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Abstract: As a generalization of the class of inverse semigroups, the class of Ehresmann semigroups is introduced
by Lawson and investigated by many authors extensively in the literature. In particular, Gomes and Gould construct
a fundamental Ehresmann semigroup CE from a semilattice E which plays for Ehresmann semigroups the role that
TE plays for inverse semigroups, where TE is the Munn semigroup of a semilattice E. From a varietal perspective,
Ehresmann semigroups are derived from reduction of inverse semigroups. In this paper, from varietal perspective
Ehresmann semigroups are extended to generalized Ehresmann semigroups derived instead from normal orthodox
semigroups (i.e. regular semigroups whose idempotents form normal bands) with an inverse transversal. We present
here a semigroup C.I;ƒ;Eı/ from an admissible triple .I;ƒ;Eı/ that plays for generalized Ehresmann semigroups
the role that CE from a semilattice E plays for Ehresmann semigroups. More precisely, we show that a semigroup is
a fundamental generalized Ehresmann semigroup whose admissible triple is isomorphic to .I;ƒ;Eı/ if and only if
it is (2,1,1,1)-isomorphic to a quasi-full (2,1,1,1)-subalgebra of C.I;ƒ;Eı/. Our results generalize and enrich some
results of Fountain, Gomes and Gould on weakly E-hedges semigroups and Ehresmann semigroups.
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1 Introduction

Let S be a semigroup. We denote the set of all idempotents of S by E.S/ and the set of all inverses of x 2 S by
V.x/. Recall that

V.x/ D fa 2 S jxax D x; axa D ag

for all x 2 S . A semigroup S is called regular if V.x/ 6D ; for any x 2 S , and a regular semigroup S is called
inverse if E.S/ is a commutative subsemigroup (i.e. a subsemilattice) of S , or equivalently, the cardinal of V.x/ is
equal to 1 for all x 2 S .

Recall that a regular semigroup S is fundamental if the largest congruence contained in H on S is trivial.
Structure theorems for certain important subclasses of the class of fundamental regular semigroups are already
known. Munn [1] initiated the work in this direction. He proved that given a semilattice E, the Munn semigroup
TE of all isomorphisms of principal ideals of E is “maximal" in the class of all fundamental inverse semigroups
whose semilattices of idempotents are E, that is, every semigroup belonging to this class is isomorphic to a full
inverse subsemigroup of TE . Further from Munn [1] if S is an inverse semigroup such that E.S/ is isomorphic to a
given semilattice E, then there exists a homomorphism f W S ! TE and the kernel of f is the largest congruence
contained in H on S .

The pioneer work of Munn was generalized firstly by Hall in 1971 to orthodox semigroups (i.e. regular
semigroups whose idempotents form subsemigroups) in [2] in which the Hall semigroup WB of a band B was
constructed. Recall that a band is a semigroup in which every element is idempotent. The Hall semigroup WB
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has properties analogous to those described above for TE (see Hall [2] for details). As another direction, Fountain
[3] generalized Munn’s result to a class of non-regular semigroup, namely ample semigroups. The next step in
this direction was made by Fountain, Gomes and Gould in [4] where by using of a completely fresh technology
they considered the class of weakly E-hedged semigroups which is a special class of Ehresmann semigroups first
defined by Lawson in [5]. The natural next step in this direction is to look at the whole class of Ehresmann
semigroups. This is done by Gomes and Gould in [6] in which they removed the “weakly E-hedged" condition
from [4] and considered the whole calss of Ehresmann semigroups. For a given semilatticeE, in [6] the authors have
constructed a semigroup CE which plays the TE role for Ehresmann semigroups and generalized the main results
in [4]. Furthermore, El-Qallali-Fountain-Gould [7], Gomes-Gould [8] and Wang [9] went a step further to extend
Hall’s approach for orthodox semigroups to some classes of non-regular semigroups having a band of idempotents.
It is worth remarking that the class of Ehresmann semigroups and its subclasses are investigated extensively in
literature by many famous semigroup researchers (see [10-13] for example). In particular, Jones [12] provided a
common framework for Ehresmann semigroups and regular *-semigroups from varietal perspective. More recent
developments in this area can be found in good survey articles by Gould [11, 14] and Hollings [15, 16].

On the other hand, Blyth-McFadden [17] introduced the concept of inverse transversals for regular semigroups.
A subsemigroup Sı of a regular semigroup S is called an inverse transversal of S if V.x/ \ Sı contains exactly
one element for all x 2 S . Clearly, in this case, Sı is an inverse subsemigroup of S . Since an inverse semigroup
can be regarded as an inverse transversal of itself, the class of regular semigroups with inverse transversals contains
the class of inverse semigroups as a proper subclass. Regular semigroups with inverse transversals are investigated
extensively by many authors (see [18-21] and their references) and some generalizations of inverse transversals are
proposed, see [22, 23] for example.

Inspired by the approach used in Jones [12], in this paper a common framework, termed generalized Ehresmann
semigroups, for Ehresmann semigroups and normal orthodox semigroups with an inverse transversal is introduced
from varietal perspective, where a normal orthodox semigroup means a regular semigroup whose idempotents form
a normal band. We construct a semigroup C.I;ƒ;Eı/ from the so-called admissible triple .I;ƒ;Eı/ that plays for
generalized Ehresmann semigroups the role that CE from a semilattice E plays for Ehresmann semigroups. More
precisely, we show that a semigroup is a fundamental generalized Ehresmann semigroup whose admissible triple
is isomorphic to .I;ƒ;Eı/ if and only if it is (2,1,1,1)-isomorphic to a so-called quasi-full (2,1,1,1)-subalgebra
of C.I;ƒ;Eı/. This generalizes and enriches some results of Fountain, Gomes and Gould on weakly E-hedges
semigroups and Ehresmann semigroups obtained in texts [4] and [6].

2 Generalized Ehresmann semigroups

In this section, after giving some preliminary results on Ehresmann semigroups and inverse transversals, we introduce
generalized Ehresmann semigroups and consider some basic properties of this class of semigroups. Firstly, we
consider Ehresmann semigroups. Let S be a semigroup and let E � E.S/. The relation eRE is defined on S by
the rule that for any x; y 2 S , we have xeREy if

ex D x if and only if ey D y for all e 2 E:

Dually, we have the relation eLE on S . Observe that both eRE and eLE are equivalences on S but eRE (resp. eLE ) may
not be a left congruence (resp. a right congruence). From Lawson [5], a semigroup S is an Ehresmann semigroup
with respect to E (or .S;E/ is an Ehresmann semigroup) if
(1) E is a subsemilattice of S ,
(2) every eRE -class contains a unique element of E and eRE is a left congruence,
(3) every eLE -class contains a unique element of E and eLE is a right congruence.

