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1 Introduction

For each positive integer N, we let T'o(N) be the Hecke subgroup of the full modular group SL»(Z) defined by

To(N) = {(j 2) €SLa(Z)|c=0 (mod N)}.

We denote by 91o(N) the normalizer of I'g(N) in PSL>(R). Newman [14, 17, 18] obtained a result about 9o (N ).
This normalizer has acquired its importance in several areas of mathematics. For instance, the genus zero subgroups
of 9o (N ) have a mysterious correspondence to the conjugacy classes of the monster simple group [6, 7]. Moreover,
the normalizer Do (N) played an important role in the work on Weierstrass points on the modular curve Xo(N)
associated to I'g(N) [14] and on ternary quadratic forms [15].

The automorphism group of the modular curve X (V) is closely related to the quotient group Jo(N)/To(N).
Kenku and Momose [12] determined the full automorphism group for Xo(N) with N # 63 and Elkies [8] completed
the problem by treating the case N = 63. And recently Harrison [9] corrected the statement in [12] for the case N =
108. According to their results, there are exceptional automorphisms (not coming from the elements in the quotient
group Mo(N)/To(N)) only for the case N = 37,63, 108. Meanwhile, as for the quotient group Do(N )/ To(N),
Atkin and Lehner [2] stated its structure without proof. But the list in [2] turned out to contain several errors and
later was corrected by Akbas and Singerman [1] and Bars [4].

Let T" be a congruence subgroup of SL»(Z) and X(I") the modular curve associated to . Motivated by the
importance of the normalizer of I'g(/N) and the automorphism group of X (), there have been several works on
the normalizer of I" and the automorphism group of X(I'). When I' = T';(N), the group of elements of SL>(Z)
that are congruent to ( (1) T) modulo N, the third author and Koo [11], and Lang [13] independently determined its
normalizer in PSL>(R). Furthermore for the modular curve X{(N) := X(I'1(N)) with N square-free, Momose
[16] proved that there are no exceptional automorphisms. Let I'(N) be the principal congruence subgroup which
consists of the elements of SL>(Z) that are congruent to ((1) (1)) modulo N, and let X(N) := X(I'(N)). Recently
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Bars, Knotogeorgis, and Xarles [5] considered the automorphism group of X(N) and proved that it is equal to the
group PSL(Z/NZ), which is isomorphic to the normalizer of I'(N) in PSL»(R) modulo £T"(N).
Let I'a (V) be the congruence subgroup of SL>(Z) defined by

TA(N) = %(‘CZ 2) € SLo(Z)|c =0 mod N, (@ mod N) € AL,

where A is a subgroup of (Z/NZ)* and we always assume that —1 € A. We note that I'a (V) is an intermediate
subgroup between To(N) and T'; (N). In particular, if A = (Z/NZ)™ (respectively A = {+1}), then we have
CA(N) = To(N) (respectively TA(N) = £I'1(N)). In this article, we are concerned with the normalizer of
A (N) in PSL>(R) and its underlying group structures.

After the preprint was ready, we recognized the results in the paper [19], which independently obtained a
criterion of normalizers (compare Corollary 2.6 of that reference with our Theorem 2.1). The reference aims only
for determining the normalizers, while we also investigate the structure of quotient groups in case N is square-free.

This paper is organized as follows. In Section 2 we investigate the normalizer 1A (N) of Ta (N) in PSLy (R).
In Section 3 we find the group structures of the quotient group DA (N)/T'a (V) for square-free N when the exact
sequence

I = To(N)/Ta(N) L NAN)/TA(N) 5 Na(N)/To(N) — 1 M

splits. In fact, the sequence (1) is not well-defined in general, since I'o(/N) will not always be a normal subgroup of
N (N). However, I'o(N) is a normal subgroup of 91 (N) for square-free N. We prove that in this case,

NAN)/Ta(N) = (Z/NZ)*/A) x (Z/2Z)",

where r is the number of distinct prime divisors of N, and we give some examples of such quotient groups for
nontrivial A. Finally, in Section 4 we study the case of composite N, which is a product of two distinct primes and
find out what happens in the cases when the exact sequence (1) does not split. In these cases we investigate the
group structures of the quotient groups DN (N)/'a (N) by describing their group presentations (see Theorem 4.1,
Theorem 4.2, Theorem 4.3, Theorem 4.4, and Remark 4.6).

We use the following notations through this paper.

Notations.

1. Forintegers a, b € Z such that a # 0, we use a || b to mean that a|b and gcd(a, g) =1.
2. For a prime p and an integer a such that ged(a, p) = 1, we let (%) denote the Legendre symbol if p # 2, and

we define (%) = 1 conventionally.

3. By abuse of notation, for an integer a, we use a € A to mean that the congruence class of a belongs to A.

4. For a positive integer n and an integer a prime to n, we let ord,; (a) denote the order of @ modulo #, i.e. the
smallest positive integer k such that ¢k = 1 (mod n).

