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1 Introduction and main results

In this article, we assume the reader is familiar with standard notations and basic results of Nevanlinna’s value
distribution theory in the unit disk� D fz W jzj < 1g, in an angular region, and in the complex plane C respectively;
see [1–5]. The order �.f / and lower order �.f / of f which is meromorphic in C or � are defined as follows:

�C.f / D lim sup
r!1

logC T .r; f /
log r

; ��.f / D lim sup
r!1�

logC T .r; f /
� log.1 � r/

;

�C.f / D lim inf
r!1

logC T .r; f /
log r

; ��.f / D lim inf
r!1�

logC T .r; f /
� log.1 � r/

:

We call a meromorphic function is adimissable in the unit disk if it satisfies

lim sup
r!1�

T .r; f /

� log.1 � r/
D1:

Definition 1.1. The iterated n-order �n;�.f / of a meromorphic function f .z/ in � is defined by

�n;�.f / D lim sup
r!1�

logŒn� T .r; f /
� log.1 � r/

; (1)

where logŒ1� r D log r and logŒnC1� r D log.logŒn� r/; n 2 N.

Definition 1.2. The growth index of the iterated order of a meromorphic function f .z/ in � is defined by

i.f / D

8̂<̂
:
0 if f is non-admissible;
minfn 2 N W �n;�.f / <1g if f is admissible;
1 if �n;�.f / D1 for all n 2 N.
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Definition 1.3. For n 2 N and a 2 C [ f1g, the iterated n-convergent exponent of the sequence of a-point in � of
a meromorphic function f in � is defined by

�n;�.f � a/ D lim sup
r!1�

logŒn�N.r; 1
f�a

/

� log.1 � r/

and �n;�.f � a/, the iterated n-convergent exponent of the sequence of distinct a-point in � of a meromorphic
function f in � is defined by

�n;�.f � a/ D lim sup
r!1�

logŒn�N.r; 1
f�a

/

� log.1 � r/
:

The growth and oscillation of solutions to higher-order linear differential equations in C and in � have been well
studied by many authors. In the paper [6], Cao and Yi studied the properties of solutions to the arbitrary order linear
differential equations in � of the form

Ak.z/f
.k/
C Ak�1.z/f

.k�1/
C � � � C A1.z/f

0
C A0.z/f D 0; (2)

where A0.6� 0/; A1; � � � ; Ak are analytic in �. In fact, they got the following theorem.

Theorem 1.4. Let 0 < p < 1 and i.A0/ D p. If maxfi.Aj / W j D 1; 2; � � � ; kg < p or maxf�p;�.Aj / W j D
1; 2; � � � ; kg < �p;�.A0/, then i.f / D p C 1 and �p;�.A0/ � �pC1;�.f / holds for all solutions f 6� 0 of
equation (2).

In what follows, we give some notations and definitions of a meromorphic function in an angular domain�.˛; ˇ/ D
fz W ˛ < arg z < ˇg. In this paper, � usually denotes the angular domain �.˛; ˇ/ and �" D fz W ˛ C " < arg z <
ˇ � "g, where 0 < " < ˇ�˛

2
. Let f .z/ be a meromorphic function on �.˛; ˇ/ D fz W ˛ � arg z � ˇg. Recall the

definition of Ahlfors-Shimizu characteristic in an angular domain; see [5, pp.66]. Set �.r/ D �.˛; ˇ/ \ fz W 0 <

jzj < rg. Define

S.r;�; f / D
1

�

“
�.r/

�
jf 0.z/j

1C jf .z/j2

�2
d�; T .r;�; f / D

rZ
1

S.t;�; f /
t

dt:

The order and lower order of f on � are defined by

��.f / D lim sup
r!1

log T .r;�; f /
log r

; ��.f / D lim inf
r!1

log T .r;�; f /
log r

:

We remark that the above definitions is reasonable because T .r;C; f / D T .r; f /CO.1/; see [1, pp.20].

