Open Math. 2017; 15: 884-894 DE GRUYTER OPEN

Open Mathematics Open Access

Research Article

Guowei Zhang*

Value distributions of solutions to complex
linear differential equations in angular
domains

DOI 10.1515/math-2017-0073
Received May 2, 2016; accepted September 23, 2016.

Abstract: In this paper we study the iterated order and oscillations of the solutions to some complex linear
differential equations in angular domains. Our theorems improve some recent results.

Keywords: Meromorphic function, Iterated order, Complex differential equation, Angular domain

MSC: 30D10, 34M05

1 Introduction and main results

In this article, we assume the reader is familiar with standard notations and basic results of Nevanlinna’s value
distribution theory in the unit disk A = {z : |z| < 1}, in an angular region, and in the complex plane C respectively;
see [1-5]. The order p( /) and lower order w( f) of f which is meromorphic in C or A are defined as follows:

; log™ T(r, . log™ T,
pelf) = hmsupgi(f)v pa(f) = limsup gi(f)
r—00 logr s 1— _log(l _r)
lost T . ) lost T :
r—00 logr r—1- —log(1 —r)

We call a meromorphic function is adimissable in the unit disk if it satisfies
fimsup — ) _
r—1—- —log(1—r)
Definition 1.1. The iterated n-order p, aA(f) of a meromorphic function f(z) in A is defined by

. log™ T (7,
pn.A(f) = limsup gi(f)

r—1- —log(l—r)’ M

[n+1]

where logt r = log r and log r = log(log™ r),n € N.

Definition 1.2. The growth index of the iterated order of a meromorphic function f(z) in A is defined by

0 if f is non-admissible,
i(f) =1 min{n € N: p, a(f) < oo} if f isadmissible,
00 if pn.A(f) = oo foralln € N.
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Definition 1.3. Forn € N and a € C U {00}, the iterated n-convergent exponent of the sequence of a-point in A of
a meromorphic function f in A is defined by

log™ N(r, -—)
An.A(f —a) = limsup — /-a

r—1- —log(l1—7)
and xn,A(f — a), the iterated n-convergent exponent of the sequence of distinct a-point in A of a meromorphic
Sfunction f in A is defined by

_ log" N (r, A—)
An.A(f —a) = limsup — 1 /-a’

r—1-  —log(l—r)
The growth and oscillation of solutions to higher-order linear differential equations in C and in A have been well
studied by many authors. In the paper [6], Cao and Yi studied the properties of solutions to the arbitrary order linear
differential equations in A of the form

Ak @ f P + A @) fED 4+ A1) f + Ao(2) f =0, )

where Ag(#£ 0), A1,--- , Ak are analytic in A. In fact, they got the following theorem.

Theorem 1.4. Let 0 < p < oo and i(Ao) = p. Ifmax{i(A;) : j = 1,2,--- ,k} < pormax{pp.a(4;) : j =
1,2,--- Jk} < pp.a(Ao), then i(f) = p + 1 and pp a(Ao) < pp+1.a(f) holds for all solutions f # 0 of
equation (2).

In what follows, we give some notations and definitions of a meromorphic function in an angular domain Q(«, f) =
{z 1 @ < argz < B}. In this paper, 2 usually denotes the angular domain Q(«, f) and Q, = {z 1 ¢ + ¢ < argz <
B —e}, where 0 < & < ‘3%“ Let f(z) be a meromorphic function on Q (o, 8) = {z : @ < argz < B}. Recall the
definition of Ahlfors-Shimizu characteristic in an angular domain; see [5, pp.66]. Set Q(r) = Q(«a, ) N{z : 0 <
|z| < r}. Define

1 ol )\ SR 1)
0.9, /) =+ // (W) dp. T(r,Q,f)_/fdz.
1

2(r)
The order and lower order of f on 2 are defined by

pa(f) = limsup 2T S)

r—>00

We remark that the above definitions is reasonable because 7 (r,C, f) = T(r, ) + O(1); see [1, pp.20].