2 Normalizers of intermediate congruences subgroups

N
)

a b
oot (£,2) ram
and define & = ged(o, €).

Let 9TA (N) be the normalizer of I'A (N ). Note that

Let o2 be the largest square dividing N so that g :=
set

is square-free. Define € to be the gcd of the elements in the

s

PSLy(R) = SLo(R)/{£1} = PGLJ (R).

We can modify Theorem 1 of [14] as follows:
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Theorem 2.1. A matrix M is contained in A (N) only if M is represented in PGL;_ (R) as

_(9x 7%
M‘(’Zz Qhw)

where Q||+ and x.y.z,w € Z such that det(M) = Q.

If h = 1, then we denote M by Wy in Theorem 2.1. Such a matrix Wy is contained in the normalizer of the
group I'o(N) and it defines a unique automorphism on the modular curve Xo(N) which is called the Atkin-Lehner
involution. However, the uniqueness doesn’t hold for general congruence groups I'A (V).

We investigate when W belongs to 9TA (N). Each y € T'A(N) is of the form

(€2

b
where a € A and a is an integer with aa = 1 (mod N). For Wp = <]%x Qy ) and y = (a _) € Ta(N), one
z Qw ca

can easily compute that WoyWg I e TA(N) if and only if the following condition holds:
N
Oxwa — —yza € A. 2
0
From Q2%xw — Nyz = Q, we have that Qxw — %yz = 1 and hence the following holds:

a (mod g),
a (mod Q).

N
Oxwa — Eyza =

Note that @ is the multiplicative inverse of ¢ modulo Q. Now we define an isomorphism 7o : (Z/NZ)* —
(Z/NZ)* by
a (mod g),

fola) = {Ez (mod Q).

Since (Z/NZ)* is isomorphic to the direct product (Z/QZ)* x (Z/ %Z)*, one can show that the condition (2)
holds if and only if zp (@) € A. Therefore we have the following result:

Proposition 2.2. Wo € MA(N) ifand only if to (A) = A.

If M € MA(N), then

11 -1 _ a b
M (0 1) M= (cN d) e Ta(N). 3)

Taking the trace, we see that 2 = a + d. Since d is a multiplicative inverse of a in (Z/NZ)*,
(a—1)?> =0 (mod N),

and hence
a =1 (mod 0q). “4)

Now consider the natural homomorphism
¢ (Z/NL)" {1} > (Z/ogZ)" /{E1}. ©)

Then ker(¢) = {1,0q + 1,20q + 1, ..., (0 — 1)aq + 1} is the cyclic group of order o generated by 0 + 1. Thus
equation (4) is equivalent to that a € ker(¢).
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In [11], the third author and Koo prove that 9TA () is generated by the elements of I'o(N) and Wy for all
Q||N when N # 4 and A = {£1}, and its proof mainly depends on the following two conditions:

M (1 1) M~ e £T(N), (6)
01
1

M (N ?) M~' e £ (N). @)

If (A/{£1}) Nker(¢) = {1} holds, then Eq. (3) is the same as Eq. (6). Similarly Eq. (7) is the same as the following
condition:

M (;f ?) M~ e TA(N).

By exactly the same arguments as those in [11], we have the following result:

Theorem 2.3. If (A/{%1}) Nker(¢p) = {1}, then NA(N) is generated by the elements of To(N) and Wo with
to(A) = A foreach Q || N.

From Theorem 2.3, one can easily obtain the following result:

Corollary 2.4. If N is square-free, then YA (N) is generated by the elements of To(N) and Wo withto(A) = A
for Q|N.

Proof. If N is square-free, then ¢ defined in (5) is an isomorphism, and hence ker(¢) is trivial. O

3 The group structures of the quotient group DA (N)/I'A(N) for
square-free NV: the split case

In this section, we assume that N is square-free and for simplicity we assume that 1o (A) = A for all Q||N. As
the main result of this section, we find a condition for A so that the exact sequence (1) splits. For that, we state a
well-known result as follows:

Lemma 3.1.
To(N)/Ta(N) = (Z/NZ)*/A.

Proof. For an integer a prime to N, let [a] denote a matrix represented by y € T'o(N) such thaty = (§ % ) mod N.
Consider the natural surjective homomorphism

¢ :To(N) = (Z/NZ)*/A

defined by ¢ ([a]) = a. One can prove that the kernel of ¢ is equal to I'a (N), and the result follows from the first
isomorphism theorem. O

By Corollary 2.4, MA (N) is the same as Dg(N) for square-free N. Then the Atkin—Lehner involutions modulo
TCo(N) generate 9 A (N)/To(N) which is isomorphic to (Z/27)" where r is the number of prime divisors of N.
Now we investigate when the exact sequence (1) splits, in which case, we have the following isomorphism:

NA(N)/TA(N) = (Z/NZ)*/A) x (Z/2Z)".