Definition 1.5. The iterated n-order �n;�.f / of a meromorphic function f .z/ in an angular region� is defined by

�n;�.f / D lim sup
r!1

logŒn� T .r;�; f /
log r

; (3)

where logŒ1� r D log r and logŒnC1� r D log.logŒn� r/; n 2 N.

Remark 1. It is obvious that �1;�.f / D ��.f /.

Motivated by the definition of a convergent exponent of a-value points of f in� in [5, p. 93], we give the following
definition.

Definition 1.6. For n 2 N and a 2 C [ f1g, the iterated n-convergent exponent of the sequence of a-point in � of
a meromorphic function f in � is defined by

�n;�.f � a/ D lim sup
r!1

logŒn�N.r;�; 1
f�a

/

log r
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and �n;�.f � a/, the iterated n-convergent exponent of the sequence of distinct a-point in � of a meromorphic
function f in � is defined by

�n;�.f � a/ D lim sup
r!1

logŒn�N.r;�; 1
f�a

/

log r
:

The first purpose of this paper is to study the iterated growth order of solutions to complex linear differential
equations in an angular domain. In fact, we obtain the results as follows:

Theorem 1.7. Let A.z/ be analytic in angular region �.˛; ˇ/ D fz W ˛ < arg z < ˇg.0 < ˇ � ˛ < 2�/ satisfying
either

lim sup
r!1

T .r;�"; A/
r! log r

D1;

or

lim sup
r!1

logŒn�1� T .r;�"; A/
log r

D1; .n � 2/;

where�" D fz W ˛C " < arg z < ˇ� "g; 0 < " < ˇ�˛
2
; ! D �=.ˇ�˛/. Then, all solutions f 6� 0 of the equation

f .k/ C A.z/f D 0 have the order �n;�.f / D C1.

Theorem 1.8. LetAj .z/ .j D 0; 1; � � � ; k�1/ be analytic in an angular region�.˛; ˇ/ D fz W ˛ < arg z < ˇg.0 <
ˇ�˛ < 2�/. If for any small " 2 .0; ˇ�˛

2
/, �1;�.Aj / < �1;�".A0/�! and �n;�.Aj / < �n;�".A0/ .n � 2; j D

1; 2; � � � ; k � 1/, then all solutions f 6� 0 of equation

f .k/ C Ak�1.z/f
.k�1/

C � � � C A1.z/f
0
C A0.z/f D 0 (4)

have the order �nC1;�.f / � �n;�".A0/. In particular, �n;�.f / D C1 if �n;�".A0/ > 0.

Theorem 1.9. Let Aj .z/ .j D 0; 1; � � � ; k � 1/ and g.z/ be analytic in an angular region �.˛; ˇ/ D fz W ˛ <
arg z < ˇg.0 < ˇ � ˛ < 2�/. Suppose that f 6� 0 is a solution of equation

f .k/ C Ak�1.z/f
.k�1/

C � � � C A1.z/f
0
C A0.z/f D g.z/; (5)

such that, for n � 2, maxf�n;�.Aj /; �n;�.g/g < �n;�".f / and, for n D 1, maxf�1;�.Aj /; �1;�.g/g <
�1;�".f / � ! . Then �n;�".f / � �n;�.f / D �n;�.f / and �n;�".f / D �n;�".f / � �n;�.f / for any positive
integer n.

Recalling the Nevanlinna theory in an angular domain and following the terms in [1], we set

A˛;ˇ.r; f / D
!

�

rZ
1

�
1

t!
�
t!

r2!

�
flogC jf .tei˛/j C logC jf .teiˇ/jg

dt

t
I

B˛;ˇ.r; f / D
2!

�r!

Ž
˛

logC jf .rei� /j sin!.� � ˛/d� I

C˛;ˇ.r; f / D 2
X

1<jbnj<r

�
1

jbnj!
�
jbnj

!

r2!