1 Q
. wo(f) = hmimcm.
r—00 logr

Definition 1.5. The iterated n-order p, o (f) of a meromorphic function f(z) in an angular region Q2 is defined by

. log™ 7(r, Q,
pn.s2(f) = lim sup %f) 3)
r—00 ogr

where logt r = log r and log" T r = log(log!™ r),n € N.

Remark 1. Iz is obvious that p1 . (f) = po(f).

Motivated by the definition of a convergent exponent of a-value points of f in € in [5, p. 93], we give the following
definition.

Definition 1.6. Forn € N and a € C U {oo}, the iterated n-convergent exponent of the sequence of a-point in Q2 of
a meromorphic function f in Q is defined by

log" N(r, Q, fl_a)

An.o(f —a) =limsup
r—00 logr
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and Xngg( f — a), the iterated n-convergent exponent of the sequence of distinct a-point in Q of a meromorphic
Sfunction f in Q is defined by

log"™ N (r, 2, fl_a)

X,,’Q(f —a) = limsup
r—>00 logr

The first purpose of this paper is to study the iterated growth order of solutions to complex linear differential
equations in an angular domain. In fact, we obtain the results as follows:

Theorem 1.7. Let A(z) be analytic in angular region Q o, f) = {z : @ < argz < B}(0 < B — o < 27) satisfying

either
. T(r7 QEV A)
limsuyp ————= = oo,
r—oco Ir®logr
or 1]
log" =M T(r,Qe, A
lim sup o8 (r. 2. 4) =00, (n > 2),
r—00 logr

where Qe ={z:a+e<argz <f—¢},0<e< B%“,a) = /(B — ). Then, all solutions f # 0 of the equation

F% 4 A(z) f = 0 have the order p, o (f) = +oo.

Theorem 1.8. Let A;(z) (j = 0,1, ,k—1) be analytic in an angular region Q(a, ) = {z 1 a < argz < B}(0 <

B—a < 2m). If for any small ¢ € (0, ‘3%0‘), p1.92(A45) < p1.9.(Ado)—w and pp o (Aj) < pn..(Ado) (n =2, j =

1,2,--- ,k — 1), then all solutions f # 0 of equation
SO+ A1 f* D 4+ @S+ Ao(2) f =0 @)
have the order pp+1.2(f) > pn.e.(Ao). In particular, p, @ (f) = +00 if pn.0.(4o) > 0.

Theorem 1.9. Let A;j(z) (j = 0,1,--- ,k — 1) and g(z) be analytic in an angular region Q(c, f) = {z 1 a <
argz < B}(0 < B — o < 2m). Suppose that f # 0 is a solution of equation

FO+ 4@ fE D o+ A1) f + A0(2) f = g(2), ®)

such that, for n- = 2, max{pp .@(4;). pn.2(8)} < pn..(f) and, for n = 1, max{p1.Q(4;).p1.2(8)} <
P1.92.(f) —@.Then pp. . (f) < An.@(f) = An.e(f) and dpn. @ (f) = An..(f) < pn.@(f) for any positive

integer n.

Recalling the Nevanlinna theory in an angular domain and following the terms in [1], we set

r

w . . d
Aantr 1) =2 [ (5 = L ) o™ 1 Geie0] + log™ 71

1

B
2w i .
Bo.pg(r. f) = m/ngr |/ (re'?)| sinw(8 — a)d;
o

bul®Y .
Co.8(r. f) =2 Z ( ! —lrzlu)sma)(ﬁn—a);

w
L<|bnl<r [0n|

D(X,,B(r’ f) = Aa,ﬂ(r?f) + B(X,,B(rs f)a

where @ = 77/(B — @), and b, = |b,,|e!?" are poles of f(z) in Q(«, B) appearing according to their multiplicities.
The Nevanlinna angular characteristic is defined as

Sa.p(r. [) = Aa.p(r. f) + Bap(r. f) + Co (1, f).