For that we should find a group homomorphism 4 : MA (N)/To(N) — NA(N)/TA(N) so that g oh is the identity
map, where g appears in (1). Note that the generators of 9TA (N)/o(N) are the Atkin-Lehner involutions W), for
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each prime divisor p of N, and so are their preimages of g in (1). Therefore the exact sequence (1) splits if and only
if there exists an elementary abelian 2-subgroup of 9TA (N)/'a(N) generated by W), with prime divisors p of N.
Put N = p1p>2--- pr with distinct primes p1, p2, ..., pr. Then the exact sequence (1) splits if and only if one can
find W), for all i so that the following two conditions hold:

1 2
Wp, | €Ta(N), (®)
(«m p)
W, W, Wy ' Wl € TA(N), forany i, j. 9)

We give necessary and sufficient conditions for the splitting property of the sequence (1) in turn when r = 1,2 and
r>3.

3.1 Thecasewhen N = p

First, we consider the case when N is a prime p.
In this case W), is always contained in 9Ta (N ), and hence we have the following result:

Theorem 3.2. Let A < (Z/pZ)* then the sequence (1) splits and

Z/ZZ, lfm = ],
NA(P)/Ta(p) = 2/22 x Z)2Z, ifm =2,
D, ifm=>3,

where m = Ile_ll and Dy, is a dihedral group of order 2m.

2
Proof. One can easily check that (ﬁ Wy, ) = —1, and hence the conditions (8) and (9) hold. Since ((Z/ pZ)*/A)
is a cyclic group of order m, MA (p)/ TA(p) = Z/mZ x Z/27. Also one can easily prove that the following holds:

[a]W = Wpla™"] (mod p).

Our result comes from this relation. O

3.2 The case when N = pgq
Next, we consider the case when N = pq for two distinct primes p and g.

Theorem 3.3. Let A < (Z/pqZ)*. Then, the sequence (1) splits if and only if there exist a,b € A such that
(%) =1,a=-1 (mod gq), (bjp) = 1,and b = —1 (mod p). In this case,

Na(p9)/Talpg) = (Z/pqaZ)*/A) x (Z/2Z)?,

which is of order 4m where m = %.

Proof. Suppose there exist a,b € A such that (%) =1,a = -1 (mod g), (%’) = l,and b = —1 (mod p).
Then, there exist x, x” € Z such that

gqx’2 (mod p) b= §—1 (mod p)

-1 (mod ¢q), B px? (mod q).

Note that gcd(x, ¢) = 1 and ged(x’, p) = 1. Hence there exist y, z, y’, z’ € Z such that

(px)z—qy =1, (gx)z' —py' = 1.
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Then by the uniqueness of a and » modulo pgq,

a=qx?+py (mod pq), b= px>+qy (mod pq).

4 /
wo= (P50 w, = (1),
pq pz pq qz

Then det(W,) = p and det(W,) = ¢ and the first component of (ﬁ W,)? is px2 4+ qy = b € A and the first

Let

component of (% W,)? is gx’> 4+ py’ = a € A. Hence the condition (8) holds.
Note that if we let a’, b’ € Z such that

Y= qz'? (mod p) b — -1 (mod p)
-1 (mod q), pz? (mod q),
thena’ = a~! (mod pq) and b’ = b~! (mod pq),soa’,b’ € A. Now the first component of W, Wqu_1 Wq_l
is
qZ/Z

a/
px2=b

—a’b (mod p)

pa(xx’ +y)(zz' + y) + (pxy" + qyz')(=qz" — px) = , :
—a mo
b (mod ¢)

hence it is —a’b (mod pgq), which is in A since a’, b, —1 € A. So the condition (9) holds. Hence the sequence (1)
splits.

4 /
Conversely, suppose the sequence (1) splits. Then there exist W, = (p * ) ) and W, = (qx Y ,)
pqz pw

satisfying the conditions (8) and (9). By a similar computations of the first components of (ﬁ W,,) and

2
quq> , we can show that there exist a,b € A such that (%) =1,a = —1 (mod q), (%’) = 1, and
= —1 (mod p).
In this case, by Lemma 3.1 and the exact sequence (1),

Na(P9)/Ta(pqg) = To(pq)/Ta(pq) x Na(pq)/To(pq) = (Z/ pgZ)* | A) x (Z/27)>. O

Corollary 3.4. Suppose p and q are distinct two primes with p < q. If A = {£1} < (Z/pqZ)™, then the sequence
(1) splits if and only if

(1) for p =2 and an odd prime q, ¢ = 1,3,7 (mod 8) or

(2) for distinct odd primes p and q, p = q = 1 (mod 4) and (%) =1

Proof. By using the quadratic reciprocity law, we can prove that the conditions (1) and (2) are equivalent to that

2):10r(——2):1, if p=2

(q—q =P \ ; (10)
(7) = (T) =1, otherwise.