If this is the case, E is called the distinguished semilattice of S . We say that a semigroup S is Ehresmann in the
sequel if .S;E/ is an Ehresmann semigroup for some E � E.S/. From Lemma 2.2 and its dual in Gould [14], we
have the following characterization of Ehresmann semigroups from a varietal perspective.
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Lemma 2.1. A semigroup .S; �/ is Ehresmann if and only if there are two unary operations “C " and “� " on S such
that the following identities hold:

xCx D x; xCyC D yCxC; .xCyC/C D xCyC; .xy/C D .xyC/CI

xx� D x; x�y� D y�x�; .x�y�/� D x�y�; .xy/� D .x�y/�I .xC/� D xC; .x�/C D x�:

In this case, S is an Ehresmann semigroup with distinguished semilattice fxCjx 2 Sg.D fx�jx 2 Sg/, and we shall
call .S �; C; �/ an Ehresmann semigroup.

Now we consider regular semigroups with an inverse transversal. Let S be a regular semigroup and Sı an inverse
transversal of S . For any x 2 S , we use xı to denote the unique inverse of x in Sı and let xıı D .xı/ı. We can
consider the induced tri-unary semigroup .S; �; C; �; �/, where

xC D xxı; x� D xıx; x D xıı:

Observe that xııı D xı and xııxı; xıxıı 2 E.Sı/. Here we are only interested in normal orthodox semigroups
with an inverse transversal. Recall that a normal orthodox semigroup means a regular semigroup whose idempotents
form a normal band, and a bandB is called left normal (resp. right normal, normal) if efg D egf (resp. efg D feg,
efge D egfe) for all e; f; g 2 B . Observe that a bandB is normal if and only if efgh D egf h for all e; f; g; h 2 B .
The following proposition can be deduced from the text [20]. However, we give its direct proof for the sake of
completeness.

Proposition 2.2. Let S be a normal orthodox semigroup with an inverse transversal Sı. The tri-unary semigroup
.S; �; C; �; �/ satisfies the following identities:

Table 1. Generalized Ehresmann conditions

(1) xCx D x (1)0 xx� D x

(2) xCyCxC D xCyC (2)0 x�y�x� D y�x�

(3) .xCyC/C D xCyC (3)0 .x�y�/� D x�y�

(4) .xy/C D .xyC/C (4)0 .xy/� D .x�y/�

(5) .xC/� D xC (5)0 .x�/C D x�

(6) xC D xC (6)0 x� D x�

(7) x D xCxx� (8) x�yC D x�yC

Proof. By symmetry, we only need to show (1)–(8).
(1) This is equivalent to the equality .xxı/x D x.
(2) As E.S/ is a normal band, we have

xCyC D .xxı/Œ.yyı/.yııyı/�.yııyı/ D .xxı/Œ.yııyı/.yyı/�.yııyı/ D xxıyııyı: (1)

This implies that
xCyCxC D xC.yCxC/ D xxı.yyıxııxı/ D .xxıyyı/.xııxı/

D xxı.yııyı/.xııxı/ D xxı.xııxı/.yııyı/ D xxıyııyı D xCyC:

(3) We first observe that
.xy/ı D yıxı for all x; y 2 S: (2)

In fact, since S is orthodox, yıxı is an inverse of xy. But yıxı 2 Sı, so .xy/ı D yıxı. By (1) and (2), we have

.xCyC/C D .xxıyııyı/.xxıyııyı/ı D xxıyııyıyııyıııxııxı

D xxıyııyıxııxı D xxıxııxıyııyı D xxıyııyı D xCyC:
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(4) By (2), we have

.xyC/C D .xyyı/.xyyı/ı D xyyıyııyıxı D xyyıxı D xy.xy/ı D .xy/C:

(5) From (2),
.xC/� D .xxı/ı.xxı/ D xııxıxxı D xııxı D xııxııı D xC:

(6) It follows that xC D .xxı/ıı D xııxı D xıı.xıı/ı D xC from (2).
(7) This is equivalent to the statement x D .xxı/xıı.xıx/.
(8) Since E.S/ is a normal band, using (1) and its dual, we have

x�yC D xıxyyı D xıxııxıxyyıyııyı D .xıxııyyı/.xıxyııyı/

D .xıxııyııyı/.xıxııyııyı/ D xıxııyııyı D ..xıı/ıxıı/.yıı.yıı/ı/ D x�yC;

as required.

We shall term any tri-unary semigroup .S; �; C; �; �/ that satisfies the identities in Table 1 a generalized Ehresmann
semigroup. By Proposition 2.2, any normal orthodox semigroup S with an inverse transversal Sı induces the
generalized Ehresmann semigroup .S; �; C; �; �/ by setting xC D xxı; x� D xıx and x D xıı. The following
example gives a very special case of this kind of generalized Ehresmann semigroups.

Example 2.3. Let S be a rectangular band. Fix an element u in S . Consider the tri-unary semigroup
.S; �; C; �; �/ where xC D xu; x� D ux; x D u: Then it is routine to check that the identities in Table 1
are satisfied and so .S; �; C; �; �/ is a generalized Ehresmann semigroup. In fact, S is indeed a normal band and
fug is an inverse transversal of S .

Example 2.4. Any Ehresmann semigroup .S; �; C; �/ also induces a generalized Ehresmann semigroup, which
justifies our term “generalized Ehresmann semigroups". In fact, for an Ehresmann semigroup .S; �; C; �/, we
define the third unary operation “�" on S by x D x. Then we have the tri-unary semigroup .S; �; C; �; �/ and it
is easy to see that the identities in Table 1 are all satisfied by Lemma 2.1.

Since a rectangular band having more than one element must not be an Ehresmann semigroup, the class of
generalized Ehresmann semigroups contains the class of Ehresmann semigroups and the class of rectangular bands as
proper subclasses by the above two examples. We also observe that a generalized Ehresmann semigroup which is also
regular may not contain any inverse transversal. In fact, any monoid S with the identity 1 is always a (generalized)
Ehresmann semigroup by setting xC D x� D 1 and x D x for all x 2 S . Obviously, a regular monoid may not
contain any inverse transversal. Here is an example.

Example 2.5. Let M D f1; b; c; xg(taken from Exercise 10 in Chapter VI of [24]) with the multiplication

M 1 b c x

1 1 b c x

b b b b b

c c c c c

x x c b 1

:

Then M is a monoid and

E.M/ D f1; b; cg; V .1/ D f1g; V .b/ D fb; cg D V.c/; V .x/ D fxg:

It is easy to check that M contains no inverse transversal.

In the remainder of this section, we consider some properties associated to generalized Ehresmann semigroups which
will be used in the next sections. Let .S; �; C; �; �/ be a generalized Ehresmann semigroup. Denote

IS D fx
C
jx 2 Sg; ƒS D fx

�
jx 2 Sg; EıS D fx

C
jx 2 Sg:
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Lemma 2.6. Let .S; �; C; �; �/ be a generalized Ehresmann semigroup.
(a) iC D i; i� D i and �� D �; �C D � for all i 2 IS and � 2 ƒS .
(b) Eı

S
D fx�jx 2 Sg D IS \ƒS ,

(c) xCLxC and x�Rx�.
(d) IS is a left normal band, ƒS is a right normal band and Eı

S
is a subsemilattice of S , respectively.