�
sin!.ˇn � ˛/I

D˛;ˇ.r; f / D A˛;ˇ.r; f /C B˛;ˇ.r; f /;

where ! D �=.ˇ � ˛/, and bn D jbnjeiˇn are poles of f .z/ in �.˛; ˇ/ appearing according to their multiplicities.
The Nevanlinna angular characteristic is defined as

S˛;ˇ.r; f / D A˛;ˇ.r; f /C B˛;ˇ.r; f /C C˛;ˇ.r; f /:

Thus, the order and lower order of f on � can also be defined by

�˛;ˇ.f / D lim sup
r!1

logS˛;ˇ.r; f /
log r

; �˛;ˇ.f / D lim inf
r!1

logS˛;ˇ.r; f /
log r

: (6)
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For a 2 C [ f1g, the convergence exponent of the sequence of a-point in �.˛; ˇ/ of a meromorphic function f is
defined by

�˛;ˇ.f � a/ D lim sup
r!C1

logC˛;ˇ.r; 1
f�a

/

log r
: (7)

According to the inequality, see [5, Theorem 2.4.7],

S˛;ˇ.r; f / � 2!
2 T .r;�; f /

r!
C !3

rZ
1

T .t;�; f /
t!C1

dt CO.1/;

if ��.f / <1 , then �˛;ˇ.f / <1.
We consider q pairs of real numbers f j̨ ; ǰ g such that

�� � ˛1 < ˇ1 � ˛2 < ˇ2 � � � �˛q < ˇq � � (8)

and the angular domains X D [q
jD1
fz W j̨ � arg z � ǰ g. For a function f meromorphic in the complex plane C,

we define the order of f on X as

�X .f / D lim sup
r!1

log T .r; X; f /
log r

:

It is obvious that �
j̨ ; ǰ .f / � �X .f / �

Pq

jD1
�
j̨ ; ǰ .f /; j D 1; 2; � � � ; q and �X .f / D C1 if and only if there

exists at least one 1 � j0 � q such that �
j̨0
; ǰ0

.f / D C1.
In [7], Wu considered the growth of solutions to higher order linear homogeneous differential equations in

angular domains. The following theorem was obtained.

Theorem 1.10. Let A0 be a meromorphic function in C with finite lower order � <1 and nonzero order 0 < � �
1 and ı D ı.1; A0/ > 0. For q pair of real numbers f j̨ ; ǰ g satisfying (8) and

qX
jD1

. j̨C1 � ǰ / <
4

�
arcsin

r
�

2
; (9)

where � > 0 with � � � � �. If Aj .z/.j D 1; 2; � � � ; n/ are meromorphic functions in C with T .r; Aj / D
o.T .r; A0//, every solution f 6� 0 to the equation

Anf
.n/
C An�1f

.n�1/
C � � � C A0f D 0 (10)

has the order �X .f / D C1 in X D [q
jD1
fz W j̨ � arg z � ǰ g.

For the derivatives of the nonzero solutions to the equation in the above theorem, we can get the following result
easily.

Theorem 1.11. Let A0 be a meromorphic function in C with finite lower order � <1 and nonzero order 0 < � �
1 and ı D ı.1; A0/ > 0. For q pair of real numbers f j̨ ; ǰ g satisfying (8) and

qX
jD1

. j̨C1 � ǰ / <
4

�
arcsin

r
�

2
; (11)

where � > 0 with � � � � �. If Aj .z/.j D 1; 2; � � � ; n/ are meromorphic functions in C with T .r; Aj / D
o.T .r; A0//, the derivatives of every solution f 6� 0 to the equation (10) have the order �X .f .p// D C1 in
X D [

q

jD1
fz W j̨ � arg z � ǰ g, where p is a natural number.

The last result relates to the convergence exponent of the sequence of a-point of the solutions of equation (8) in the
angular domain X .
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Theorem 1.12. Let A0 be an entire function in C with finite lower order � < 1 and nonzero order 0 < � � 1

and ı D ı.1; A0/ > 0. For q pair of real numbers f j̨ ; ǰ g satisfying (8) and

qX
jD1

. j̨C1 � ǰ / <
4

�
arcsin

r
�

2
; (12)

where � > 0 with � � � � �, if Aj .z/.j D 1; 2; � � � ; n/ are entire functions in C with T .r; Aj / D o.T .r; A0//,
then every solution f 6� 0 to the equation (10) satisfies �X .f � a/ D C1 in X D [q

jD1
fz W j̨ � arg z � ǰ g for

a ¤ 0.

