [ is a left normal band, we have eg = egg® = eg®g = eg®. This implies that e®°g = ¢°g°,
and so egLe®g = e°g°® € E° by the fact that eLe®. This yields that (eg)® = e°g®°. Finally, it follows that
eE°e = eE° by the fact that [ is a left normal band. Moreover, for i, j € E°, we have

(ei)(ej) = (eie)j = eij =eji = (eje)i = (ej)(ei),
whence e E° is a subsemilattice of /. The remaining facts of this lemma can be proved by symmetry. O

Let (I, A, E°) be an admissible triple. We use I 1 (resp. Al to denote I (resp. A) with the identity adjoined.
Furthermore, we always assume that 1° = 1 for the adjoined identity 1 on both I and A. A function 7 from 1! to A
is called order-preserving if xn < ynin A forall x, y € I'' with x < y in I, where < is defined in (3). Denote the
set of order-preserving functions from 7! to A by O(J! — A). Dually, we also have O(A! — I). Similarly, we
have O(I! — I) and O(A! — A). Moreover, we denote the set of the morphisms from /! to A by End(/' — A).
Dually, we have End(A! — I). Obviously,

End(I' > A) c 0! - A),End(A' - 1) C O(A! - 1).
For every e € I (resp. f € A), define
pe: IV > I, x> ex (resp. o7 : A 5> A x> xf).

Then it is easy to see that p, € O(I' — I)and oy € O(A! — A)foralle € I and f € A as I is a left normal
band and A is a right normal band. Moreover, we use p1 and o1 to denote the identity maps on I and A, respectively.

Lemma 3.5. Let (I, A, E°) be an admissible triple. Define a multiplication “ o " on O(1' — A)as follows: for all
a, B0l > A),
aoB: I > A x — (xa)°B.

Then O(I' — A) is a semigroup with respect to “ ¢ ". Dually, for a, B € O(A' — I), define
Bra: Al = I x+— (xp)°a,
then O(A' — I) forms a semigroup with respect to “ x "
Proof. Since @ # End(I' — A) C O(I' — A), it follows that O(I' — A) # @. Observe that
x® <y°forallx,y eI (orx,y e A withx <y )

by Lemma 3.4. Let x,y € I! and x < y. Then xo, ya € A and xa < yo as o is order-preserving. This implies
that (xa)® < (ya)®. Observe that f is also order-preserving, it follows that ((x@)°)8 < ((y@)®)B. Thusa ¢ 8 €
OU' - A).Nowleta, B,y € OI' — A)and x,y € I'. Then

xl@op) oyl =[(x(eo p)°ly = [(xa)°Bl°y = (xa)°(Boy) = x[x o (B oy)l.

This implies that O(/! — A) is a semigroup with respect to “ ¢ ". Dually, O(A! — I) forms a semigroup with
respect to “ x . O
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Corollary 3.6. Let (I, A, E°) be an admissible triple, and ““ o " and “ x " be defined as in Lemma 3.5. Then
O = A) x O(A' — I) forms a semigroup by defining
(. B)(y.8) = (@ o y. 8 B)
forall (o, B), (y,8) € OU' — A) x O(A! - I).
The semigroup O(I' — A) is partially ordered by “ < " where forall a, € O(I' — A),
a < Bif and only if xao < xf in A forall x € It

Similarly, the semigroups O(A! — I), O(I' — I) and O(A! — A) can be partially ordered, respectively.
Consider the subset

Cu.aee) =@ BI(Yx e IN)(Vy € A)x°a = xa, y°B = yB,0xa < Box, pyp < @0y f}
of the product semigroup O(I' — A) x O(A' — I).
Lemma 3.7. Let (I, A, E®) be an admissible triple. For e € I, define 8, and te as follows:
Bp: IV > A, x> e°x, 1o: A = I,x > ex®.
Then (B¢, te) € C(1. A, E°). Dually, for f € A, define ny and & as follows:
np oIV = A x> x°f, Ep i AV > ILx e xf°.
Then (nf,&r) € Cr. A, E°). Moreover, ife € I N A = E°, then (6¢,t¢) = (e, &e)-

Proof. Firstly, by Lemma 3.4, we have ¢°x = ¢°x® € E® C Aforall x € I,and x° € E°,ex® € [ forall x € A.
Therefore 0, and 7, are well-defined. Secondly, since / is a left normal band, we have

