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1 Introduction

For each positive integer N , we let �0.N / be the Hecke subgroup of the full modular group SL2.Z/ defined by

�0.N / D

( 
a b

c d

!
2 SL2.Z/ j c � 0 .mod N/

)
:

We denote by N0.N / the normalizer of �0.N / in PSL2.R/. Newman [14, 17, 18] obtained a result about N0.N /.
This normalizer has acquired its importance in several areas of mathematics. For instance, the genus zero subgroups
of N0.N / have a mysterious correspondence to the conjugacy classes of the monster simple group [6, 7]. Moreover,
the normalizer N0.N / played an important role in the work on Weierstrass points on the modular curve X0.N /
associated to �0.N / [14] and on ternary quadratic forms [15].

The automorphism group of the modular curve X0.N / is closely related to the quotient group N0.N /=�0.N /.
Kenku and Momose [12] determined the full automorphism group forX0.N /withN ¤ 63 and Elkies [8] completed
the problem by treating the caseN D 63. And recently Harrison [9] corrected the statement in [12] for the caseN D
108. According to their results, there are exceptional automorphisms (not coming from the elements in the quotient
group N0.N /=�0.N /) only for the case N D 37; 63; 108. Meanwhile, as for the quotient group N0.N /=�0.N /,
Atkin and Lehner [2] stated its structure without proof. But the list in [2] turned out to contain several errors and
later was corrected by Akbas and Singerman [1] and Bars [4].

Let � be a congruence subgroup of SL2.Z/ and X.�/ the modular curve associated to � . Motivated by the
importance of the normalizer of �0.N / and the automorphism group of X0.N /, there have been several works on
the normalizer of � and the automorphism group of X.�/. When � D �1.N /, the group of elements of SL2.Z/
that are congruent to

�
1 �
0 1

�
modulo N , the third author and Koo [11], and Lang [13] independently determined its

normalizer in PSL2.R/. Furthermore for the modular curve X1.N / WD X.�1.N // with N square-free, Momose
[16] proved that there are no exceptional automorphisms. Let �.N/ be the principal congruence subgroup which
consists of the elements of SL2.Z/ that are congruent to

�
1 0
0 1

�
modulo N , and let X.N/ WD X.�.N //. Recently
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Bars, Knotogeorgis, and Xarles [5] considered the automorphism group of X.N/ and proved that it is equal to the
group PSL2.Z=NZ/, which is isomorphic to the normalizer of �.N/ in PSL2.R/ modulo˙�.N/.

Let ��.N / be the congruence subgroup of SL2.Z/ defined by

��.N / D

( 
a b

c d

!
2 SL2.Z/ j c � 0 mod N; .a mod N/ 2 �

)
;

where � is a subgroup of .Z=NZ/� and we always assume that �1 2 �: We note that ��.N / is an intermediate
subgroup between �0.N / and �1.N /. In particular, if � D .Z=NZ/� (respectively � D f˙1g), then we have
��.N / D �0.N / (respectively ��.N / D ˙�1.N /). In this article, we are concerned with the normalizer of
��.N / in PSL2.R/ and its underlying group structures.

After the preprint was ready, we recognized the results in the paper [19], which independently obtained a
criterion of normalizers (compare Corollary 2.6 of that reference with our Theorem 2.1). The reference aims only
for determining the normalizers, while we also investigate the structure of quotient groups in case N is square-free.

This paper is organized as follows. In Section 2 we investigate the normalizer N�.N / of ��.N / in PSL2.R/.
In Section 3 we find the group structures of the quotient group N�.N /=��.N / for square-free N when the exact
sequence

1! �0.N /=��.N /
f
�! N�.N /=��.N /

g
�! N�.N /=�0.N /! 1 (1)

splits. In fact, the sequence (1) is not well-defined in general, since �0.N / will not always be a normal subgroup of
N�.N /. However, �0.N / is a normal subgroup of N�.N / for square-free N . We prove that in this case,

N�.N /=��.N / Š ..Z=NZ/�=�/ Ì .Z=2Z/r ;

where r is the number of distinct prime divisors of N , and we give some examples of such quotient groups for
nontrivial �. Finally, in Section 4 we study the case of composite N , which is a product of two distinct primes and
find out what happens in the cases when the exact sequence (1) does not split. In these cases we investigate the
group structures of the quotient groups N�.N /=��.N / by describing their group presentations (see Theorem 4.1,
Theorem 4.2, Theorem 4.3, Theorem 4.4, and Remark 4.6).