2 Preliminary lemmas

Lemma 2.1 ([8]). The transformation

�.z/ D
.ze�i�0/�=.ˇ�˛/ � 1

.ze�i�0/�=.ˇ�˛/ C 1
; �0 D

˛ C ˇ

2
(13)

maps the angular domain X D fz W ˛ < arg z < ˇg; .0 < ˇ � ˛ < 2�/ conformally onto the unit disk f� W j�j < 1g
in the �-plane, and maps z D ei�0 to � D 0. The image of X" D fz W 1 � jzj � r; ˛C " � arg z � ˇ � "g; .0 < " <
ˇ�˛
2
/ in the �-plane is contained in the disk �h WD f� W j�j < hg, where

h D 1 �
"

ˇ � ˛
r�

�
ˇ�˛ :

On the other hand, the inverse image of the disk �h WD f� W j�j < hg; h < 1 in the z-plane is contained in
X \ fz W jzj � rg, where

r D

�
2

1 � h

�.ˇ�˛/=�
:

The inverse transformation of (13) is

z.�/ D ei�0
�
1C �

1 � �

�.ˇ�˛/=�
: (14)

Remark 2. Note that the conformal mapping (13) is univalent, then we get

n

�
r;�";

1

f .z/ � a

�
� n

�
1 � �r�! ; �;

1

f .z.�// � a

�
and

n.h;�;
1

f .z.�// � a
/ � n

 �
2

1 � h

� 1
!

; �;
1

f .z/ � a

!
by Lemma 2.1, the notations �; ! here are similar as that in the following Lemma 2.2. Thus, by the Definition 1.3
and 1.6 we conclude that 1

!
�n;�".f .z/ � a/ � �n;�.f .z.�// � a/ �

1
!
�n;�.f .z/ � a/.

Using Lemma 2.1, the following Lemma 2.2 was proved in [9].

Lemma 2.2. Let f .z/ be meromorphic in angular region�. For any small " > 0, write ! D �
ˇ�˛

; � D "
ˇ�˛

. Then
the following inequalities hold:

T .r;C; f .z.�/// � 2T

 �
2

1 � r

� 1
!

; �; f .z/

!
CO.1/; (15)

T .r;�"; f .z// �
r!

!�
T
�
1 � �r�! ;C; f .z.�//

�
CO.1/; (16)
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where z D z.�/ is the inverse transformation of (13). Consequently,

��.f .z.�/// �
1

!
��.f .z//; ��".f .z// � .��.f .z.�///C 1/!: (17)

Remark 3. From (15), (16) and Definition 1.1, 1.5, we obtain, for n � 2,

1

!
�n;�".f .z// � �n;�.f .z.�/// �

1

!
�n;�.f .z//: (18)

Lemma 2.3 ([9, 10]). Let f .z/ be meromorphic in � D fz W ˛ < arg z < ˇg.0 < ˇ � ˛ < 2�/ and z D z.�/ be
the inverse transformation of (13). Write F.�/ D f .z.�//;  .�/ D f .l/.z.�//. Then

 .�/ D

lX
jD1

j̨F
.j/.�/; (19)

where the coefficients j̨ are the polynomials (with numerical coefficients) in the variables V.�/.D
1

z0.�/
/; V 0.�/; V 00.�/; � � � . Moreover, we have T .r; j̨ / D O.log.1 � r/�1/; j D 1; 2; � � � ; l .

Lemma 2.4 ([11]). Let A0; A1; � � � ; Ak�1 and F. 6�/ be analytic function in � and let f .z/ be a solution of
equation

f .k/.z/C Ak�1.z/f
.k�1/.z/C � � � C A1.z/f

0.z/C A0.z/f .z/ D F.z/ (20)

such that maxf�n;�.F /; �n;�.Aj /; j D 0; 1; � � � ; k � 1g < �n;�.f /. Then �n;�.f / D �n;�.f / D �n;�.f /.