Thus, the order and lower order of f on € can also be defined by

P, (f) = limsup M

r—00 logr

log Sa.p(r. f).

logr ©

s Me,p(f) = liminf
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For a € C U {00}, the convergence exponent of the sequence of a-point in Q(«, §) of a meromorphic function f is
defined by
log C(X,B (r7 fl_a )

T.8(f —a) = limsup @)
r—+o00 logr
According to the inequality, see [5, Theorem 2.4.7],
-
TR, f) T2, 1)
Sa,B(r, f) S 20)2T +a)3/‘wdt + 0(1),
1
if p(f) < oo, then py.g(f) < oo.
We consider ¢ pairs of real numbers {&;, 8, } such that
—mr<a<fr<arx<Po=<-ayg<Pg=<m (8

and the angular domains X = qu.=1 {z ta; <argz < f;}. For afunction f meromorphic in the complex plane C,
we define the order of f on X as
. log7(r. X, f)
px (f) = limsup ET X T).

r—00 logr

It is obvious that py; g, (f) < px (f) < jq-=1 pa;.8;,(f).j =12+ ,qand px(f) = +ooif and only if there
exists at least one 1 < jo < ¢ such that pg; g, (f) = 4o0.

In [7], Wu considered the growth of solutions to higher order linear homogeneous differential equations in
angular domains. The following theorem was obtained.

Theorem 1.10. Let Ag be a meromorphic function in C with finite lower order 1 < 00 and nonzero order 0 < p <
o0 and § = 8(o00, Ao) > 0. For q pair of real numbers {o;, B; } satisfying (8) and

4 4 A
Z(aj+1_ﬂj)<XaICSin\/;’ ©)
j=1
where & > 0 with u < A < p. If Aj(2)(j = 1,2,---,n) are meromorphic functions in C with T(r, A;) =
o(T (r, Ao)), every solution f # 0 to the equation
Anf + Ay fO7D 4 Ao f =0 (10)

has the order px (f) = +o0in X = UJ_ {z 1a; <argz < f;}.

For the derivatives of the nonzero solutions to the equation in the above theorem, we can get the following result
easily.

Theorem 1.11. Let Ao be a meromorphic function in C with finite lower order (1 < 0o and nonzero order 0 < p <
oo and § = §(oc0, Ao) > 0. For q pair of real numbers {o;, B; } satisfying (8) and

q
Z(aj+1—ﬂj)<%arcsin \/g, (11)

Jj=1

where A > Owith u < A < p. If A;(z)(j = 1,2,---,n) are meromorphic functions in C with T(r, A;) =
o(T(r, Ao)), the derivatives of every solution f # 0 to the equation (10) have the order px (f?)) = +oc in
X = U?:] {z 1aj <argz < B;}, where p is a natural number.

The last result relates to the convergence exponent of the sequence of a-point of the solutions of equation (8) in the
angular domain X .
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Theorem 1.12. Let Ag be an entire function in C with finite lower order . < 0o and nonzero order 0 < p < 00
and § = §(oo, Ag) > 0. For q pair of real numbers {o;, B} satisfying (8) and

q
;(aH_l —-Bj) < %arcsin \/g (12)

where A > Owith u < A < p, if Aj(z)(j = 1,2,---,n) are entire functions in C with T'(r, Aj) = o(T(r, Ao)),
then every solution f # 0 to the equation (10) satisfies tx (f —a) = +ooin X = U;?:] {z:aj <argz < B;}for

a # 0.