Proof. (a) Using identities (1),(4) and (3) in Table 1, we have

xC D .xCx/C D .xCxC/C D xCxC

and so xC 2 E.S/. Take i 2 IS . Then i D xC for some x 2 S . This implies that

iC D .xC/C D .xCxC/C D xCxC D xC

by xC 2 E.S/ and the identity (3). Moreover,

i� D .xC/� D xC D xC D i

by the identities (5) and (6). By symmetry, �� D � and �C D � for all � 2 ƒS .

(b) By identity (5), xC D .xC/� 2 IS \ƒS for all x 2 S . Now let u D xC 2 IS \ƒS for some x 2 S . Using
item (a) and the identity (5), we have

u D u� D .xC/� D xC 2 EıS :

Thus Eı
S
D IS \ƒS . Dually, fx�jx 2 Sg D IS \ƒS .

(c) Using identities (7), (4), (3), (4), (5)0 and (1)0 in Table 1 in that order, we have

xC D .xCxx�/C D .xC.xx�/C/C D xC.xx�/C D xC.x.x�/C/C D xC.x x�/C D xCxC:

Since xC 2 ƒS by (b), we have .xC/� D xC by (a). Using the identities (5), (8) and (6), we have

xCxC D .xC/�xC D .xC/�xC D .xC/�xC D xCxC D xC:

This shows that xCLxC. Dually, x�Rx�.

(d) In view of the proof of item (a), every element in IS is idempotent. By the identity (3), xCyC D .xCyC/C 2 IS
for all xC; yC 2 IS . So IS is a subband of S . By the identity (2) and (2)0 and item (b), Eı

S
is a subsemilattice of

S . Moreover, for x; y; z 2 S , by identities (5), (8) and (6) and items (b) and (a), we have

xCyC D .xC/�yC D xC
�

yC D .xC/�yC D xCyC:

Similarly, yCzC D yCzC. In view of item (c) and the fact that Eı
S

is a subsemilattice,

xCyCzC D xCxCyCzC D xCxCyCzC D xCxCyCzC

D xCxCyCzC D xCyCzC D xCzCyC:

Similarly, we have xCzCyC D xCzCyC. This yields that IS is a left normal band. Dually, ƒS is a right normal
band.

Let S be a semigroup. Recall that the natural partial order “ � " on E.S/ is defined as follows:

e � f if and only if ef D fe D e for all e; f 2 E.S/: (3)

Lemma 2.7. Let .S; �; C; �; �/ be a generalized Ehresmann semigroup and x; y 2 S .
(a) .xy/C D xC.x y/C; .xy/� D .x y/�y�.
(b) .xy/C � xC; .xy/� � y�.
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(c) xy D x y.

Proof. (a) Using the identities (4), (7), (8), (1)0, (4) and (3) in that order, we have

.xy/C D .xyC/C D .xCxx�yC/C D .xCx x�yC/C

D .xCx yC/C D .xCx y/C D .xC.x y/C/C D xC.x y/C:

Dually, .xy/� D .x y/�y�.

(b) Since .xy/C D xC.x y/C by item (a), we have xC.xy/C D .xy/C. Moreover, by the identity (2),

.xy/CxC D xC.x y/CxC D xC.x y/C D .xy/C:

So .xy/C � xC. Dually, .xy/� � y�.

(c) In view of the identity (8) and items (b), (d) in Lemma 2.6, we have .xC/�.x y/C D xC
�

x y
C
2 Eı

S
so that

..xC/�.x y/C/� D .xC/�.x y/C by Lemma 2.6 (a). Using the identity (5), item (a) of this lemma, the identities
(4)0, (5), (3), (4), (1) in that order, we obtain that

xyC D ..xy/C/� D .xC.x y/C/� D ..xC/�.x y/C/�

D .xC/�.x y/C D xC.x y/C D .xC.x y/C/C D .xCx y/C D .x y/C:

Dually, xy� D .x y/�. Using the identities (1) and (1)0, Lemma 2.6 (c), the identities (7), (8), (1), (1)0, item (b) of
this lemma, Lemma 2.6 (c), the identities (1) and (1)0 in that order, we get

xy D xyCxy xy� D xyC.xy/Cxy .xy/�xy� D xyCxyxy� D xyCxCxx�yCyy�xy�

D xyCxCx x�yCyy�xy� D xyCxCx yy�xy� D .x y/CxCx yy�.x y/�

D .x y/CxCxCx yy�y�.x y/� D .x y/CxCx y y�.x y/� D .x y/Cx y.x y/� D x y;

as required.

3 The semigroup C.I;ƒ;Eı/

We call a generalized Ehresmann semigroup .S; �; C; �; �/ fundamental if the largest semigroup congruence �S
contained in the equivalence

f.a; b/ 2 S � S jaC D bC; a� D b�g

is the identity relation on S . In this section, we shall construct a fundamental generalized Ehresmann semigroup
which plays the similar role in the class of generalized Ehresmann semigroups as the Munn semigroup of a
semilattice in the class of inverse semigroups. To do this, we need to introduce the notion of admissible triples,
which is motivated by Lemma 2.6.

Definition 3.1. Let I (resp. ƒ) be a left normal band (resp. a right normal band), Eı D I \ƒ a subsemilattice of
I and ƒ. The triple .I;ƒ;Eı/ is called admissible if for all g 2 I and f 2 ƒ, there exist gı; f ı 2 Eı such that
gLgı and fRf ı.

Remark 3.2. Let .I;ƒ;Eı/ be an admissible triple. Since Eı is a subsemilattice, the elements gı and f ı in
Definition 3.1 are uniquely determined by g and f , respectively. In particular, i 2 Eı if and only if iı D i .

Remark 3.3. Let .S; �; C; �; �/ be a generalized Ehresmann semigroup. By Lemma 2.6 (b), (c) and (d),
.IS ; ƒS ; E

ı
S
/ is an admissible triple which will be called the admissible triple of S . In this case, for all i 2 IS

and � 2 ƒS , we have iı D i� and �ı D �C. In fact, if xC 2 IS , then by the identity (5) in Table 1 and Lemma 2.6
(c), we have xCLxC D .xC/�. The case for � 2 ƒS can be showed dually.
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To construct the semigroup C.I;ƒ;Eı/ of an admissible triple .I;ƒ;Eı/, we need some preliminaries. First, we
have the following basic facts on admissible triples.

Lemma 3.4. Let .I;ƒ;Eı/ be an admissible triple and e; g 2 I; f; h 2 ƒ. Then

eg D egı; .eg/ı D eıgı; f h D f ıh; .f h/ı D f ıhı:

Moreover, we have eEıe D eEı and fEıf D Eıf , which are subsemilattices of I and ƒ, respectively.