Lemma 2.5 ([12]). Let '.r/ be a nondecreasing, continuous function on RC, and let

0 < � < lim sup
r!1

log'.r/
log r

and H D fr 2 RC W j'.r/j � r�g. Then

log densH D lim sup
r!1

R
H\Œ1;r�

1
t
dt

log r
> 0:

Lemma 2.6 ([5, Theorem 2.6.5]). Let f .z/ be a meromorphic function in �.˛; ˇ/. Then for � > 1 and a natural
number p, we have

S˛C�;ˇ��.r; f / � K.S˛;ˇ.� r; f
.p//C logC r C 1/; (21)

where � is such that 0 < 2� < ˇ � ˛ and K is a constant only depending on �; �; ˛ and ˇ.

It is important and necessary to determine the relations between C˛;ˇ.r; f / and N.r;�; f /, which will be helpful
in characterizing meromorphic functions in an angle in terms of the number of points of some values.

Lemma 2.7. [5] Let f .z/ be a meromorphic function on �.˛; ˇ/. Then the following inequalities hold:

C˛;ˇ.r; f / � 4!
N.r/

r!
C 2!2

rZ
1

N.t/

t!C1
dt (22)

and

C˛;ˇ.r; f / � 2! sin.!ı/
N0.r/

r!
C 2!2 sin.!ı/

rZ
1

N0.t/

t!C1
dt; (23)

where N.t/ D N.t;�; f / D
R r
1
n.t;�;f /

t
dt , n.t;�; f / is the number of poles of f .z/ in � \ fz W 1 < jzj � tg

and N0.t/ D N.t;�ı; f / D
R t
1
n.t;�ı;f /

t
dt and �ı D �.˛ C ı; ˇ � ı/. The above two inequalities still hold for

C and N in the place of C and N .
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Note that we may replace the integrated counting function N.r;�; 1
f�a

/ with unintegrated counting function
n.r;�; 1

f�a
/ in the definition of the convergent exponent, because, see [5, pp. 39],

N

�
r;�;

1

f � a

�
D

rZ
0

n.t;�; 1
f�a

/ � n.0;�; 1
f�a

/

t
dt C n

�
0;�;

1

f � a

�
log r

�

rZ
1

n.t;�; 1
f�a

/

t
dt � n

�
dr;�;

1

f � a

�
log

1

d
; 0 < d < 1: (24)

for 1 < dr and

N

�
r;�;

1

f � a

�
D

rZ
1

n.t;�; 1
f�a

/

t
dt CO.1/ � n

�
t; �;

1

f � a

�
log r CO.1/: (25)

Lemma 2.8 ([1]). Suppose that f .z/ is a nonconstant meromorphic function in an angular domain �.˛; ˇ/ with
0 < ˇ � ˛ � 2� . Then:
(1) ([1, Chapter 1]) for any complex number a 2 C

S˛;ˇ

�
r;

1

f � a

�
D S˛;ˇ.r; f /CO.1/; (26)

(2) ([1, p.138]) for any r < R,

A˛;ˇ

�
r;
f 0

f

�
� K

8<:
�
R

r

�! RZ
1

logC T .t; f /
t1C!

dt C logC
r

R � r
C log

R

r
C 1

9=; (27)

and

B˛;ˇ

�
r;
f 0

f

�
�
4!

r!
m

�
r;
f 0

f

�
(28)

where ! D �
ˇ�˛

, and K is a positive constant not depending on r and R.

Lemma 2.9 ([5, Corollary 2.2.2]). Let f .z/ be an analytic function on�.˛; ˇ/ with 0 < ˇ�˛ � 2� . Then we have

S˛;ˇ.r; f / �
2!

�

rZ
1

logCM.t;�; f /
t1C!

dt C
4

�

logCM.r;�; f /
r!