It is based on a having to be —1, and the same value must be attained by b if p > 2. O

Remark 3.5. There exist infinitely many pairs of distinct primes satisfying conditions (1) and (2) of Corollary 3.4.
For example, p = 5 and g = 1 or 9 (mod 20) satisfy (10).

3.3 The case when N is a square-free integer with more than 2 prime divisors

,
Theorem 3.6. Let py, ..., pr be distinct primes where r > 3 andlet N = [] pi. Let A < (Z/NZ)*.
i=1

Then, the sequence (1) splits if and only if the following holds;
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(1) Fori =1,...,r, the class modulo N of the elements a; € 7 satisfying
a;j =—1 (mod p;)
(”;—?) =1, foreachk # i,

lies in A.
(2) Foreach1 <i < j <r, the class modulo N of the elements b;; € Z satisfying

ay'  (mod py)
bij = ya; (mod p;)
1 (mod py) forallk #1i, j,

lies in A.

In this case,
NA(N)/TA(N) = (Z/NZ)* | A) x (Z/2Z)",

_I;[l(pi—l)

which is of order 2" m where m = Sar—
Proof. Suppose there exist a;, b;; € A satisfying conditions (1) and (2). Then by the condition (1), for each i =

-1 (mod p;)

1,...,r,there exist x; € Z such that
N
(mod i ).

a; =
{Pi x7
Note that gcd(p; x;, pﬁi) = 1 since a; € A. So there exist y;, z; € Z such that

N
(pixi)zi — —y;i = L.
Pi

Foreachi =1,...,r,let
Wy, = pixi Yi _
N piz

Then det(W),,) = p;, and the first component of (# Wy, )? is
N o (Syi=-l=a  (mod pp)

pixi+ —yi={""" ! !

Di pix} =aj (mod py) for all k # i,

|

which is in A by condition (1). Hence the condition (8) holds.
Note that if we let a; € Z such that

/
a;

%—1 (mod p;)

piz;  (mod 55),

then al’. = al._l (mod N). Now, foreach 1 <i < j < r, the first component of W), Wy, Wp_lWI;l is
( + Ny;) + — ( + ) N +
PiDjXiXj Vi (Z'Z_‘ y-)— PiXiyj T+ DjYiZj (*Zﬁ —x-)
LF]NMLNv) LJ\<«1+) plp/l L)y J 1<) pl/ pll

—pizi(peyi) = pjz; =ay=a;' =by  (mod p;)
= —p,-xiz(%yj)zpixizzai = b;; (mod p;)
(mod py) forall k # i, j,

(pixizi)(pjxjzj) =1=bij
which is in A by condition (2). Thus the condition (9) holds, and hence the sequence (1) splits.
Suppose the sequence (1) splits. As explained in the proof of Theorem 3.3, we can show that the conditions (1)

and (2) hold.
In this case, again by Lemma 3.1 and the exact sequence (1),

NAN)/Ta(N) = To(N)/Ta(N) x NA(N)/To(N) = (Z/NZ)*/A) x (Z/2Z)".
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Remark 3.7. For N = pypa---pr withr > 3, if A = {1} < (Z/NZ)*, then the sequence (1) does not split
since otherwise the condition (1) in Theorem 3.6 implies that a; = —1 (mod N) for all i, which shows that there is
no b;; € {x1} satisfying the condition (2) in Theorem 3.6. This is a different phenomenon from the case when r = 1
or 2 referring to Theorem 3.2 and Corollary 3.4.

Now we give some examples in the split case.

Example 3.8. Ler N =21 =3-7and A = {£1, £8} < (Z/NZ)™*. In this case, the maps t3 and t7 are the identity
map, and so they preserve A. Indeed, A consists precisely of those residues that are congruent to =1 modulo 7;
hence it will make it immediately evident that A is a subgroup and that it is preserved under the involutions t3 and
t7. If weleta = —8 and b = —1, then a and b satisfy the conditions of Theorem 3.3 when we take p = 3 and q =7,
and hence

NA(21)/TA 1) = (Z/3Z) x (Z/27)>.
More precisely, we take [2] = (221 111 ), W3 = (291 :g) and W7 = (271 %) Then ([2]) = Z/37Z and (W3, W) =
(Z./27)?, and we can check that
[21W3 =W3[2],
[21W7 =w7[2] ",
21W3 W7 =W3 W72,
i.e. exactly one involution of (Z.)27)? operates tirivally on Z./37, and the other two operate nontrivially on 7./3Z.

Thus [2)W5 has order 6 and W+ ([2]W3) = ([2]W3) "' W5 in Ma(21)/Ta(21), and hence Ma(21)/Ta(21) is
isomorphic to the dihedral group D¢ of order 12.