We use the following notations through this paper.

Notations.

1. For integers a; b 2 Z such that a ¤ 0, we use a k b to mean that ajb and gcd.a; b
a
/ D 1.

2. For a prime p and an integer a such that gcd.a; p/ D 1, we let
�
a
p

�
denote the Legendre symbol if p ¤ 2, and

we define
�
a
2

�
D 1 conventionally.

3. By abuse of notation, for an integer a, we use a 2 � to mean that the congruence class of a belongs to �.
4. For a positive integer n and an integer a prime to n, we let ordn.a/ denote the order of a modulo n, i.e. the

smallest positive integer k such that ak � 1 .mod n/.

2 Normalizers of intermediate congruences subgroups

Let �2 be the largest square dividing N so that q WD N

�2
is square-free. Define � to be the gcd of the elements in the

set (
a � d j

 
a b

Nc d

!
2 ��.N /

)
;

and define h D gcd.�; �/.
Let N�.N / be the normalizer of ��.N /. Note that

PSL2.R/ Š SL2.R/=f˙I g Š PGLC
2
.R/:

We can modify Theorem 1 of [14] as follows:
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Theorem 2.1. A matrix M is contained in N�.N / only if M is represented in PGLC
2
.R/ as

M D

 
Qx y

h
N
h
z Qw

!
where QjjN

h2
and x; y; z; w 2 Z such that det.M/ D Q.

If h D 1, then we denote M by WQ in Theorem 2.1. Such a matrix WQ is contained in the normalizer of the
group �0.N / and it defines a unique automorphism on the modular curve X0.N / which is called the Atkin-Lehner
involution. However, the uniqueness doesn’t hold for general congruence groups ��.N /.

We investigate when WQ belongs to N�.N /. Each 
 2 ��.N / is of the form 
a b

c Na

!

where a 2 � and Na is an integer with a Na � 1 .modN/. For WQ D

 
Qx y

Nz Qw

!
and 
 D

 
a b

c Na

!
2 ��.N /, one

can easily compute that WQ
W �1Q 2 ��.N / if and only if the following condition holds:

Qxwa �
N

Q
yz Na 2 �: (2)

From Q2xw �Nyz D Q, we have that Qxw � N
Q
yz D 1 and hence the following holds:

Qxwa �
N

Q
yz Na �

(
a .mod N

Q
/;

Na .modQ/:

Note that Na is the multiplicative inverse of a modulo Q. Now we define an isomorphism tQ W .Z=NZ/� !
.Z=NZ/� by

tQ.a/ �

(
a .mod N

Q
/;

Na .modQ/:

Since .Z=NZ/� is isomorphic to the direct product .Z=QZ/� � .Z=N
Q
Z/�, one can show that the condition (2)

holds if and only if tQ.a/ 2 �. Therefore we have the following result:

Proposition 2.2. WQ 2 N�.N / if and only if tQ.�/ D �.

If M 2 N�.N /, then

M

 
1 1

0 1

!
M�1 D

 
a b

cN d

!
2 ��.N /: (3)

Taking the trace, we see that 2 D aC d . Since d is a multiplicative inverse of a in .Z=NZ/�,

.a � 1/2 � 0 .mod N/;

and hence
a � 1 .mod �q/: (4)

Now consider the natural homomorphism

� W .Z=NZ/�=f˙1g ! .Z=�qZ/�=f˙1g: (5)