; (29)

where M.r;�; f / D maxfjf .tei� /j W ˛ � � � ˇ; 1 � t � rg and K is a positive constant.

Let f .z/ be a non-constant entire function and M.r; f / the maximum of jf .z/j on the circle jzj D r , that is
M.r; f / D maxjzjDr jf .z/j. We have the following relations between M.r; f / and T .r; f /.

Lemma 2.10 ([4, Theorem 1.4]). Suppose f .z/ is a non-constant entire function. Then for 0 � r < R < C1, we
have

T .r; f / � logCM.r; f / �
RC r

R � r
T .r; f /: (30)

3 Proof of Theorems

Proof of Theorem 1.7. Suppose that f 6� 0 is a solution of f .k/ C A.z/f D 0 in �. Then, by Lemma 2.3,
F.�/ D f .z.�// is a solution of the differential equation

˛kF
.k/.�/C ˛k�1F

.k�1/.�/C � � � C ˛1F
0

.�/C B.�/ D 0 (31)
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in �, where j̨ .j D 1; 2; � � � ; k/ are described in Lemma 2.3 and T .r; j̨ / D O.log.1 � r/�1/, that is i. j̨ / D 0

by Definition 1.2, and B.�/ D A.z.�//. If

lim sup
r!1

T .r;�"; A/
r! log r

D1;

by (16) and Definition 1.2, we obtain i.B.z.�/// � 1. Thus, by Theorem 1.4, we get i.F / D i.B.z.�///C 1 � 2,
that is �1;�.F / D C1.

If

lim sup
r!1

logŒn�1� T .r;�"; A/
log r

D1; .n � 2/;

by (16) and Definition 1.2, we obtain i.B.z.�/// � n. Thus, by Theorem 1.4, we get i.F / D i.B.z.�///C1 � nC1,
that is �n;�.F / D C1. Combining these results with (17), (18) leads to �n;�.f / D C1.

Proof of Theorem 1.8. Suppose that f 6� 0 is a solution of (4). From (19), we have

f .k/.z.�//C Ak�1.z.�//f
.k�1/.z.�//C � � � C A1.z.�//f

0.z.�//C A0.z.�//f .z.�//

D

kX
jD1

j̨;kF
.j/.�/C Ak�1.z.�//

k�1X
jD1

j̨;k�1F
.j/.�/C � � � C A1.z.�//˛1;1F

0.z.�//C A0.z.�//f .z.�//

D ˛k;kF
.k/.z.�//C .˛k�1;k C Ak�1.z.�//˛k�1;k�1/F

.k�1/.z.�//

C

 
˛k�2;k C

k�1X
mDk�2

Am.z.�//˛k�2;m

!
F .k�2/.z.�//C � � � C

 
˛1;k C

k�1X
mD1

Am.z.�//˛1;m

!
F 0.z.�//

CA0.z.�//F.z.�// (32)

Set Bk.�/ D ˛k;k ; Bj .�/ D j̨;k C
Pk�1
mDj Am.z.�// j̨;m; .j D 1; 2; � � � ; k � 1/; B0.�/ D A0.z.�//, then

F.�/ D f .z.�// is a solution of the differential equation

Bk.�/F
.k/.�/C Bk�1.�/F

.k�1/.�/C � � � C B1.�/F
0.�/C B0.�/F.�/ D 0 (33)

in �. Since T .r; j̨;m/ D O.log.1 � r/�1/ .1 � j � m � k/ by Lemma 2.3, it follows that

T .r; Bj .�// �

k�1X
mDj

T .r; Am.z.�///CO.log.1 � r/�1/; j D 1; 2; � � � ; k � 1: (34)

If for any small 0 < " < ˇ�˛
2

, �1;�.Aj / < �1;�".A0/ � !, the conclusion holds by [9, Theorem 1.8]. If
�n;�.Aj / < �n;�".A0/ .n � 2; j D 1; 2; � � � ; k � 1/, it follows from (34) and (18) that

�n;�.Bj .�// � maxf�n;�.Aj .z.�///g �
1

!
maxf�n;�.Aj .z// <

1

!
�n;�".A0.z//: (35)

By B0.�/ D A0.z.�// and (18), we get

1

!
�n;�".A0.z// � �n;�.B0.�//: (36)

Combining (35), (36) and �n;�.Bk.�// D 0, we deduce that �n;�.Bj .�// < �n;�.B0.�//; j D 1; 2; � � � ; k. Thus,
by Theorem 1.4, we obtain i.F.�// D n C 1 and �nC1;�.F.�// > �n;�.B0.�//. It follows from (18), we get
�nC1;�.f / � �n;�".A0/.