Proof. Since gLgı and I is a left normal band, we have eg D eggı D egıg D egı. This implies that eıg D eıgı,
and so egLeıg D eıgı 2 Eı by the fact that eLeı. This yields that .eg/ı D eıgı. Finally, it follows that
eEıe D eEı by the fact that I is a left normal band. Moreover, for i; j 2 Eı, we have

.ei/.ej / D .eie/j D eij D ej i D .eje/i D .ej /.ei/;

whence eEı is a subsemilattice of I . The remaining facts of this lemma can be proved by symmetry.

Let .I;ƒ;Eı/ be an admissible triple. We use I1 (resp. ƒ1) to denote I (resp. ƒ) with the identity adjoined.
Furthermore, we always assume that 1ı D 1 for the adjoined identity 1 on both I andƒ. A function � from I1 toƒ
is called order-preserving if x� � y� in ƒ for all x; y 2 I1 with x � y in I1, where � is defined in (3). Denote the
set of order-preserving functions from I1 to ƒ by O.I1 ! ƒ/. Dually, we also have O.ƒ1 ! I /. Similarly, we
have O.I1 ! I / and O.ƒ1 ! ƒ/. Moreover, we denote the set of the morphisms from I1 toƒ by End.I1 ! ƒ/.
Dually, we have End.ƒ1 ! I /. Obviously,

End.I1 ! ƒ/ � O.I1 ! ƒ/;End.ƒ1 ! I / � O.ƒ1 ! I /:

For every e 2 I (resp. f 2 ƒ), define

�e W I
1
! I; x 7! ex .resp. �f W ƒ1 ! ƒ; x 7! xf /:

Then it is easy to see that �e 2 O.I1 ! I / and �f 2 O.ƒ1 ! ƒ/ for all e 2 I and f 2 ƒ as I is a left normal
band andƒ is a right normal band. Moreover, we use �1 and �1 to denote the identity maps on I andƒ, respectively.

Lemma 3.5. Let .I;ƒ;Eı/ be an admissible triple. Define a multiplication “ ˘ " on O.I1 ! ƒ/as follows: for all
˛; ˇ 2 O.I1 ! ƒ/,

˛ ˘ ˇ W I1 ! ƒ; x ! .x˛/ıˇ:

Then O.I1 ! ƒ/ is a semigroup with respect to “ ˘ ". Dually, for ˛; ˇ 2 O.ƒ1 ! I /, define

ˇ ? ˛ W ƒ1 ! I; x 7! .xˇ/ı˛;

then O.ƒ1 ! I / forms a semigroup with respect to “ ? ".

Proof. Since ; 6D End.I1 ! ƒ/ � O.I1 ! ƒ/, it follows that O.I1 ! ƒ/ 6D ;. Observe that

xı � yı for all x; y 2 I1 (or x; y 2 ƒ1) with x � y (4)

by Lemma 3.4. Let x; y 2 I1 and x � y. Then x˛; y˛ 2 ƒ and x˛ � y˛ as ˛ is order-preserving. This implies
that .x˛/ı � .y˛/ı. Observe that ˇ is also order-preserving, it follows that ..x˛/ı/ˇ � ..y˛/ı/ˇ. Thus ˛ ˘ ˇ 2
O.I1 ! ƒ/. Now let ˛; ˇ; 
 2 O.I1 ! ƒ/ and x; y 2 I1. Then

xŒ.˛ ˘ ˇ/ ˘ 
� D Œ.x.˛ ˘ ˇ//ı�
 D Œ.x˛/ıˇ�ı
 D .x˛/ı.ˇ ˘ 
/ D xŒ˛ ˘ .ˇ ˘ 
/�:

This implies that O.I1 ! ƒ/ is a semigroup with respect to “ ˘ ". Dually, O.ƒ1 ! I / forms a semigroup with
respect to “ ? ".
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Corollary 3.6. Let .I;ƒ;Eı/ be an admissible triple, and “ ˘ " and “ ? " be defined as in Lemma 3.5. Then
O.I1 ! ƒ/ �O.ƒ1 ! I / forms a semigroup by defining

.˛; ˇ/.
; ı/ D .˛ ˘ 
; ı ? ˇ/

for all .˛; ˇ/; .
; ı/ 2 O.I1 ! ƒ/ �O.ƒ1 ! I /.

The semigroup O.I1 ! ƒ/ is partially ordered by “ � " where for all ˛; ˇ 2 O.I1 ! ƒ/,

˛ � ˇ if and only if x˛ � xˇ in ƒ for all x 2 I1:

Similarly, the semigroups O.ƒ1 ! I /, O.I1 ! I / and O.ƒ1 ! ƒ/ can be partially ordered, respectively.
Consider the subset

C.I;ƒ;Eı/ D f.˛; ˇ/j.8x 2 I
1/.8y 2 ƒ1/xı˛ D x˛; yıˇ D yˇ; �x˛ � ˇ�x˛; �yˇ � ˛�yˇg

of the product semigroup O.I1 ! ƒ/ �O.ƒ1 ! I /.

Lemma 3.7. Let .I;ƒ;Eı/ be an admissible triple. For e 2 I , define �e and �e as follows:

�e W I
1
! ƒ; x 7! eıx; �e W ƒ

1
! I; x 7! exı:

Then .�e; �e/ 2 C.I;ƒ;Eı/. Dually, for f 2 ƒ, define �f and �f as follows:

�f W I
1
! ƒ; x 7! xıf; �f W ƒ

1
! I; x 7! xf ı:

Then .�f ; �f / 2 C.I;ƒ;Eı/. Moreover, if e 2 I \ƒ D Eı, then .�e; �e/ D .�e; �e/.

Proof. Firstly, by Lemma 3.4, we have eıx D eıxı 2 Eı � ƒ for all x 2 I , and xı 2 Eı; exı 2 I for all x 2 ƒ.
Therefore �e and �e are well-defined. Secondly, since I is a left normal band, we have

.x�e/.y�e/ D .e
ıx/.eıy/ D eıxeıy D eıxy D .xy/�e

for all x; y 2 I1. On the other hand, by Lemma 3.4, we have

.x�e/.y�e/ D ex
ıeyı D exıyı D e.xy/ı D .xy/�e

for all x; y 2 ƒ1. This shows that �e and �e are morphisms and so order-preserving. Thirdly, if x 2 I , then
x�e D eıx D eıxı D xı�e . Similarly, y�e D eyı D e.yı/ı D yı�e for all y 2 ƒ. Finally, let x 2 I1 and
u 2 ƒ1. Then by Lemma 3.4,

u�x�e D u�eıx D u.e
ıx/ D uı.eıxı/ D uıeıxı

and
u.�e�x�e/ D e

ı.x.euı// D eı.x.euı/ı/ D eı.xeıuı/ D eıxuı D eıxıuı D uıeıxı:

This implies that �x�e D �e�x�e for all x 2 I1. Similarly, �y�e D �e�y�e for all y 2 ƒ1. Thus .�e; �e/ 2
C.I;ƒ;Eı/. Dually, .�f ; �f / 2 C.I;ƒ;Eı/. If e 2 Eı, then eı D e and so

x�e D e
ıx D eıxı D exı D xıe D x�e

for all x 2 I1. This shows that �e D �e . Dually, �e D �e .