(x0e)(y0e) = (e°x)(e°y) = e°xe®y = e®xy = (xy)0,
forallx,y € I On the other hand, by Lemma 3.4, we have
(xTe)(yTe) = exey® = ex®y° = e(xy)° = (xy)te

for all x,y € A'. This shows that 6, and 7, are morphisms and so order-preserving. Thirdly, if x € I, then
x0e = e®x = e°x° = x°6,. Similarly, yz, = ey°® = e(y°)° = y°t, forall y € A. Finally, let x € I and
u € Al. Then by Lemma 3.4,

UOxg, = UTeox = U(e®x) = u°(e®x°) = u®e®x®

and
U(tepxBe) = e°(x(eu®)) = e°(x(eu®)®) = e°(xe°u®) = e°xu® = e°x°u® = u°e°x°.

This implies that oxg, = Tepx0e for all x € It Similarly, pyr, = Oe0y1, forall y € A'. Thus (Be,Te0) €
C.a E%)-Dually, (nr,6r) € Cs. A E°). If e € E°, then e® = e and so

X0, = e°x = e°x° = ex® = x°%e = x1,
for all x € I''. This shows that 8, = 7. Dually, 7o = £. O
Lemma 3.8. C(;.a.go) is a subsemigroup of O(I' — A) x O(A' — I).
Proof. Denote C = Cy A o). We have seen that C is non-empty by Lemma 3.7. Let («, ), (y,§) € C. Then

(@, B)(y.8) = (@ oy, 8 % B).
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We first show that ox(qoy) < (6 * B)px(x ¢ y) forall x € I'. Letu € A'and x € I'. Then u6 € I and
(ué)® € I N A. Since oxy < PBpya by the fact that («, 8) € C, we have (u§)°0xq < (u8)°Bpxa whence
ué)°(xa) < (x((ud)°B))a. In view of (4) and Lemma 3.4, we can obtain that

(xe)® () = (xe)®(d)® = (()°(x))® = ((x((u8)°B))ax)°.
Since y is order-preserving, it follows that

u@pxarey) = ((xa)°(ud))y < (x()°B))e)*)y = u(d » f)px (e © y).

This shows that §p(xe)oy < (8§ * B)px(a © ). Since 0y,y < 8pyy for all v € I by the fact (y,6) € C and
(xa)® € I, it follows that

Ox(aoy) = O(xaey < 8pxayey < (8 B)px(a o y).

Finally, let x € I. Since x°a = xa by the fact that (¢, B) € C, we get
x(@oy) = (xa)’y = (x°a)°y = x°(a o y).

By symmetry, we can obtain pys«p) < (@ ¢ ¥)0y (8 x B) and y°(§ « B) = y(§ x B) for all y € Al. Thus
(o, B)(y,8) € C. So C is a subsemigroup. O

Now, we are in a position to state our main result of this section.

Theorem 3.9. Define three unary operations on the semigroup C = C(y A E°) as follows:

(@.f)F = @" ) (@.p)* = @ ). (@B) = @5h)

where
a:I' > A x> (xa)°, B:A'—> I x> (xB)°,

ot = 018 : I" 5> A x> (1B)°x, pt = 718 : A = I, x> (18)x°
o =g IV > A x> x°(la) ¥ =E1q A > x> x(12)°.

Then (C, -, t, *, ™) is a generalized Ehresmann semigroup.
Proof. Let («, ) € C. By Lemma 3.7 and the fact that 18 € I, lae € A, it follows that

((X+,/3+) = (elﬂstlﬁ) € C7 (Ol*,,B*) = (771067&101) eC. (5)

This shows that “ 4+ " and *“ * " are well-defined.
Now, let (¢, B) € C. Then

x°a = xa, y°f = yB,0xa < Boxa, pyp < 0oy p

forallx € I'andy € Al. Let x,y € I' and x < y. Since « is order-preserving, xoa < ya. It follows that
x@ = (xa)° < (ya)® = y@ by (4). This shows that @ is order-preserving. Dually, B is also order-preserving.
Moreover, for all x € I'!, we have
xa = (xa)® = (x°a)® = x°a
as x°o = xa for all x € I!. Dually, we have yB = y°B forall y € A!. Now let x € I!. Foru € A, since
Oxa < Bpxa, we have uoyy < ufpye. Thatis, u(xa) < (x(uB))a. By (4), (u(xx))° < ((x(uB))x)°. This implies
that
uoxg = u(xe) = u(xe)® = u°(xa)® = (u(xa))® < ((x@p))a)°

= (xP))a)® = (xuP)°)& = (uP)° (px@) = u(Bpxa)

by Lemma 3.4. This shows that 0,z < Bpxa forall x € I'!. Dually, PyE = @0y forall y € Al. Thus (@, B) € C.
This implies that “ — " is also well-defined.
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We next show that the identities (1-8) in Table 1 are satisfied. By symmetry, the identities (1)’-(6)" also hold. Let
(a,B), (y,8) € C.