2 Preliminary lemmas

Lemma 2.1 ([8]). The transformation

(ze—i00)/(B=) | a+p

(13)

maps the angular domain X = {z : « < argz < B}, (0 < B — a < 27) conformally onto the unit disk {¢ : |{| < 1}
in the t-plane, and maps z = ¢'%0 t0 £ = 0. The image of Xe = {z:1 < |z| <ra+e<argz <f—e},(0<e <
ﬂ%a) in the ¢-plane is contained in the disk Ay, := {C : || < h}, where

On the other hand, the inverse image of the disk Ay := {{ : |{| < h},h < 1 in the z-plane is contained in

X N{z :|z| <r}, where
) \B-)/m
r=—— .
1—h

(B—a)/m
2(¢) = efo (%) . (14)

Remark 2. Note that the conformal mapping (13) is univalent, then we get

1 Y 1
"(“Qg’f(z)—a)f”(l_”’ ’A’f(Z(Z))—a)

The inverse transformation of (13) is

and

1 2\ 1
”(h’A’f(z@»—a)f”((l—h) ’Q’f(Z)—a)

by Lemma 2.1, the notations 1, w here are similar as that in the following Lemma 2.2. Thus, by the Definition 1.3
and 1.6 we conclude that 22n . (f(2) —a) < dn.a(f(2(0) —a) < 2An.(f(2) —a).

Using Lemma 2.1, the following Lemma 2.2 was proved in [9].

Lemma 2.2. Let f(z) be meromorphic in angular region Q2. For any small ¢ > 0, write v = B%a’ n= Bg Then
the following inequalities hold:

TG.C.fC@)) < 2T ((lfr) " sz,f(z)) o), 15)

w

T(r. Qe f(2)) < ;—UT(l — T, C, £(2(2))) + O(1), (16)
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where z = z(£) is the inverse transformation of (13). Consequently,
pAUEON = 1pa(fE). pa. () = (PO + Do. (7
Remark 3. From (15), (16) and Definition 1.1, 1.5, we obtain, for n > 2,
= 2. (SO = pn AU EO) =~ pu.a(fE)). (8)

Lemma 2.3 ([9, 10]). Let f(z) be meromorphicin Q@ = {z : o« < argz < B}(0 < f—a <2mx) and z = z({) be
the inverse transformation of (13). Write F({) = f(z(8)), ¥ (¢) = f(l)(z(é')). Then

!
v =) o FP@), (19)
j=1
where the coefficients o are the polynomials (with numerical coefficients) in the variables V({)(=

75)- V(0. V" (©), . Moreover, we have T(r,a;) = O(log(1 —r)™"), j = 1,2,--- 1.

Lemma 2.4 ([11]). Let Ao, A1,---, Ax—1 and F (%) be analytic function in A and let f(z) be a solution of
equation

FR@) + A1 fE V@) + -+ A1(2) f1(2) + Ao(2) f(2) = F(2) (20)

such that max{on, A (F), pn,a(A;), j = 0,1,--+ .k =1} < pn, a(f)- Then dn, a(f) = An.a(f) = pn.a(f).
Lemma 2.5 ([12]). Let ¢(r) be a nondecreasing, continuous function on RT, and let

1
0<p <1imsupw

r—>00 ogr

and H = {r e R" : |o(r)| = rP}. Then

1
—dt
logdens H = lim sup M >0
r—00 logr

Lemma 2.6 ([5, Theorem 2.6.5]). Let f(z) be a meromorphic function in (e, B). Then for t > 1 and a natural
number p, we have
Satn.p—n(r. f) < K(Sa.p(er. fP) +logtr+1), @

where 1 is such that 0 < 2n < 8 — « and K is a constant only depending on t,n, « and p.

It is important and necessary to determine the relations between Cy_g(r, f) and N(r, 2, f), which will be helpful
in characterizing meromorphic functions in an angle in terms of the number of points of some values.

Lemma 2.7. [5] Let f(z) be a meromorphic function on Q(a, B). Then the following inequalities hold:

1
and
Cu.p(r, f) = 20 sin(wé) —— 0( ) + 2w sm(wS)/ Ai?ft? (23)

where N(t) = N(t,, f) = flr n(, Q n@.@.f) gy, n(t, 2, f) is the number of poles of f(z) inQN{z:1 < |z|] <t}
and No(t) = N(t,Qs, ) = /t wdt and Qs = Q(a + 8, B — 8). The above two inequalities still hold for
C and N in the place of C and N.
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Note that we may replace the integrated counting function N(r, 2, ﬁ) with unintegrated counting function

n(r, 2, ﬁ) in the definition of the convergent exponent, because, see [5, pp. 39],