Then ker.�/ D f1; �q C 1; 2�q C 1; :::; .� � 1/�q C 1g is the cyclic group of order � generated by �q C 1. Thus
equation (4) is equivalent to that a 2 ker.�/.
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In [11], the third author and Koo prove that N�.N / is generated by the elements of �0.N / and WQ for all
QjjN when N ¤ 4 and � D f˙1g, and its proof mainly depends on the following two conditions:

M

 
1 1

0 1

!
M�1 2 ˙�1.N /; (6)

M

 
1 0

N 1

!
M�1 2 ˙�1.N /: (7)

If .�=f˙1g/\ ker.�/ D f1g holds, then Eq. (3) is the same as Eq. (6). Similarly Eq. (7) is the same as the following
condition:

M

 
1 0

N 1

!
M�1 2 ��.N /:

By exactly the same arguments as those in [11], we have the following result:

Theorem 2.3. If .�=f˙1g/ \ ker.�/ D f1g, then N�.N / is generated by the elements of �0.N / and WQ with
tQ.�/ D � for each Q k N .

From Theorem 2.3, one can easily obtain the following result:

Corollary 2.4. If N is square-free, then N�.N / is generated by the elements of �0.N / and WQ with tQ.�/ D �
for QjN .

Proof. If N is square-free, then � defined in (5) is an isomorphism, and hence ker.�/ is trivial.

3 The group structures of the quotient group N�.N/=��.N/ for
square-free N : the split case

In this section, we assume that N is square-free and for simplicity we assume that tQ.�/ D � for all QjjN . As
the main result of this section, we find a condition for � so that the exact sequence (1) splits. For that, we state a
well-known result as follows:

Lemma 3.1.
�0.N /=��.N / Š .Z=NZ/�=�:

Proof. For an integer a prime toN; let Œa� denote a matrix represented by 
 2 �0.N / such that 
 �
�
a �
0 �

�
mod N:

Consider the natural surjective homomorphism

� W �0.N /! .Z=NZ/�=�

defined by � .Œa�/ D a. One can prove that the kernel of � is equal to ��.N /, and the result follows from the first
isomorphism theorem.

By Corollary 2.4, N�.N / is the same as N0.N / for square-free N . Then the Atkin–Lehner involutions modulo
�0.N / generate N�.N /=�0.N / which is isomorphic to .Z=2Z/r where r is the number of prime divisors of N .
Now we investigate when the exact sequence (1) splits, in which case, we have the following isomorphism:

N�.N /=��.N / Š
�
.Z=NZ/�=�

�
Ì .Z=2Z/r :

For that we should find a group homomorphism h W N�.N /=�0.N /! N�.N /=��.N / so that gıh is the identity
map, where g appears in (1). Note that the generators of N�.N /=�0.N / are the Atkin-Lehner involutions Wp for
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each prime divisor p of N , and so are their preimages of g in (1). Therefore the exact sequence (1) splits if and only
if there exists an elementary abelian 2-subgroup of N�.N /=��.N / generated by Wp with prime divisors p of N .
Put N D p1p2 � � �pr with distinct primes p1; p2; :::; pr . Then the exact sequence (1) splits if and only if one can
find Wpi for all i so that the following two conditions hold:�

1
p
pi
Wpi

�2
2 ��.N /; (8)

WpiWpjW
�1
pi

W �1pj 2 ��.N /; for any i; j: (9)

We give necessary and sufficient conditions for the splitting property of the sequence .1/ in turn when r D 1; 2 and
r � 3.

3.1 The case when N D p

First, we consider the case when N is a prime p.
In this case Wp is always contained in N�.N /, and hence we have the following result:

Theorem 3.2. Let � � .Z=pZ/� then the sequence .1/ splits and

N�.p/=��.p/ Š

8̂̂<̂
:̂
Z=2Z; if m D 1;

Z=2Z � Z=2Z; if m D 2;

Dm; if m � 3;

where m D p�1
j�j

and Dm is a dihedral group of order 2m.

Proof. One can easily check that
�
1p
p
Wp

�2
D �1, and hence the conditions (8) and (9) hold. Since ..Z=pZ/�=�/

is a cyclic group of order m, N�.p/=��.p/ Š Z=mZ Ì Z=2Z. Also one can easily prove that the following holds:

Œa�Wp � WpŒa
�1� .mod p/:

Our result comes from this relation.