(1) For x € I, we have 0 < Bpxa by the fact that (a, ) € C. So

xo = loxa < 1(Bpxa) = (x(18))a.

Since [ is a left normal band, we have x(18) < x. This shows that (x(18))a < xa as « is order-preserving. So
xa = (x(18))a. Observe that v°a = va forall v € 1! by the fact that (o, B) € C, it follows that (x(18))a =
(x(18))°a. Thus

xa = (x(1f)a = (x(18))°¢ = (x°(18)°)a = (18)°x)°a = x(a o a) (©)
by lemma 3.4. We have shown that a7 ¢ @ = . Dually, 8 « B = . Thus
(@B (@.B) =" )@ p) =@t oa,pxpT) = (h).
(2) For x € I, by Lemma 3.4 we have
x@t oyt =(xa®)yt = ((18)°x)°y T = (1H)°x°)yT = (16)°((18)°x°) = (16)°(18)°x° (D)

and
(@t oyNoa™) = (x@t oyt = ((16°(18)°x°)°a™

= ((19°(18)°x%)a™ = (18)°(18)°(18)°x° = (18)°(18)°x°.
This implies that ™ o yt = o o yT o t. Dually, B+ « §+ « g7 =5+ « 7. Thus
@B @t =@hT T
(3) Forall x € I'', we have x (@t o yT) = (16)°(18)°x° by (7) and
x@toyt)T = (16T « 7))°x = (18)(18)°)°x = (16)°(18)°)x = (16)°(18)°x°

by Lemma 3.4. This yields that «t o yt = (@t o y1)t. Dually, 67 « g™ = §+ » g+. Thus
(@ATErHHT =(@.pHT ¢t
(4)Forall x € I'', we have x(a o )T = (1(§ » B))°x = ((18)°B)°x and

x(@oyt)T = (16T «f)°x = (167)°)°x = ((16)°B)°x.
This implies that (o ¢ )T = (¢ o yT)T. Dually, (§ » /)T = (67 % )T. Thus
(@B = (@.pHr6H .
(5) Forall x € 1!, by Lemma 3.4 we have
x(@H)* =x°(1a™) =x°(1)° = (18)°x° = (1)*°x° = (1/)°x° = (1f)°x = xa@ ™. ®)
This shows that («)* = @+. Dually, (87)* = B . Thus (o, B))* = (@, B) .
(6) For all x € I'', by Lemma 3.4 and (8) we have

xat = (18)°x° = ((18)°x)° = (xa*)° = xa F.

Soat = . Dually, B+ = B+. Thus (Ol,,3)+ = (o, B)t.

(7)Forallx € I, by Lemma 3.4 and (6), we have

x@to@oa®) = ((18)°x°)e)° (1) = ((18)°x)°@)°(1a) = (xa)°(lar) = (xa)(lax).



1142 — S.Wang DE GRUYTER OPEN

Since x < 1 and « is order-preserving, we have (xa)(lar) = xa. This shows that x(a o @ ¢ «*) = xa. So
at o@oa* = a. Dually, B* »  » T = B. Thus

(@.B) = (. )T (@ B B)*.
(8) Forallx € I'!, by Lemma 3.4 we have
x(@* oyt = (xa®)°yt = (x°(12))°y T = (16)°x°(1a)°
and
x@ oyT) = (x@*)°yT = (x°(1@)°y Tt
= (x°(10)°)°7t = (°(1)°)y T = (18)°x°(1)° = (18)°x°(1t)°.
This shows that a* o y* = @* o 7T Dually, §T  * = §  « B". Thus

@B T =@ p mo

We have shown that (C, -, T, *, 7) is a generalized Ehresmann semigroup. O

Remark 3.10. In the case that I = A = E° is a semilattice, the above semigroup C(j A E°) is exactly the
Ehresmann semigroup Cgo constructed in [6].