Example3.9. Let N = 105 = 3-5-7 and p1 = 3,p»p = 5 p3 = 7. Let A = {£1,+£8,+13,
+22, 429, £34, +41, £43}. As mentioned in Example 3.8, A consists precisely of those residues that are congruent
to £1 modulo 7; hence t3, t5 and t7 preserve A. Put ay = —43,ap = —1,a3 = 13, then bjo = —13,by3 =
—8,b13 = —29, and they are all contained in A. From our criterion of Theorem 3.6, we can conclude that

NA(N)/TA(N) = Z/37 % (Z)27)3.

4 The group structures of the quotient group DtA (pq)/I'a(pq) for
primes p, ¢: the non-split case

Usually it is not easy to determine the group structure of 9TA(N)/T'a(N) for N, if the short exact sequence (1)
does not split. In this section we find the group structure of 9TA(N)/Ta(N) when N = pq with distinct primes
p. q for which the exact sequence (1) does not split, and A = {+1} < (Z/NZ)™*.

If we take
Wp — X1 i . Wq — qx2 y2 )
N pz; N qz»

then one can easily check that

1 2 1 2

Put w; = px% 4+ ¢gy1 and wyp = qx% + py>. Then from the fact that det(W),) = p and det(W,) = g the following
holds:

5 = (12)
px7 (mod gq), —1 (mod g).

—1 (mod p) " {qx% (mod p)
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By using the fact that det(W,) = p and det(W,;) = g again, we can show that the (1, 1)-component of
% Wy Wp Wy W), is as follows:

13)

1 -1 (mod p),
NWquWqu[L 1] =gy1 + py2

—1 (mod g),

and hence % WyW,WyWy(1,1] = —1 (mod N), which shows its triviality in the quotient group DIA(N)/TaA(N).
Now as the complement of Corollary 3.4, consider the non-split cases for N = pg with distinct two primes p, g
which can be divided into the following five sub-cases depending on the congruences of p and g:

(i) p=2andg =5 (mod 8).
(i) p =¢q =3 (mod 4), in which case we choose p and ¢ such that (5) =—1.

(i) p=1andg =3 (mod 4) with (5) — 1.
(iv) p =1landg =3 (mod 4) with (5) =1.
(v) p=g=1 (mod 4) with (5) =_1.

For the non-split case for N = pgq, we have the following group presentations of the quotient group SIA (N )/ Ta (N)
where A = {£+1}.

Theorem 4.1. Let N = 2q where q is a prime with g = 5 (mod 8). Then,
NA(N)/TA(N) = (a,b |a?™" = b? = (ab)* = 1).
In this case, A (N)/T'a(N) is isomorphic to the Dihedral group D41 of order 2(q — 1).

Proof. From (10) and Euler’s criterion, we have

(2) =2% =1 (mod g). (14)

Letd = ord,(2). Then qu should be odd. Suppose that qT_l is even, then d | qT_l which is a contradiction to (14).

Take a primitive root r € (Z/NZ)* of g sothat2 = r T (mod ¢), and put x| to be an integer satisfying x| = r””
(mod ¢) where m is the integer with qT_l + 2m = 1. Then 2x12 = r (mod ¢q), and ord, (2x%) =g — 1. If we take

2
Wy = ( ;\Cll 2)’1 ) for some yp,z1, and let w; = 2x12 + gy1, then W22 = [w1] in MA(N)/TA(N) by (11). Since
z1
a=1

ordy (wy) = ordq(2x12) =g—landw,;> = —1 (mod N), the order of W in M (N)/TA(N) isequal tog — 1.
We recall that we work modulo A = {£1}, so that the order ¢ — 1 of w1 means an order of qT_l of W22, whence an
order of g — 1 of W, itself.

If we take W, = q]ff 72 ) and let wa = gx2 + 22, then W2 = [w2] in Ma(N)/Ta(N) by (11). Since

qz2

wy = —1 (mod N) from (12), the order of Wy, in MIA(N)/T'a(N) is equal to 2.

Since w generate (Z/NZ)*, MA(N)/Ta(N) can be generated by W> and W,. From (13) we know that
(Wqu)2 = 1.

Let G = (a,.b | a?~' = b? = (ab)? = 1). Then the map a — W> and b > W, can be extended to a unique
homomorphism from G to MTA(N)/'a(N) because Wo and W, satisfy all the relations in G if we replace a and b
by W> and W, . Clearly, the order |G| of G is equal to 2(¢ — 1) which is the same as |MTA (N)/Ta(N)]. Thus G is

isomorphic to MaA (N)/Ta(N). O

Theorem 4.2. Let N = pq where p and q are primes satisfying one of the following:
(@) p =g =3 (mod 4), in which case we choose p and q such that g =-—1
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) p=1 (mod 4)and g =3 (mod 4) with (5) -1
Then,
NA(N)/TA(N) = (a,b | a?"" = b>P~D = (ba)? = ba’b~'a? = 1).