3.2 The case when N D pq

Next, we consider the case when N D pq for two distinct primes p and q.

Theorem 3.3. Let � � .Z=pqZ/�. Then, the sequence .1/ splits if and only if there exist a; b 2 � such that�
aq
p

�
D 1, a � �1 .mod q/,

�
bp
q

�
D 1, and b � �1 .mod p/. In this case,

N�.pq/=��.pq/ Š ..Z=pqZ/�=�/ Ì .Z=2Z/2;

which is of order 4m where m D .p�1/.q�1/
j�j

.

Proof. Suppose there exist a; b 2 � such that
�
aq
p

�
D 1, a � �1 .mod q/,

�
bp
q

�
D 1, and b � �1 .mod p/.

Then, there exist x; x0 2 Z such that

a �

(
qx02 .mod p/

�1 .mod q/;
b �

(
�1 .mod p/

px2 .mod q/:

Note that gcd.x; q/ D 1 and gcd.x0; p/ D 1. Hence there exist y; z; y0; z0 2 Z such that

.px/z � qy D 1; .qx0/z0 � py0 D 1:
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Then by the uniqueness of a and b modulo pq,

a � qx02 C py0 .mod pq/; b � px2 C qy .mod pq/:

Let

Wp D

 
px y

pq pz

!
; Wq D

 
qx0 y0

pq qz0

!
:

Then det.Wp/ D p and det.Wq/ D q and the first component of . 1p
p
Wp/

2 is px2 C qy � b 2 � and the first

component of . 1p
q
Wq/

2 is qx02 C py0 � a 2 �. Hence the condition (8) holds.
Note that if we let a0; b0 2 Z such that

a0 �

(
qz02 .mod p/

�1 .mod q/;
b0 �

(
�1 .mod p/

pz2 .mod q/;

then a0 � a�1 .mod pq/ and b0 � b�1 .mod pq/, so a0; b0 2 �. Now the first component of WpWqW �1p W �1q
is

pq.xx0 C y/.zz0 C y/C .pxy0 C qyz0/.�qz0 � px/ �

(
qz02 � a0 � �a0b .mod p/

px2 � b � �a0b .mod q/
;

hence it is �a0b .mod pq/, which is in � since a0; b;�1 2 �. So the condition (9) holds. Hence the sequence (1)
splits.

Conversely, suppose the sequence (1) splits. Then there exist Wp D

 
px y

pqz pw

!
and Wq D

 
qx0 y0

pqz0 qw0

!
satisfying the conditions (8) and (9). By a similar computations of the first components of

�
1p
p
Wp

�2
and�

1p
q
Wq

�2
, we can show that there exist a; b 2 � such that

�
aq
p

�
D 1, a � �1 .mod q/,

�
bp
q

�
D 1, and

b � �1 .mod p/.
In this case, by Lemma 3.1 and the exact sequence (1),

N�.pq/=��.pq/ Š �0.pq/=��.pq/ Ì N�.pq/=�0.pq/ Š ..Z=pqZ/�=�/ Ì .Z=2Z/2:

Corollary 3.4. Suppose p and q are distinct two primes with p < q. If � D f˙1g � .Z=pqZ/�, then the sequence
(1) splits if and only if
(1) for p D 2 and an odd prime q, q � 1; 3; 7 .mod 8/ or
(2) for distinct odd primes p and q, p � q � 1 .mod 4/ and

�
q
p

�
D 1.

Proof. By using the quadratic reciprocity law, we can prove that the conditions (1) and (2) are equivalent to that8<:
�
2
q

�
D 1 or

�
�2
q

�
D 1; if p D 2�

�q
p

�
D

�
�p
q

�
D 1; otherwise:

(10)

It is based on a having to be �1, and the same value must be attained by b if p > 2.

Remark 3.5. There exist infinitely many pairs of distinct primes satisfying conditions (1) and (2) of Corollary 3.4.
For example, p D 5 and q � 1 or 9 .mod 20/ satisfy (10).