-
1 n(t, Q. +-—)—n(0,LQ, 1
N(r,Q,f_a):/ ( s a)t ( S a)dz+n(052 = )logr

1 1
> 7dt> dr,Q, —— |log—, 0<d < 1. 24
_/ ; n( r f—a) ogd <d < (24)

for 1 < dr and

N(r,Q, ! ):/Mdt+0(l)<n(tﬂ
1

1
) logr 4+ O(1). (25)
/-
Lemma 2.8 ([1]). Suppose that f(z) is a nonconstant meromorphic function in an angular domain Q(«, B) with

0< B —a <2m. Then:
(1) ([1, Chapter 1]) for any complex number a € C

1

Sa.8 (r, ﬁ) = Sa.p(r. f)+ 0(1), (26)
2) ([1, p-138]) for any r < R,
f f log T(t, f) R
/ w t
Aa.ﬂ(r,f) ( ) /Og ot +log" —— +log ~ + 1 @7
1
and , ,

(o)< 20l )

- . .. .
where w = B and K is a positive constant not depending on r and R.

Lemma 2.9 ([5, Corollary 2.2.2]). Let f(z) be an analytic function on Q(c, B) with0 < B—a < 2. Then we have

+ +
Sa.(r, f)<f/1°g ?ﬁf D gy 21k M,EZQ 25 (29)

/g
1

where M(r, 2, f) = max{| f(te'®)| :a« < 6 < B,1 <t < r}and K is a positive constant.

Let f(z) be a non-constant entire function and M(r, f) the maximum of | f(z)| on the circle |z| = r, that is
M(r, f) = max|z|=, | f(z)|. We have the following relations between M (r, f) and T'(r, f).

Lemma 2.10 ([4, Theorem 1.4]). Suppose f(z) is a non-constant entire function. Then for 0 < r < R < 400, we
have

T(r, f) <logt M(r, ) <

) (30)

3 Proof of Theorems

Proof of Theorem 1.7. Suppose that f = 0 is a solution of f*) + A(z)f = 0 in Q. Then, by Lemma 2.3,
F(¢) = f(z(¢)) is a solution of the differential equation

ax FRO +ar_ FE V@) 4+ a1 F Q) +BQE) =0 €2))
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in A, where a;(j = 1,2,--- , k) are described in Lemma 2.3 and T'(r,;) = O(log(l —r)™!), thatisi(e;) = 0
by Definition 1.2, and B(¢) = A(z(0)). If

. T(r,Qe, A)
limsuyp ——— =
r—oco F®logr

by (16) and Definition 1.2, we obtain i (B(z({))) > 1. Thus, by Theorem 1.4, we get i (F) = i(B(z({))) + 1 > 2,
that is p1, A (F) = +o0.
If

. log" "M T(r, ¢, A)
lim sup =

00, (n > 2),
F—00 logr

by (16) and Definition 1.2, we obtain i (B(z(¢))) > n. Thus, by Theorem 1.4, we geti (F) = i(B(z(¢)))+1 > n+1,
that is p; A (F) = +o00. Combining these results with (17), (18) leads to p,; . (f) = +00. O

Proof of Theorem 1.8. Suppose that f # 0 is a solution of (4). From (19), we have

FPCQ) + A1) EVE@) + -+ A1(2Q) /() + Ao(z() f(2(0))

k k—1
=Y ik FOQ) + A1) D aj k1 FOQ) + -+ + A1) 1 F'(2() + Ao(2(D) f(2 ()
Jj=1 Jj=1

= ax x FR @) + (h—1.x + Ak—1 CQ)ax—1.4—1) FEV(z(2))

k—1 k—1
+ (ak_z,k + 3 Am(z@))ak_z,m) FED () 4+ (al,k + Y Am(z@))al,m) F'(z(0))
m=k—2 m=1
+Ao(z(§) F(z(0)) (32)