Proof. Let us consider the case when p = ¢ = 3 (mod 4) by choosing the notation for p and ¢ such that (g) =
—1. By the same reason as in the proof of Theorem 4.1, qd—_ll is odd where d; := ord,(p). Thus we can take a

primitive root r € (Z/NZ)™* of ¢ and an integer x| so that px% = r (mod ¢q), and hence ord, (pr) =g — 1. Take

Wy, = (p;l ’ ) for some y1,z1, and let wy = px12 + gy1. By the Chinese Remainder Theorem, we know that
Pz

(Z/NZ)* = (Z/ pZ)" x (Z/qL)",

and hence ordy (w1) = lecm(ordy (pxlz), ord,(gy1)) = lem{qg — 1,2} = g — 1 by (12). From (12), we also know
qg—1

that wlT = —1 (mod N) because qT_l is odd, and hence the order of W, in A (N)/TA(N) isequalto g — 1.
On the other hand, (%) = quil =1 (mod p). Thus d := ord,, (q)|pT_1, and pd—_zl is even. Take a primitive

—1
root s € (Z/NZ)* of p so that g = s(I‘Tz (mod p), and put x> to be an integer satisfying x» = 52 (mod p)
where m> is the integer with % +2mp = 2. Then px5 = 52 (mod p), and ord,, (qx%) = PT_l. In fact, we cannot

take x5 so that ordp(qxg) = p — 1. Now we take W, = (q;\c]z yz) for some y», z2, and let wp = qx% + py2.
qz2
From (12), we know ordy (w2) = lcm(pT_l, 2); hence it is equal to p — 1 because pT_l is odd by our assumption
about p. From (12) again,
w!’T—l _ 1 (mod p)
2 -1 (mod ¢q)

—1

and hence wsz # +1 (mod N). Thus the order of wy modulo A = {+£1} is equal to p — 1; hence the order of
Wy inNMA(N)/TaA(N)isequalto2(p — 1).

Now we will show that W, and W, generate MA(N)/'A(N). For that it suffices to show that w; and w»
generate (Z/NZ)* /{x1}. Since

(Z/NZ)*/{£1} = [(Z/ pD)* x (Z/qZ)*] /{1, 1)},

from (12), we can view w; and wo as the elements (—1,7) and (s2,—1) of [(Z/pZ)* x (Z/qZ)*] /{£(,1)},
respectively . Since pT_l is odd, —s? is a primitive root modulop. Thus (1,7) = (=1,1)(=1,r) =
(—s2, 1)%4(—1,r), and hence (1,r) and (—s2, 1) are expressed by +(—1,7) and %(s2, —1). Since (1,7) and
(—s2,1) generate [(Z/pZ)* x (Z/qZ)*]/{x£(1,1)}, so do (—1,r) and (s2,—1). Thus w; and w, generate
(Z/NZy* [{£1}.
From (13) we know that (W, W),,)? = 1. For u € (Z/NZ)*, by the action of the Atkin-Lehner involution W,
on (Z/NZ)* via the t, operator which is in correspondence with conjugation by the W, on I'o(N) modulo I'1 (N),
we have the following:
WolulW; 'u][1,1] =1 (mod q). (15)

Thus Wq[wl]Wq_l[wl][l, 1] = 1 (mod g), and clearly Wq[w1]Wq_1[w1][l, 1] = 1 (mod p) because w1 = —1
(mod p). Therefore, W, sz Wq_1 sz = 1 holds.

Let G = (a,b | a1 = b2P~D = (ba)? = ba?b~'1a? = 1). Then there is a unique homomorphism from
G to NA(N)/TA(N) determined by the map a +— W), and b > W,. From the relations in G, we know that

a V' =a972 p= 1 = p2P=D=1 by =47 1p71 ba? = a—2b,

and hence every element of G can be expressed as a’h’/ with0 <i < g —1and 0 < j < 2(p — 1). Thus the order
|G| of G is less than or equal to 2(p — 1)(¢ — 1). Since |MA(N)/Ta(N)| < |G| and NMA(N)/TaA(N) is of order
2(p —1)(g — 1), G is isomorphic to NA(N)/Ta(N).
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Next consider the case when p = 1 (mod 4) and ¢ = 3 (mod 4) with (5) = —1. By the quadratic reciprocity

law, (%) = —1 too. Under the exact same notations as in the previous case, we know that ord, (w1) = g — 1 and

ord, (w2) = p — 1. The fact that ord,(w;) = g — 1 comes from two conditions ¢ = 3 (mod 4) and (5) =-1
p—1

which is the same as in the previous case. Since (%) =g 2 =-1 (mod p), pd—_zl should be odd. Thus one can

take x so that qx% is a primitive root modulo p, and hence ord, (w2) = p — 1.

From (12), wqul = —1 (mod N) because % is odd, but wszl # —1 (mod N) because pT_l is even. Thus
the order of W), and W, in MA(N)/T'aA(N) are equal to ¢ — 1 and 2(p — 1) respectively.