Corollary 3.11. On the semigroup (C, -, T, *, ™), we have
Ic ={(0e.Te)le € I}, Ac ={(nr. &) f € A} EC = {(e. Te)le € E°}.
Proof. In view of (5), it follows that
(@.p)F =@ pT) = (O1p.11p)

for all («, B) € C. This gives Ic C {(0¢, te)|e € I}. Conversely, for e € I, we have (6, 7.) € C by Lemma 3.7.
So

(Be.te) = (B2, T1z,) = (B, we) T € 1.

Thus Ic = {(0¢,te)|e € I}. Dually, Ac = {(nr.&r)|f € A}
For (o, B) € C,we have 18 € I and (18)° € E°. By (5), we have

@B =@hHT =@ ) =515 = Oape-tape) € {Be.te)le € E°.
This shows that E2. € {(6e. te)|e € E°}. Conversely, for e € E°, by (5) again we have
(Oe, Te) = (Oeo, Teo) = (B17,)°5 T(17,)°)
= (Orez.t1m) = O % h) = Bo 7))t = erte) ' € B
Thus EZ = {(fe, te)|e € E°}. O

We say that two admissible triples (I, A, E°) and (J, I1, F°) are isomorphic if there exist an isomorphism ¢ from
I onto J and an isomorphism i from A onto IT such that

@lEe = Y|Eo. E°p = F°.

If this is the case, then one can easily show that C(; A o) is (2,1,1,1)-isomorphic to C(s 11, re). Moreover, we have
the following.

Corollary 3.12. Letr (I, A, E°) be an admissible triple. Then (I, A, E®) is isomorphic to the admissible triple
(Ic.Ac.EZ) of C = C(j.A,E°).
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Proof. By Corollary 3.11, we can define the following surjective mappings

(p:l_)lcve'_)(9€7‘[€)v WA%AC7f'—>(77fvgf)

On the other hand, if e, g € I and (6. te) = (fg.1g), then 7, = 7z and so e = 1t, = Ity = g. Thus ¢ is also
injective. Finally, let e, g € I and x € I'. Then we have

x(0e 0 0g) = g°(e°x)° = g%°x° = (eg)°x° = (eg)°x = Ocg
by Lemma 3.4. This shows that 8, ¢ 8y = 0.g¢. Dually, 15 * To = Teg. Thus

(€8)p = (Oeg, Teg) = (0e © g, g x Te) = (e, Te)(Og, T2) = (e@)(g@).

This implies that ¢ is a morphism. Dually, 1 is also a morphism. Furthermore, by Lemma 3.7 and Corollary 3.11,
we can see that 9| go = Y| go and E°p = E2. O

Corollary 3.13. Ler (I, A, E®) be an admissible triple and D a (2,1,1,1)-subalgebra of C = C(y. A . Eo) containing
E g Then D is fundamental. In particular, C itself is fundamental.

Proof. Let D be a (2,1,1,1)—subalgebra of C and (¢, B), (y,8) € D such that («, §) is up-related to (y, ). Then
(@,/)F = (.8)T and (o, B)* = (y.8)* whenceat =y, T =6 anda™ = y*, f* = 6*. By a* = y*, we
get la = la™ = 1y* = 1y. Now let x € I. Then x® € E°. By Corollary 3.11, (6xo, Tx0) € E& € D. Since pup
is a semigroup congruence on D, it follows that

(Oxo 0, B x Tx0) = (Oxo, Txo) (@, B) D (Oxo, Txo)(¥,8) = (Oxo © ¥, 8 * Txo)
whence (Bxo © a)* = (Ox0 ¢ y)™. This implies that
x%a = (x°)%a = (10x0)°a = 1(Ox0 0 ) = 1(Oxo0 ¢ )™

= 1(0xc 0 )" = 1(Oxe 0 y) = (10x)°y = (x°)%y = x°y.

On the other hand, we have xa = x°a and xy = x°y by the fact («, 8), (y,8) € C. This implies that x& = xy.
Thus & = y. Dually, B = §. Therefore p is the identity relation on D. That is, D is fundamental. O

4 A representation of generalized Ehresmann semigroups

In this section, we always assume that (S, -, T, *, 7) is a generalized Erhesmann semigroup. Then we have the
admissible triple (/s,As, ES) of S and the semigroup C;¢ A, E2) by Remark 3.3 and Theorem 3.9. The aim
of this section is to show that there exists a (2, 1, 1, 1)- homomorphism ® : § — C(IS,AS,Eg) whose kernel is
s . To accommodate with the notations of Section 3, we use the notations from Section 3 for the admissible triple
(Is.As. ES) throughout this section.