Set Be(0) = axk. Bj(Q) = @jk + Yoy Az, (j = 1,2,-++ .k = 1), Bo() = Ao(z(?)), then
F(¢) = f(z(¢)) is a solution of the differential equation

Bk QF® () + B 1 ()F %"V (@) + -+ B1(Q)F'({) + Bo()F () =0 (33)

in A. Since T(r,aj ) = O(log(1 — )71 (1 < j <m < k) by Lemma 2.3, it follows that

k—1
T(r.Bj(Q) < Y T(r.Am(z(?)+ Olog(l—r) ). j =12, k-1 (34)

m=j
If for any small 0 < ¢ < B%a, p1.(4;) < p1,0.(Ao) — w, the conclusion holds by [9, Theorem 1.8]. If
pn(A;) <pno.(do)(n>2,j =1,2,--- ,k —1), it follows from (34) and (18) that

pn.A(Bj(§)) = max{pn,A(4;(z(0)} < émaX{Pn,Q(Aj (2)) < épn,szg(Ao(Z)) (35)
By Bo(§) = Ao(z({)) and (18), we get

ipn,gg(Ao@)) < pn.a(Bo(0)). 36)

Combining (35), (36) and p;;, A (Bx (£)) = 0, we deduce that p, A (B; () < pn,A(Bo(¢)),j =1,2,--- , k. Thus,
by Theorem 1.4, we obtain i (F({)) = n + 1 and py4+1.A(F () > pn.a(Bo(¢)). It follows from (18), we get
pn+1,2(f) = pn.2.(Ao). O
Proof of Theorem 1.9. Suppose that f* = 0 is a solution of (10). Set F(¢) = f(z(¢)) and G(¢) = f(z(¢)) by (14).

By (19) we also have (32) and denote B, ({) as in the proof of Theorem 1.8. Thus, F({) = f(z({)) is a solution of
the nonhomogeneous differential equation

B QF® Q) + B QF* V(@) + -+ B F'(Q) + Bo()F(§) = G(©) @37
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in A. For n > 2, by similar arguments as in the proof of Theorem 1.8 we get

1 1
Pn.A(Bj(§)) = max{pn A(4;(z(0)))} = > max{pn,q(4,(2)) < apn,sza(f(Z)) = .a(F@) (38

for j =1,2,---,k — 1. Note that

on AGO) = 026D < - pu.2.(fC)) = pu AF Q) (39)

and pp, A (Bi (¢)) = 0, we have max{pn, A (B} (£)). pn. A(G(E)} < pn.aA(F(Q)) for j =1.2,--- k.
Hence, from Lemma 2.4, we have A,; A(F) = A, A(F) = py.A(F). Forn = 1, we can easily obtain

pra(B) = - maxip2(4))) < —(pr.2.(/) ~0) = pr.a())
p1aBO) = p1a(do) < (p1.2.(f) ) < p1.a(f);

p1.4G) = 1128 < — (o1, ()~ ) < pralf) (40)

and p1 A (Bxk(£)) = 0. Thus, max{p1,A(B;),p1,A(G)} < p1,A(f). Applying Lemma 16 to (37), we deduce
Aa(F) = A1.a(F) = pr.a(F). B B

Finally, by Remark 2 and 3, we obtain p;,. 0. (f) < An.(f) = An.(f) and 1, . (f) = An.q.(f) <
pn.q (f) for any positive integer n. O

Proof of Theorem 1.11. Suppose that pX(f(p)) < +oo0, then for any j = 1,2,---,¢q, we have py; g, (f(p)) <
+00. By the Definition 6 and Lemma 2.6, we know that py; g; (f) < +oofor j = 1,2,---,g. Since py, g; (f) <
px (f) = Z;?:] pa;.B; (f), we have px (f) < +oo. Itis a contradiction to Theorem 1.10. O

Proof of Theorem 1.12. Suppose that f(z) # 0 is a solution of equation (10) under the hypotheses of Theorem 1.12.
Set g(z) = f(z) — a, substitute it into (10) to obtain