Lemma 3.8. C.I;ƒ;Eı/ is a subsemigroup of O.I1 ! ƒ/ �O.ƒ1 ! I /.

Proof. Denote C D C.I;ƒ;Eı/. We have seen that C is non-empty by Lemma 3.7. Let .˛; ˇ/; .
; ı/ 2 C . Then

.˛; ˇ/.
; ı/ D .˛ ˘ 
; ı ? ˇ/:
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We first show that �x.˛˘
/ � .ı ? ˇ/�x.˛ ˘ 
/ for all x 2 I1. Let u 2 ƒ1 and x 2 I1. Then uı 2 I and
.uı/ı 2 I \ ƒ. Since �x˛ � ˇ�x˛ by the fact that .˛; ˇ/ 2 C , we have .uı/ı�x˛ � .uı/ıˇ�x˛ whence
.uı/ı.x˛/ � .x..uı/ıˇ//˛. In view of (4) and Lemma 3.4, we can obtain that

.x˛/ı.uı/ D .x˛/ı.uı/ı D ..uı/ı.x˛//ı � ..x..uı/ıˇ//˛/ı:

Since 
 is order-preserving, it follows that

u.ı�.x˛/ı
/ D ..x˛/
ı.uı//
 � ...x..uı/ıˇ//˛/ı/
 D u.ı ? ˇ/�x.˛ ˘ 
/:

This shows that ı�.x˛/ı
 � .ı ? ˇ/�x.˛ ˘ 
/. Since �v
 � ı�v
 for all v 2 I1 by the fact .
; ı/ 2 C and
.x˛/ı 2 I , it follows that

�x.˛˘
/ D �.x˛/ı
 � ı�.x˛/ı
 � .ı ? ˇ/�x.˛ ˘ 
/:

Finally, let x 2 I . Since xı˛ D x˛ by the fact that .˛; ˇ/ 2 C , we get

x.˛ ˘ 
/ D .x˛/ı
 D .xı˛/ı
 D xı.˛ ˘ 
/:

By symmetry, we can obtain �y.ı?ˇ/ � .˛ ˘ 
/�y.ı ? ˇ/ and yı.ı ? ˇ/ D y.ı ? ˇ/ for all y 2 ƒ1. Thus
.˛; ˇ/.
; ı/ 2 C . So C is a subsemigroup.

Now, we are in a position to state our main result of this section.

Theorem 3.9. Define three unary operations on the semigroup C D C.I;ƒ;Eı/ as follows:

.˛; ˇ/C D .˛C; ˇC/; .˛; ˇ/� D .˛�; ˇ�/; .˛; ˇ/ D .˛; ˇ/;

where
˛ W I1 ! ƒ; x 7! .x˛/ı; ˇ W ƒ1 ! I; x 7! .xˇ/ı;

˛C D �1ˇ W I
1
! ƒ; x 7! .1ˇ/ıx; ˇC D �1ˇ W ƒ

1
! I; x 7! .1ˇ/xı

˛� D �1˛ W I
1
! ƒ; x 7! xı.1˛/ ˇ� D �1˛ W ƒ

1
! I; x 7! x.1˛/ı:

Then .C; �; C; �; �/ is a generalized Ehresmann semigroup.

Proof. Let .˛; ˇ/ 2 C . By Lemma 3.7 and the fact that 1ˇ 2 I; 1˛ 2 ƒ, it follows that

.˛C; ˇC/ D .�1ˇ; �1ˇ/ 2 C; .˛
�; ˇ�/ D .�1˛; �1˛/ 2 C: (5)

This shows that “C " and “ � " are well-defined.
Now, let .˛; ˇ/ 2 C . Then

xı˛ D x˛; yıˇ D yˇ; �x˛ � ˇ�x˛; �yˇ � ˛�yˇ

for all x 2 I1 and y 2 ƒ1. Let x; y 2 I1 and x � y. Since ˛ is order-preserving, x˛ � y˛. It follows that
x˛ D .x˛/ı � .y˛/ı D y˛ by (4). This shows that ˛ is order-preserving. Dually, ˇ is also order-preserving.
Moreover, for all x 2 I1, we have

x˛ D .x˛/ı D .xı˛/ı D xı˛

as xı˛ D x˛ for all x 2 I1. Dually, we have yˇ D yıˇ for all y 2 ƒ1. Now let x 2 I1. For u 2 ƒ1, since
�x˛ � ˇ�x˛, we have u�x˛ � uˇ�x˛. That is, u.x˛/ � .x.uˇ//˛. By (4), .u.x˛//ı � ..x.uˇ//˛/ı. This implies
that

u�x˛ D u.x˛/ D u.x˛/
ı
D uı.x˛/ı D .u.x˛//ı � ..x.uˇ//˛/ı

D ..x.uˇ/ı/˛/ı D .x.uˇ/ı/˛ D .uˇ/ı.�x˛/ D u.ˇ�x˛/

by Lemma 3.4. This shows that �x˛ � ˇ�x˛ for all x 2 I1. Dually, �
yˇ
� ˛�yˇ for all y 2 ƒ1. Thus .˛; ˇ/ 2 C .

This implies that “ � " is also well-defined.
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We next show that the identities (1-8) in Table 1 are satisfied. By symmetry, the identities (1)0-(6)0 also hold. Let
.˛; ˇ/; .
; ı/ 2 C .

(1) For x 2 I1, we have �x˛ � ˇ�x˛ by the fact that .˛; ˇ/ 2 C . So

x˛ D 1�x˛ � 1.ˇ�x˛/ D .x.1ˇ//˛:

Since I is a left normal band, we have x.1ˇ/ � x. This shows that .x.1ˇ//˛ � x˛ as ˛ is order-preserving. So
x˛ D .x.1ˇ//˛. Observe that vı˛ D v˛ for all v 2 I1 by the fact that .˛; ˇ/ 2 C , it follows that .x.1ˇ//˛ D
.x.1ˇ//ı˛. Thus

x˛ D .x.1ˇ//˛ D .x.1ˇ//ı˛ D .xı.1ˇ/ı/˛ D ..1ˇ/ıx/ı˛ D x.˛C ˘ ˛/ (6)

by lemma 3.4. We have shown that ˛C ˘ ˛ D ˛. Dually, ˇ ? ˇC D ˇ. Thus

.˛; ˇ/C.˛; ˇ/ D .˛C; ˇC/.˛; ˇ/ D .˛C ˘ ˛; ˇ ? ˇC/ D .˛; ˇ/:

(2) For x 2 I1, by Lemma 3.4 we have

x.˛C ˘ 
C/ D .x˛C/ı
C D ..1ˇ/ıx/ı
C D ..1ˇ/ıxı/
C D .1ı/ı..1ˇ/ıxı/ D .1ı/ı.1ˇ/ıxı (7)

and
x..˛C ˘ 
C/ ˘ ˛C/ D .x.˛C ˘ 
C//ı˛C D ..1ı/ı.1ˇ/ıxı/ı˛C

D ..1ı/ı.1ˇ/ıxı/˛C D .1ˇ/ı.1ı/ı.1ˇ/ıxı D .1ı/ı.1ˇ/ıxı:

This implies that ˛C ˘ 
C D ˛C ˘ 
C ˘ ˛C. Dually, ˇC ? ıC ? ˇC D ıC ? ˇC. Thus

.˛; ˇ/C.
; ı/C.˛; ˇ/C D .˛; ˇ/C.
; ı/C:

(3) For all x 2 I1, we have x.˛C ˘ 
C/ D .1ı/ı.1ˇ/ıxı by (7) and

x.˛C ˘ 
C/C D .1.ıC ? ˇC//ıx D ..1ˇ/.1ı/ı/ıx D ..1ı/ı.1ˇ/ı/x D .1ı/ı.1ˇ/ıxı

by Lemma 3.4. This yields that ˛C ˘ 
C D .˛C ˘ 
C/C. Dually, .ıC ? ˇC/C D ıC ? ˇC. Thus
..˛; ˇ/C.
; ı/C/C D .˛; ˇ/C.
; ı/C.

(4) For all x 2 I1, we have x.˛ ˘ 
/C D .1.ı ? ˇ//ıx D ..1ı/ıˇ/ıx and

x.˛ ˘ 
C/C D .1.ıC ? ˇ//ıx D ..1ıC/ıˇ/ıx D ..1ı/ıˇ/ıx:

This implies that .˛ ˘ 
/C D .˛ ˘ 
C/C. Dually, .ı ? ˇ/C D .ıC ? ˇ/C. Thus

..˛; ˇ/.
; ı//C D ..˛; ˇ/.
; ı/C/C:

(5) For all x 2 I1, by Lemma 3.4 we have

x.˛C/� D xı.1˛C/ D xı.1ˇ/ı D .1ˇ/ıxı D .1ˇ/ııxı D .1ˇ/ıxı D .1ˇ/ıx D x˛C: (8)

This shows that .˛C/� D ˛C. Dually, .ˇC/� D ˇ
C

. Thus ..˛; ˇ/C/� D .˛; ˇ/
C

.

(6) For all x 2 I1, by Lemma 3.4 and (8) we have

x˛C D .1ˇ/ıxı D ..1ˇ/ıx/ı D .x˛C/ı D x˛C:

So ˛C D ˛C. Dually, ˇ
C
D ˇC. Thus .˛; ˇ/

C
D .˛; ˇ/C.

(7) For all x 2 I1, by Lemma 3.4 and (6), we have

x.˛C ˘ ˛ ˘ ˛�/ D ...1ˇ/ıxı/˛/ı.1˛/ D ...1ˇ/ıx/ı˛/ı.1˛/ D .x˛/ı.1˛/ D .x˛/.1˛/:
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Since x � 1 and ˛ is order-preserving, we have .x˛/.1˛/ D x˛. This shows that x.˛C ˘ ˛ ˘ ˛�/ D x˛. So
˛C ˘ ˛ ˘ ˛� D ˛. Dually, ˇ� ? ˇ ? ˇC D ˇ. Thus

.˛; ˇ/ D .˛; ˇ/C.˛; ˇ/.˛; ˇ/�:

(8) For all x 2 I1, by Lemma 3.4 we have

x.˛� ˘ 
C/ D .x˛�/ı
C D .xı.1˛//ı
C D .1ı/ıxı.1˛/ı

and
x.˛� ˘ 
C/ D .x˛�/ı
C D .xı.1˛//ı
C

D .xı.1˛/ı/ı
C D .xı.1˛/ı/
C D .1ı/ıxı.1˛/ı D .1ı/ıxı.1˛/ı:

This shows that ˛� ˘ 
C D ˛� ˘ 
C. Dually, ıC ? ˇ� D ı
C
? ˇ
�

. Thus

.˛; ˇ/�.
; ı/C D .˛; ˇ/
�
.
; ı/

C
:

We have shown that .C; �; C; �; �/ is a generalized Ehresmann semigroup.

Remark 3.10. In the case that I D ƒ D Eı is a semilattice, the above semigroup C.I;ƒ;Eı/ is exactly the
Ehresmann semigroup CEı constructed in [6].

Corollary 3.11. On the semigroup .C; �; C; �; �/, we have

IC D f.�e; �e/je 2 I g; ƒC D f.�f ; �f /jf 2 ƒg; E
ı
C D f.�e; �e/je 2 E

ı
g:

Proof. In view of (5), it follows that

.˛; ˇ/C D .˛C; ˇC/ D .�1ˇ; �1ˇ/

for all .˛; ˇ/ 2 C . This gives IC � f.�e; �e/je 2 I g. Conversely, for e 2 I , we have .�e; �e/ 2 C by Lemma 3.7.
So

.�e; �e/ D .�1�e ; �1�e / D .�e; �e/
C
2 IC :

Thus IC D f.�e; �e/je 2 I g: Dually, ƒC D f.�f ; �f /jf 2 ƒg.
For .˛; ˇ/ 2 C , we have 1ˇ 2 I and .1ˇ/ı 2 Eı. By (5), we have

.˛; ˇ/
C
D .˛; ˇ/C D .˛C; ˇ

C
/ D .�

1ˇ
; �
1ˇ
/ D .�.1ˇ/ı ; �.1ˇ/ı/ 2 f.�e; �e/je 2 E

ı
g:

This shows that Eı
C
� f.�e; �e/je 2 E

ıg: Conversely, for e 2 Eı, by (5) again we have

.�e; �e/ D .�eı ; �eı/ D .�.1�e/ı ; �.1�e/ı/

D .�1�e ; �1�e / D .�e
C
; �e
C/ D .�e; �e/

C
D .�e; �e/

C
2 EıC :

Thus Eı
C
D f.�e; �e/je 2 E

ıg.

We say that two admissible triples .I;ƒ;Eı/ and .J;…;F ı/ are isomorphic if there exist an isomorphism ' from
I onto J and an isomorphism  from ƒ onto … such that

'jEı D  jEı ; E
ı' D F ı:

If this is the case, then one can easily show that C.I;ƒ;Eı/ is (2,1,1,1)-isomorphic to C.J;…;F ı/. Moreover, we have
the following.