In this case we can view w; and wy as the elements (—1,7) and (s, —1) in [(Z/pZ)* x (Z/qZ)*]/{£(1, 1)}.
Since pT_l is even, —s is a primitive root modulo p too. By the similar argument as in the previous case, (1, r) can
be expressed by (—1,r) and (—s, 1). Since (—s, 1) and (1, r) generate [(Z/ pZ)* x (Z/qZ)*]/{%(1, 1)}, so w; and
wy generate (Z/ N Z)* /{%1}. Thus the result follows. O

Theorem 4.3. Let N = pq where p and q are primes satisfying p = q = 1 (mod 4) with (5) = —1, Then,

NA(N)/TAN) = (a,b|a* 97D =p2P™D = (ba)? = ba?b~'a? = a9 167~ =1).

Proof. The notations are exactly the same as in the proof of Theorem 4.2. By quadratic reciprocity law, (5) =
(%) = —1; hence pLEI = —1 (mod ¢) and qu_l = —1 (mod p), and hence qd—_ll and ”d—_zl are odd. Thus we

can take x1 and x> so that px]2 and qx% are primitive roots of ¢ and p, respectively. Thus ord y (w1) = ¢ — 1 and
a=1 =1
ordy (w2) = p — 1. Since qT_l and pT_l are even, w, > # %1 (mod N) and w,> # %1 (mod N) from (12),

and hence the orders of W), and W, in MA(N)/TA(N) are equal to 2(¢ — 1) and 2(p — 1) respectively.

Since
et 1 (mod p) 21 -1 (mod p)
w,? = , Wyt = )
-1 (mod ¢q) 1 (mod q)
a=1  p=1
w,? wy? =—1 (mod N), and hence W/ 'W,”~! = 1.1t holds that (W, W,)? = 1 and WaWEW w2 =1
as before.

In this case we can view w; and wy as the elements (—1, r) and (s, —1) in [(Z/ pZ)* x (Z/qZ)*]/{£(1, 1)}, and
—s and —r are primitive roots of p and ¢. Thus —(1, —r) and —(—s, 1) generate [(Z/pZ)* x (Z/qZ)*]/{x(1, 1)},
and so wy and wy generate (Z/NZ)* /{%1}.

Finally consider the isomorphism. Let G = (a,b | a2~V = p2P=D = (ha)? = ba?b~'a? =
a9 'p?~1 = 1). From the first four relations, we know that any element of G can be expressed as a’b/ with
0<i<2(@—1)and0 < j <2(p — 1). However due to the relation a9~ 15?~1 = 1, it can be boiled down to be
alh’/ with0 <i <g—1land0 < j <2(p —1). Thus |G| < 2(p — 1)(¢ — 1), and hence the result follows by the
same argument as in the proof of Theorem 4.2. O

Theorem 4.4. Let N = pq where p and q are primes satisfying p = 1 (mod 4) and g = 3 (mod 4) with (5) =1
Then,

NA(N)/TA(N)
(a,b,c| @@=V = pp=1 = P~ = (ba)? = ba2b™'a? = a9~ 1h T
=a?"'0%2c72 =aca Ve = beh7 e = 1),
(a,b,c|a?@=D = p% = P~ = (ba)? = ba2b~'a?

=a?'0%2c72 =aca Ve = beh7 e = 1),

ifp=1 (mod8),

~

ifp=5 (mod 8).

Proof. The notations are exactly the same as in the proof of Theorem 4.2. Since (g) = (%) =1, pqzl =

1 (mod ¢q) and qu_l = 1 (mod p), and hence qd_ll and pd—_zl are even. Thus we can take x1 and x> so that



798 = Bo-Hae Im etal. DE GRUYTER OPEN

ordy (px?) = % and ord, (¢x3) = pT_l. Since qT_l is odd and pT_l iseven, ordy (w1) = g—1and ord  (w3) =

g=1
pT_l by (12). Then the order of W), in MA(N)/Ta(N) is equal to 2(g — 1) because w, > # £1 (mod N) from
(12). However, the order of W, in MTA(N)/T'a(N) is equal to p — 1 (resp. pT_l) if p=1 (mod 8) (resp. p =5

p—1 p—1

(mod 8)), because w,* # £1 (mod N) if 21 is even but uiZ,T = —1 (mod N) if 27! is odd from 1(12).
g1 pr—=1 r_1
First consider the case p = 1 (mod 8). Then w;* w,* = 1 (mod N), and hence qu_] W,> =11t

holds that (W W,)? = 1 and W, W2 W, 1 W2 = 1 as before.