We first consider some properties of the admissible triple (/s, A s, ES) of S and the semigroup C;¢ . E2)-
Denote C(Is,As,Eg) by C for convenience. In view of Remark 3.3, in the admissible triple (Is, A s, Eg), for all
i €lsand A € Ag, we have

i°=i*and A° = AT,

For a € S, there are functions

aq: 1§ —As, Ba:AL —Is
given by

xog = (xa)*, xBa = (ax)T.

Lemma 4.1. With above notation, we have the following results:
(a) Foralla € S, a, € O(Ié — Ags)and B, € O(A}S — Ig).
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(b) Forall x € Ié and y € A}g, xag = x°ay and yBa = y°Ba.
(c) Foralla € S and x € Ié andy € AIS, Oxay < Bapxttq and pyg, < aqoyfa.
(d) Foralla,b € S and x € 151* and y € Ag, (xag)°ap = xagp and (¥Bp)°Ba = YBab-

Proof. (a)Letx,y € Ié with x < y.Then xy = yx = x. It follows that xa, = (xa)™ = (xya)* < (ya)* = yay,
by Lemma 2.7 (b), whence oy € O(I1 — Ag). Dually, B, € O(AL — Ig).
(b) Observe that x° = x™ for all x € Ig, it follows that

xag = (xa)* = (x*a)* = x*ay = x°a,
by the identity (4)" in Table 1. Moreover, since 1° = 1, we have la, = 1°a,. Thus xa,; = x°a, forall x € é
Dually, yBy = y°Ba forall y € AL,

(c)Letu € Als. Then
UOxa, = U(xag) = u(xa)* € As, u(Bapxtta) = (x(au)Ta)* € As.

By Lemma 2.7 (a),
u(xa)*a* = u(xa)*, (x(auw)Ta)*a* = (x(au)Ta)*.

Since A s is a right normal band, we have
u(xa)* - (x(au)Ta)* = u(xa)* - (x(auw)Ta)* -a*

= (x(auw)Ta)* - u(xa)* -a* = (x(au)Ta)* -u(xa)*.

On the other hand, since u(xa)* € A, we obtain that (u(xa)*)* = u(xa)*™ by Lemma 2.6 (a). Using the identity
3Y, (4), (1), (4) and the fact that A g is a right normal band successively, we get

(x(an)Ta)* - u(xa)* = (x(a)Ta)* - @xa))* = (x(@)*a)* - wxa)*)*)* =

(x(au) Tau(xa)*)* = (xau(xa)*)* = ((xa)*u(xa)*)* = (u(xa)*)* = u(xa)*.

Thus

UOxa, = u(xa)" < (x(au)*a)* = u(Bapxtta)
forallu € Ag. That is, 0xa, < Bapxq.Dually, pyg, < 00y Ba.
(d) For x € I;, we have xa € Ag and (xa)°® = (xag)T = ((xa)*)*. Using Lemma 2.7 (a), the identities (6),
(6)’, Lemma 2.6 (a), (b), the identity (4)" and Lemma 2.7 (a) in that order, we have

(xaa)°ep = ((xa)*) Dy = (xa)*) Th)* = ((xa)*)Tb)*b*
= ((xa)*+5)*b* = ((x@a*)Th)*b* = (xa*b)*b* = (xab)*b* = (xab)* = xauyp.

Dually, (¥85)°Ba = yBan- O
Now we can state our main result in this section.
Theorem 4.2. Define ® : S — C,a — (ag,Bg). Then ® is a (2,1, 1, 1)-homomorphism whose kernel is |Ls.
Moreover,
(a) |1y isa(2,1,1,]1)-isomorphism from Is to Ic.

(b) @Ay isa(2,1,1,1)-isomorphism from As to Ac.
(c) ®lgg isa(2,1,1,1)-isomorphism from ES 1o EZ..
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Proof. By (a), (b) and (c) of Lemma 4.1, (¢g, Ba) € C for all a € S. Observe that (ag, Ba)(ap, Bp) = (g ©
ap, Bp * Bg) in C and

x(ag © ap) = (xaa)°ap = xtqp, y(Bp * @a) = (¥Bp)°Ba = YBas
forall x € I} and y € A} by Lemma 4.1 (d). It follows that
(@®)(b®) = (aa, Ba)(@p, Bp) = (@ap, Bap) = (ab)®.