Ang™ + A,1g"7D 4o+ Agg = —ado (4D
and rewrite it as
1 1 (n) (n—1) 4
e 4,814, & ot A 440, (42)
g aAo g g g

Appling Wiman-Valiron theory to (42), similarly as in [3, p.130], we know that
loglog T'(r, f)

lim sup ] < p(Aop). (43)
r—00
Therefore, for sufficiently large r, we have
log T(r, f) < rPAO*L, (44)
Since T'(r,g) = T(r, f) + O(1), then we have
logT(r,g) < pP(Ao)+1 (45)

By Theorem 1.10, we know that there exist an angular domain Qq(xo,Bo) C X satistying pg,.8,(8) =
Pao.Bo(f) = +00, and then p(g) = +o00. From (2) of Lemma 2.8, for ¢ € (0, m) and Qg (0 —¢,0+¢) C
Qo(xo, Bo), we can deduce that

2r 2r
g log" T(t.g) | _ Aot )
1 1

/ 2 T / 2 T T
Bo—c.o+e (r’ g*) << Em (rﬁ 5) = 2% 0(log(rT(r. g)) = O(PAOTI=Ey = 0(1)  (47)
g e e



DE GRUYTER OPEN Value distributions of solutions to complex linear differential equations =—— 893

outside a set of finite linear measure. By using Lemma 1.6 in [4, p.35], it is easy to see that (45) still holds for
g¥).j =1,2,--- ,ninplaceof g. Similarly as above, (46) and (47) also hold by using g/ instead of g. Therefore,

according to the definition of Dy g (r, g), we can deduce, foreach s = 1,2,--- ,n,
(Y) s )
g
Do—¢.0+¢ ( r, ) Y Do—cote < = ) + 0(1) = 0(1), (48)
Jj=1 g

with an exceptional set of finite linear measure. Combining (42) with (48) and from Lemma 2.9 and 2.10, we get

@) n 1
Do—s.0+¢ (V *) Z Do—s.0+¢ ( ) gg ) + Y Do—cote(nAi) + Do—cote (n—E) +0(1)

i=1 i=0

<2 Z So—c.0+¢ (1, 4;) + O(1)

i=0
n
1 [logt M, A; ) 4 logt M(r, A))
<2 = 7 - O(1
- Z 8/ 15 +7T rae +om
T(t,A)) 127(r, Aj)

<2 —Lar+ =+ 001

Z / g T T T E ol
< O(T(r, Ao))- 49)

If g(z) has a zero at zg € Qg (0 — ¢, 0 + &) of multiplicity m (> n), then from (42) we know z¢ is a zero of aAg of
multiplicity at least m — k. Hence we have

1 — 1 1
N(r,Qg,f) <nN (F,Qg,f)—}—N(r Qg, ) (50)
g g aAo
By Lemma 2.7, we obtain

1 — 1 1

Co—c.0+¢ (V, g) <nCo—g o+s ( g) +Co—s.04¢ ( A )
1
aAg

— 1
<nCo—go+s (V, g) + So—¢,0+¢ ( )

— 1
=nCo—s0+e (V, g) + O(T(r, Ao)). (51)
Combining (49) with (51) and utilizing Lemma 2.8, we deduce that
— 1
So—¢,045 (r.8) =nCo—g 0+ (r, g) + O(T(r, Ao)). (52)

Given positive constants ¢ satisfying p(Ao) + 1 < ¢ < +ooandset H = {r e Rt : Sy_. g4 (r.g) > 1}, by
applying Lemma 2.5 to Sg—¢ g+ (7, g), We get

1
cdt
logdensH = limsup M > 0.

F—00 log r
Hence,
T(r, Ao) pP(Ao)+8
< 7 -0 (53)
So—c.0+¢ (1, 8) r
holds when r belongs to the infinite logarithmical measure set H. From (52), (53) and the definition of 7, g(f), we
know that 79_¢ g4(f —a) = 4o0. Thus, tx (f —a) = +oc. O
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