In this case we can view w1 and w» as the elements (—1,72) and (s2, —1) in [(Z/ pZ)* x (Z/qZ)*]/{£(1, 1)}.
Then —r? is a primitive root modulo g, but ord,(—s?) = "T_l. Thus =(s, 1) cannot be expressed by (-1, r?)
and (s2,—1), and then [(Z/NZ)*/{£1} : (wy,w2)] = 2 and [RA(N)/TA(N) : (W, W,)] = 2. If we take
u € (Z/NZ)* sothatu = s (mod p) and u = 1 (mod gq), then NA(N)/Ta(N) = (Wp, Wy, [u]). As explained
for the equation (15), we have

WplulW, ' [u][1.1] =1 (mod p),

and clearly W, [u]Wp_l[u][l, 1] =1 (mod g). Thus W, [u]Wp_l[u] =1inNA(N)/Ta(N). We can compute

_ _ uu_quzzz =1 (mod p),
WolulW 'l L1 = 1
—upy2 =1 (mod g),

and hence Wq[u]Wq_l[u]_1 =1in NA(N)/Ta(N).Let G = (a,b,c | a?>@=D = pP=1 = P71 = (ha)? =
ba?b~1a? = a9 b T = a9 p2c2 = aca=lc = beb~ e = 1). Then there is a unique homomorphism
from G to MA(N)/ T A (N) determined by the map a — Wp,, b — W, and ¢ — [u]. By the same reason as in the
proof of Theorem 4.3, all the products of a, b can be expressed as a’h/ with0 <i < (g—1),0 < j < (p—1). From
the relations @ =" b2¢~2 = aca~'c = beb™ ¢! = 1, we can check that every element of G can be expressed as
a'h’/ ¢k with0<i <(g—1),0<j <(p—1),andk =0, 1. Thus |G| < 2(p — 1)(¢ — 1), and hence we have an
isomorphism.

Let us consider the case p = 5 (mod 8). We can take W), Wy, and [u] as the same as in the case p = 1
(mod 8). Then they satisfy all the relations in G := (a,b,c | a4~V = b =Pl = (ha)? = ba*b~'a? =
a9 'h%2c™2? = aca”'¢ = beb™ ¢! = 1) if we replace a, b, and ¢ by W),, W, and [u], respectively. By the same
argument as in the case p = 1 (mod 8), we can show that G is isomorphic to DA (N)/Ta(N). O

Corollary 4.5. For the non-split cases for N = pq with distinct two primes p, q, we have
IMa(N)/Ta(N)| = 2(p = D)(g —1).
Proof. 1t follows from the proofs of Theorem 4.1, Theorem 4.2, Theorem 4.3, and Theorem 4.4. O

Remark 4.6. (1) In Theorem 4.4, MA(N)/TA(N) cannot have two generators. Suppose it can be generated by
two elements, say o and B. In the sequence (1), they map to generators of Ia(N)/ To(N) under the map g. Since
NA(N)/To(N) is the Klein four-group and it is generated by W, and Wy, we can assume o and 3 are same
as Wy and Wy. In fact, if one of g(o) and g(P) is equal to Wy, say g(B), we can take o and off as generators
of NMA(N)/TA(N), and then g(a) and g(ef) are equal to Wy, and Wy. However, W), and W, cannot generate
NA(N)/TA(N) as shown in the proof of Theorem 4.4.

(2) Consider the non-split cases for N = pq and let A < (Z/NZ)*. Suppose to(A) = A for all Q||N.
Then one can obtain a group presentation of IA(N)/ Ta(N) by using the methods used in the proofs of Theorem
4.1, Theorem 4.2, Theorem 4.3, and Theorem 4.4. Since MA(N) = M4 11 (N), there is a natural projection
Nt 13(N)/Tig13(N) = NA(N)/TA(N), and hence we can take the same generators of Ma(N)/TaA(N) as of
MNy+13(N)/ Tiq13(N). Thus it suffices to change the order of generators and the relations between them for getting
a group presentation.

We give an example in the non-split case which shows the orders that generators W, and W, can have and their
relations depending on A.
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Example 4.7. Let N = 35, which is in the case of Theorem 4.2, and let A1 = {£1,16} and Ar =

{£1, 11, £16}. Take
2 4
Ws = > , W7 = / ,
3515 3521

then w1 = 19 and wy = 27. Since w% = —1 (mod 35), the order of Ws in A, (N)/Ta,(35) is 6, and since
w% = —6 (mod 35), the order of W7 in Ma,(N)/Ta, (35) is 4. Consider the group G = {(a,b | a® = b* =
(ba)?> = ba’b~'a? = 1). Then W5 and W7 satisfy all the relations of G in Na,(N)/Ta,(35) if we replace
a and b by W5 and W7. Clearly |G1| = 24 which is the same as the order of Na,(N)/T'a,(35), and hence
NAa, (N)/Ta,(35) is isomorphic to G1.

Since wy € Aa, the order of Ws in Ma,(N)/ T a,(35) is 2, and since wg = 1 (mod 35), the order of W7 in
MNa,(N)/Ta,(35) is 8. Consider the group Go = (a,b | a®> = bS = (ba)? = 1). Since the order of a is 2, we
can remove the relation ba®>b~'a> = 1. Then one can easily confirm that Wa, (N)/ T a,(35) is isomorphic to G
which is a dihedral group of order 16.
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