Proof of Theorem 1.9. Suppose that f 6� 0 is a solution of (10). Set F.�/ D f .z.�// and G.�/ D f .z.�// by (14).
By (19) we also have (32) and denote Bj .�/ as in the proof of Theorem 1.8. Thus, F.�/ D f .z.�// is a solution of
the nonhomogeneous differential equation

Bk.�/F
.k/.�/C Bk�1.�/F

.k�1/.�/C � � � C B1.�/F
0.�/C B0.�/F.�/ D G.�/ (37)
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in �. For n � 2, by similar arguments as in the proof of Theorem 1.8 we get

�n;�.Bj .�// � maxf�n;�.Aj .z.�///g �
1

!
maxf�n;�.Aj .z// <

1

!
�n;�".f .z// � �n;�.F.�// (38)

for j D 1; 2; � � � ; k � 1. Note that

�n;�.G.�// �
1

!
�n;�.g.z// <

1

!
�n;�".f .z// � �n;�.F.�// (39)

and �n;�.Bk.�// D 0, we have maxf�n;�.Bj .�//; �n;�.G.�//g < �n;�.F.�// for j D 1; 2; � � � ; k.
Hence, from Lemma 2.4, we have �n;�.F / D �n;�.F / D �n;�.F /. For n D 1, we can easily obtain

�1;�.Bj / �
1

!
maxf�1;�.Aj /g <

1

!
.�1;�".f / � !/ � �1;�.f /I

�1;�.B0/ �
1

!
�1;�.A0/ <

1

!
.�1;�".f / � !/ � �1;�.f /I

�1;�.G/ �
1

!
�1;�.g.z// <

1

!
.�1;�".f / � !/ � �1;�.f / (40)

and �1;�.Bk.�// D 0. Thus, maxf�1;�.Bj /; �1;�.G/g < �1;�.f /. Applying Lemma 16 to (37), we deduce
�1;�.F / D �1;�.F / D �1;�.F /.

Finally, by Remark 2 and 3, we obtain �n;�".f / � �n;�.f / D �n;�.f / and �n;�".f / D �n;�".f / �

�n;�.f / for any positive integer n.

Proof of Theorem 1.11. Suppose that �X .f .p// < C1, then for any j D 1; 2; � � � ; q, we have �
j̨ ; ǰ .f

.p// <

C1. By the Definition 6 and Lemma 2.6, we know that �
j̨ ; ǰ .f / < C1 for j D 1; 2; � � � ; q. Since �

j̨ ; ǰ .f / �

�X .f / �
Pq

jD1
�
j̨ ; ǰ .f /, we have �X .f / < C1. It is a contradiction to Theorem 1.10.

Proof of Theorem 1.12. Suppose that f .z/ 6� 0 is a solution of equation (10) under the hypotheses of Theorem 1.12.
Set g.z/ D f .z/ � a, substitute it into (10) to obtain

Ang
.n/
C An�1g

.n�1/
C � � � C A0g D �aA0 (41)

and rewrite it as
1

g
D �

1

aA0

 
An

g.n/

g
C An�1

g.n�1/

g
C � � � C A1

g0

g
C A0

!
: (42)

Appling Wiman-Valiron theory to (42), similarly as in [3, p.130], we know that

lim sup
r!1

log logT .r; f /
log r

� �.A0/: (43)

Therefore, for sufficiently large r , we have

logT .r; f / � r�.A0/C1: (44)