Corollary 3.12. Let .I;ƒ;Eı/ be an admissible triple. Then .I;ƒ;Eı/ is isomorphic to the admissible triple
.IC ; ƒC ; E

ı
C
/ of C D C.I;ƒ;Eı/.
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Proof. By Corollary 3.11, we can define the following surjective mappings

' W I ! IC ; e 7! .�e; �e/;  W ƒ! ƒC ; f 7! .�f ; �f /:

On the other hand, if e; g 2 I and .�e; �e/ D .�g; �g/, then �e D �g and so e D 1�e D 1�g D g. Thus ' is also
injective. Finally, let e; g 2 I and x 2 I1. Then we have

x.�e ˘ �g/ D g
ı.eıx/ı D gıeıxı D .eg/ıxı D .eg/ıx D �eg

by Lemma 3.4. This shows that �e ˘ �g D �eg . Dually, �g ? �e D �eg . Thus

.eg/' D .�eg; �eg/ D .�e ˘ �g; �g ? �e/ D .�e; �e/.�g; �g/ D .e'/.g'/:

This implies that ' is a morphism. Dually,  is also a morphism. Furthermore, by Lemma 3.7 and Corollary 3.11,
we can see that 'jEı D  jEı and Eı' D Eı

C
.

Corollary 3.13. Let .I;ƒ;Eı/ be an admissible triple andD a (2,1,1,1)-subalgebra of C D C.I;ƒ;Eı/ containing
Eı
C

. Then D is fundamental. In particular, C itself is fundamental.

Proof. Let D be a (2,1,1,1)–subalgebra of C and .˛; ˇ/; .
; ı/ 2 D such that .˛; ˇ/ is �D-related to .
; ı/. Then
.˛; ˇ/C D .
; ı/C and .˛; ˇ/� D .
; ı/� whence ˛C D 
C; ˇC D ıC and ˛� D 
�; ˇ� D ı�. By ˛� D 
�, we
get 1˛ D 1˛� D 1
� D 1
 . Now let x 2 I . Then xı 2 Eı. By Corollary 3.11, .�xı ; �xı/ 2 EıC � D. Since �D
is a semigroup congruence on D, it follows that

.�xı ˘ ˛; ˇ ? �xı/ D .�xı ; �xı/.˛; ˇ/ �D .�xı ; �xı/.
; ı/ D .�xı ˘ 
; ı ? �xı/

whence .�xı ˘ ˛/� D .�xı ˘ 
/�. This implies that

xı˛ D .xı/ı˛ D .1�xı/
ı˛ D 1.�xı ˘ ˛/ D 1.�xı ˘ ˛/

�

D 1.�xı ˘ 
/
�
D 1.�xı ˘ 
/ D .1�xı/

ı
 D .xı/ı
 D xı
:

On the other hand, we have x˛ D xı˛ and x
 D xı
 by the fact .˛; ˇ/; .
; ı/ 2 C . This implies that x˛ D x
 .
Thus ˛ D 
 . Dually, ˇ D ı. Therefore �D is the identity relation on D. That is, D is fundamental.

4 A representation of generalized Ehresmann semigroups

In this section, we always assume that .S; �; C; �; �/ is a generalized Erhesmann semigroup. Then we have the
admissible triple .IS ; ƒS ; EıS / of S and the semigroup C.IS ;ƒS ;EıS / by Remark 3.3 and Theorem 3.9. The aim
of this section is to show that there exists a .2; 1; 1; 1/- homomorphism ˆ W S ! C.IS ;ƒS ;EıS /

whose kernel is
�S . To accommodate with the notations of Section 3, we use the notations from Section 3 for the admissible triple
.IS ; ƒS ; E

ı
S
/ throughout this section.

We first consider some properties of the admissible triple .IS ; ƒS ; EıS / of S and the semigroup C.IS ;ƒS ;EıS /.
Denote C.IS ;ƒS ;EıS / by C for convenience. In view of Remark 3.3, in the admissible triple .IS ; ƒS ; EıS /, for all
i 2 IS and � 2 ƒS , we have

iı D i� and �ı D �C:

For a 2 S , there are functions
˛a W I

1
S ! ƒS ; ˇa W ƒ

1
S ! IS

given by
x˛a D .xa/

�; xˇa D .ax/
C:

Lemma 4.1. With above notation, we have the following results:
(a) For all a 2 S , ˛a 2 O.I1

S
! ƒS / and ˇa 2 O.ƒ1

S
! IS /.
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(b) For all x 2 I1
S

and y 2 ƒ1
S

, x˛a D xı˛a and yˇa D yıˇa.
(c) For all a 2 S and x 2 I1

S
and y 2 ƒ1

S
, �x˛a � ˇa�x˛a and �yˇa � ˛a�yˇa.

(d) For all a; b 2 S and x 2 I1
S

and y 2 ƒ1
S

, .x˛a/ı˛b D x˛ab and .yˇb/ıˇa D yˇab .

Proof. (a) Let x; y 2 I1
S

with x � y. Then xy D yx D x. It follows that x˛a D .xa/� D .xya/� � .ya/� D y˛a
by Lemma 2.7 (b), whence ˛a 2 O.I1

S
! ƒS /. Dually, ˇa 2 O.ƒ1

S
! IS /.

(b) Observe that xı D x� for all x 2 IS , it follows that

x˛a D .xa/
�
D .x�a/� D x�˛a D x

ı˛a

by the identity (4)0 in Table 1. Moreover, since 1ı D 1, we have 1˛a D 1ı˛a. Thus x˛a D xı˛a for all x 2 I1
S

.
Dually, yˇa D yıˇa for all y 2 ƒ1

S
.

(c) Let u 2 ƒ1
S

. Then

u�x˛a D u.x˛a/ D u.xa/
�
2 ƒS ; u.ˇa�x˛a/ D .x.au/

Ca/� 2 ƒS :

By Lemma 2.7 (a),
u.xa/�a� D u.xa/�; .x.au/Ca/�a� D .x.au/Ca/�:

Since ƒS is a right normal band, we have

u.xa/� � .x.au/Ca/� D u.xa/� � .x.au/Ca/� � a�

D .x.au/Ca/� � u.xa/� � a� D .x.au/Ca/� � u.xa/�:

On the other hand, since u.xa/� 2 ƒS , we obtain that .u.xa/�/� D u.xa/� by Lemma 2.6 (a). Using the identity
(3)0, (4)0, (1), (4)0 and the fact that ƒS is a right normal band successively, we get

.x.au/Ca/� � u.xa/� D .x.au/Ca/� � .u.xa/�/� D ..x.au/Ca/� � .u.xa/�/�/� D

.x.au/Cau.xa/�/� D .xau.xa/�/� D ..xa/�u.xa/�/� D .u.xa/�/� D u.xa/�:

Thus
u�x˛a D u.xa/

�
� .x.au/Ca/� D u.ˇa�x˛a/

for all u 2 ƒ1
S

. That is, �x˛a � ˇa�x˛a. Dually, �yˇa � ˛a�yˇa.