Thus @ preserves the binary operation.
Let x € I}. Then

xtpt = (xaT)* = (xa™)° = x°@™)® = (@™)°x° = (@")°x = (18,)°x = xa}
by Lemma 3.4. This shows that a,+ = a7 . Dually, B,+ = B4 . So
at® = (4. But) = (@f BT = (@a. Ba) T ©)

This shows that ® preserves “ + ". Dually, ® preserves “ * ".
Letx € Ié. If x = 1, then

xag = lag =a"* = ()" = (lag) T = (lag)° = log = x0g

by the identity (5) in Table 1. If x € Ig, using the identity (4)’, Lemma 2.6 (a), Lemma 2.7 (c), the identity (5)" in
that order, we have

xag = (xa)* = (x*a)" = F@)* =% = (xa))" = (x0)*)° = (xaa)® = x.
This shows that oz = @. Dually, Bz = Ba. So
a® = (oz, Ba) = @a, Pa) = (@a, Ba) = a®.
Thus & preserves “ — ". We have proved that ® is a (2, 1, 1, 1)-homomorphism and so
ker® = {(a,b) € S x S|ag = ap, Bpr = Ba}

isa (2,1,1,1)-congruence on S. If (a,b) € ker ®, then we have a* = la, = lay, = b*. Dually, a™ = bT. This
shows that
ker® C {(a.b) € S x Slat = bt a* = b*}.

Let o be a semigroup congruence on S and aob such that
o C{(ab)eSxSlat =bT,a* =b*}.

Then for all x € Ié, we have xaoxb, whence xa, = (xa)* = (xb)* = xay. This shows that &y, = . Dually,
Ba = Bp. Thus (a, b) € ker ®. We have shown that ker @ is the largest semigroup congruence contained in

{(a,b) € S x S|laT =bT,a* =b*}.
That is, us = ker ®.
(a) Since Is = {at|a € S} and
at® = (a.fa)* € Ic = {(@.B)F|(@.p) € C}

by (9), it follows that Ig® < Ic. Now, let (a, 8)T = («F,81) € I¢c where (o, f) € C. Then 18 € Is. For
X € Ié, we have

xaig = (x(18))* = (x(1B))° = x°(18)° = (18)°x° = (18)°x = xa ™"
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by Lemma 3.4, which implies that a1 5 = @ . Dually, 815 = B+ Thus

(1B)® = (a1, f1p) = (@t 1) = (@. B

This gives [s® = Ic and so ®|;4 is surjective. If i, j € Ig and i® = j &, then (i, j) € ker @, this implies
i =it =T = j by Lemma 2.6 (a) and the fact that

ker® C {(a,h) € S x Slat =bT,a* = b*}.

it follows that ®|; is also injective. In view of Lemma 2.6, Is and I¢c are (2,1,1,1)-subalgebras of S and C,
respectively. By the first part of the theorem, ®|; isa (2, 1, 1, 1)-isomorphism from /g to Ic.

(b) This is the dual of (a).
(¢) This follows from items (a) and (b). O

A (2,1,1,1)-subalgebra D of a generalized Ehresmann semigroup (S, -, +* 7)) is called quasi-full if Is UAs C
D. Combining Corollaries 3.12 and 3.13 and Theorem 4.2, we obtain the main result of this paper.

Theorem 4.3. Let (I, A, E°) be a given admissible triple. Then (S, -, T, *, 7) is a fundamental generalized
Ehresmann semigroup whose admissible triple is isomorphic to (I, A, E®) if and only if it is (2,1,1,1)-isomorphic to
a quasi-full (2,1,1,1)-subalgebra of C(y A E°)-

Considering the case that I = A = E° is a semilattice, by Remark 3.10 we have the following corollary which is
Theorem 3.2 in [6] substantially.

*

Corollary 4.4. Let E be a given semilattice. Then (S, -, *, 1) is a fundamental Ehresmann semigroup whose

distinguished semilattice is isomorphic to E if and only if it is (2,1,1)-isomorphic to a (2,1,1)-subalgebra of Cg
containing the distinguished semilattice of CEg, .
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