Since T .r; g/ D T .r; f /CO.1/, then we have

logT .r; g/ � r�.A0/C1: (45)

By Theorem 1.10, we know that there exist an angular domain �0.˛0; ˇ0/ � X satisfying �˛0;ˇ0.g/ D

�˛0;ˇ0.f / D C1, and then �.g/ D C1. From (2) of Lemma 2.8, for " 2 .0; �
2.�.A0/C1/

/ and�� .� �"; �C"/ �
�0.˛0; ˇ0/, we can deduce that

A��";�C"

�
r;
g0

g

�
� O

0@ 2rZ
1

logC T .t; g/

t1C
�
2"

dt

1A D O 0@ 2rZ
1

t�.A0/C1

t1C
�
2"

dt

1A D O.1/ (46)

and

B��";�C"

�
r;
g0

g

�
�
2�

"
r�

�
2"m

�
r;
g0

g

�
D
2�

"
r�

�
2"O.log.rT .r; g/// D O.r�.A0/C1�

�
2" / D O.1/ (47)
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outside a set of finite linear measure. By using Lemma 1.6 in [4, p.35], it is easy to see that (45) still holds for
g.j/; j D 1; 2; � � � ; n in place of g. Similarly as above, (46) and (47) also hold by using g.j/ instead of g. Therefore,
according to the definition of D˛;ˇ .r; g/, we can deduce, for each s D 1; 2; � � � ; n,

D��";�C"

 
r;
g.s/

g

!
�

sX
jD1

D��";�C"

 
r;

g.j/

g.j�1/

!
CO.1/ D O.1/; (48)

with an exceptional set of finite linear measure. Combining (42) with (48) and from Lemma 2.9 and 2.10, we get

D��";�C"

�
r;
1

g

�
�

nX
iD1

D��";�C"

 
r;
g.i/

g

!
C

nX
iD0

D��";�C" .r; Ai /CD��";�C"

�
r;�

1

aA0

�
CO.1/

� 2

nX
iD0

S��";�C" .r; Ai /CO.1/

� 2

nX
iD0

0@1
"

rZ
1

logCM.t; Aj /

t1C
�
2"

dt C
4

�

logCM.r;Aj /

r
�
2"

1ACO.1/
� 2

nX
iD0

0@3
"

rZ
1

T .t; Aj /

t1C
�
2"

dt C
12

�

T .r; Aj /

r
�
2"

1ACO.1/
� O.T .r; A0//: (49)

If g.z/ has a zero at z0 2 �� .� � "; � C "/ of multiplicity m.> n/, then from (42) we know z0 is a zero of aA0 of
multiplicity at least m � k. Hence we have

N

�
r;�� ;

1

g

�
� nN

�
r;�� ;

1

g

�
CN

�
r;�� ;

1

aA0

�
: (50)

By Lemma 2.7, we obtain

C��";�C"

�
r;
1

g

�
� nC ��";�C"

�
r;
1

g

�
C C��";�C"

�
r;

1

aA0

�
� nC ��";�C"

�
r;
1

g

�
C S��";�C"

�
r;

1

aA0

�
� nC ��";�C"

�
r;
1

g

�
CO.T .r; A0//: (51)

Combining (49) with (51) and utilizing Lemma 2.8, we deduce that

S��";�C" .r; g/ � nC ��";�C"

�
r;
1

g

�
CO.T .r; A0//: (52)

Given positive constants � satisfying �.A0/C 1 < � < C1 and set H D fr 2 RC W S��";�C" .r; g/ � r�g, by
applying Lemma 2.5 to S��";�C" .r; g/, we get

log densH D lim sup
r!1

R
H\Œ1;r�

1
t
dt

log r
> 0:

Hence,
T .r; A0/

S��";�C" .r; g/
�
r�.A0/Cı

r�
! 0 (53)

holds when r belongs to the infinite logarithmical measure set H . From (52), (53) and the definition of �˛;ˇ.f /, we
know that ���";�C".f � a/ D C1. Thus, �X .f � a/ D C1.
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