(d) For x 2 I1
S

, we have x˛ 2 ƒS and .x˛/ı D .x˛a/
C D ..xa/�/C. Using Lemma 2.7 (a), the identities (6),

(6)0, Lemma 2.6 (a), (b), the identity (4)0 and Lemma 2.7 (a) in that order, we have

.x˛a/
ı˛b D ...xa/

�/C/˛b D ...xa/
�/Cb/� D ...xa/�/Cb/�b�

D ..xa/�
C
b/�b� D ..xa�/Cb/�b� D .xa�b/�b� D .xab/�b� D .xab/� D x˛ab :

Dually, .yˇb/ıˇa D yˇab .

Now we can state our main result in this section.

Theorem 4.2. Define ˆ W S ! C; a 7! .˛a; ˇa/. Then ˆ is a .2; 1; 1; 1/-homomorphism whose kernel is �S .
Moreover,
(a) ˆjIS is a .2; 1; 1; 1/-isomorphism from IS to IC .
(b) ˆjƒS is a .2; 1; 1; 1/-isomorphism from ƒS to ƒC .
(c) ˆjEıS

is a .2; 1; 1; 1/-isomorphism from Eı
S

to Eı
C

.
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Proof. By (a), (b) and (c) of Lemma 4.1, .˛a; ˇa/ 2 C for all a 2 S . Observe that .˛a; ˇa/.˛b ; ˇb/ D .˛a ˘

˛b ; ˇb ? ˇa/ in C and

x.˛a ˘ ˛b/ D .x˛a/
ı˛b D x˛ab; y.ˇb ? ˛a/ D .yˇb/

ıˇa D yˇab

for all x 2 I1
S

and y 2 ƒ1
S

by Lemma 4.1 (d). It follows that

.aˆ/.bˆ/ D .˛a; ˇa/.˛b ; ˇb/ D .˛ab; ˇab/ D .ab/ˆ:

Thus ˆ preserves the binary operation.
Let x 2 I1

S
. Then

x˛aC D .xa
C/� D .xaC/ı D xı.aC/ı D .aC/ıxı D .aC/ıx D .1ˇa/

ıx D x˛Ca

by Lemma 3.4. This shows that ˛aC D ˛
C
a . Dually, ˇaC D ˇ

C
a . So

aCˆ D .˛aC ; ˇaC/ D .˛
C
a ; ˇ

C
a / D .˛a; ˇa/

C: (9)

This shows that ˆ preserves “C ". Dually, ˆ preserves “ � ".
Let x 2 I1

S
. If x D 1, then

x˛a D 1˛a D a
�
D .a�/C D .1˛a/

C
D .1˛a/

ı
D 1˛a D x˛a

by the identity (5)0 in Table 1. If x 2 IS , using the identity (4)0, Lemma 2.6 (a), Lemma 2.7 (c), the identity (5)0 in
that order, we have

x˛a D .xa/
�
D .x�a/� D .x a/� D xa� D ..xa/�/C D ..xa/�/ı D .x˛a/

ı
D x˛a:

This shows that ˛a D ˛a. Dually, ˇa D ˇa. So

aˆ D .˛a; ˇa/ D .˛a; ˇa/ D .˛a; ˇa/ D aˆ:

Thus ˆ preserves “ � ". We have proved that ˆ is a .2; 1; 1; 1/-homomorphism and so

kerˆ D f.a; b/ 2 S � S j˛a D ˛b ; ˇb D ˇag

is a .2; 1; 1; 1/-congruence on S . If .a; b/ 2 kerˆ, then we have a� D 1˛a D 1˛b D b�. Dually, aC D bC. This
shows that

kerˆ � f.a; b/ 2 S � S jaC D bC; a� D b�g:

Let � be a semigroup congruence on S and a�b such that

� � f.a; b/ 2 S � S jaC D bC; a� D b�g:

Then for all x 2 I1
S

, we have xa�xb, whence x˛a D .xa/� D .xb/� D x˛b . This shows that ˛a D ˛b . Dually,
ˇa D ˇb . Thus .a; b/ 2 kerˆ. We have shown that kerˆ is the largest semigroup congruence contained in

f.a; b/ 2 S � S jaC D bC; a� D b�g:

That is, �S D kerˆ:

(a) Since IS D faCja 2 Sg and

aCˆ D .˛a; ˇa/
C
2 IC D f.˛; ˇ/

C
j.˛; ˇ/ 2 C g

by (9), it follows that ISˆ � IC . Now, let .˛; ˇ/C D .˛C; ˇC/ 2 IC where .˛; ˇ/ 2 C . Then 1ˇ 2 IS . For
x 2 I1

S
, we have

x˛1ˇ D .x.1ˇ//
�
D .x.1ˇ//ı D xı.1ˇ/ı D .1ˇ/ıxı D .1ˇ/ıx D x˛C
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by Lemma 3.4, which implies that ˛1ˇ D ˛C. Dually, ˇ1ˇ D ˇC. Thus

.1ˇ/ˆ D .˛1ˇ; ˇ1ˇ/ D .˛
C; ˇC/ D .˛; ˇ/C:

This gives ISˆ D IC and so ˆjIS is surjective. If i; j 2 IS and iˆ D jˆ, then .i; j / 2 kerˆ, this implies
i D iC D jC D j by Lemma 2.6 (a) and the fact that

kerˆ � f.a; b/ 2 S � S jaC D bC; a� D b�g:

it follows that ˆjIS is also injective. In view of Lemma 2.6, IS and IC are (2,1,1,1)-subalgebras of S and C ,
respectively. By the first part of the theorem, ˆjIS is a .2; 1; 1; 1/-isomorphism from IS to IC .

(b) This is the dual of (a).

(c) This follows from items (a) and (b).

A (2,1,1,1)-subalgebra D of a generalized Ehresmann semigroup .S; �; C; �; �/ is called quasi-full if IS [ƒS �
D. Combining Corollaries 3.12 and 3.13 and Theorem 4.2, we obtain the main result of this paper.

Theorem 4.3. Let .I;ƒ;Eı/ be a given admissible triple. Then .S; �; C; �; �/ is a fundamental generalized
Ehresmann semigroup whose admissible triple is isomorphic to .I;ƒ;Eı/ if and only if it is (2,1,1,1)-isomorphic to
a quasi-full (2,1,1,1)-subalgebra of C.I;ƒ;Eı/.

Considering the case that I D ƒ D Eı is a semilattice, by Remark 3.10 we have the following corollary which is
Theorem 3.2 in [6] substantially.

Corollary 4.4. Let E be a given semilattice. Then .S; �; �; C/ is a fundamental Ehresmann semigroup whose
distinguished semilattice is isomorphic to E if and only if it is (2,1,1)-isomorphic to a (2,1,1)-subalgebra of CE
containing the distinguished semilattice of CE .
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