3.3 The case when N is a square-free integer with more than 2 prime divisors

Theorem 3.6. Let p1; : : : ; pr be distinct primes where r � 3 and let N D
rQ
iD1

pi . Let � � .Z=NZ/�.

Then, the sequence .1/ splits if and only if the following holds;
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(1) For i D 1; : : : ; r , the class modulo N of the elements ai 2 Z satisfying8<:ai � �1 .mod pi /�
aipi
pk

�
D 1; for each k ¤ i;

lies in �.
(2) For each 1 � i < j � r , the class modulo N of the elements bij 2 Z satisfying

bij �

8̂̂<̂
:̂
a�1
j

.mod pi /

ai .mod pj /

1 .mod pk/ for all k ¤ i; j;

lies in �.
In this case,

N�.N /=��.N / Š ..Z=NZ/�=�/ Ì .Z=2Z/r ;

which is of order 2rm where m D

rQ
iD1

.pi�1/

j�j
.

Proof. Suppose there exist ai ; bij 2 � satisfying conditions (1) and (2). Then by the condition (1), for each i D
1; : : : ; r , there exist xi 2 Z such that

ai �

(
�1 .mod pi /

pix
2
i

.mod N
pi
/:

Note that gcd.pixi ; Npi / D 1 since ai 2 �. So there exist yi ; zi 2 Z such that

.pixi /zi �
N

pi
yi D 1:

For each i D 1; : : : ; r , let

Wpi D

 
pixi yi

N pizi

!
:

Then det.Wpi / D pi , and the first component of . 1p
pi
Wpi /

2 is

pix
2
i C

N

pi
yi �

(
N
pi
yi � �1 � ai .mod pi /

pix
2
i
� ai .mod pk/ for all k ¤ i;

which is in � by condition (1). Hence the condition (8) holds.
Note that if we let a0

i
2 Z such that

a0i �

(
�1 .mod pi /

piz
2
i

.mod N
pi
/;

then a0
i
� a�1

i
.mod N/. Now, for each 1 � i < j � r , the first component of WpiWpjW

�1
pi

W �1pj is

.pipjxixj CNyi /
�
zizj C

N

pipj
yi

�
� .pixiyj C pjyizj /

�N
pi
zj C

N

pj
xi

�

�

8̂̂<̂
:̂
�pj z

2
j
.N
pi
yi / � pj z

2
j
� a0

j
� a�1

j
� bij .mod pi /

�pix
2
i
.N
pj
yj / � pix

2
i
� ai � bij .mod pj /

.pixizi /.pjxj zj / � 1 � bij .mod pk/ for all k ¤ i; j;

which is in � by condition (2). Thus the condition (9) holds, and hence the sequence (1) splits.
Suppose the sequence (1) splits. As explained in the proof of Theorem 3.3, we can show that the conditions (1)

and (2) hold.
In this case, again by Lemma 3.1 and the exact sequence (1),

N�.N /=��.N / Š �0.N /=��.N / Ì N�.N /=�0.N / Š ..Z=NZ/�=�/ Ì .Z=2Z/r :
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Remark 3.7. For N D p1p2 � � �pr with r � 3, if � D f˙1g � .Z=NZ/�, then the sequence (1) does not split
since otherwise the condition (1) in Theorem 3.6 implies that ai � �1 .mod N/ for all i , which shows that there is
no bij 2 f˙1g satisfying the condition (2) in Theorem 3.6. This is a different phenomenon from the case when r D 1
or 2 referring to Theorem 3.2 and Corollary 3.4.

Now we give some examples in the split case.

Example 3.8. Let N D 21 D 3 �7 and� D f˙1;˙8g � .Z=NZ/�. In this case, the maps t3 and t7 are the identity
map, and so they preserve �. Indeed, � consists precisely of those residues that are congruent to ˙1 modulo 7;
hence it will make it immediately evident that � is a subgroup and that it is preserved under the involutions t3 and
t7. If we let a D �8 and b D �1, then a and b satisfy the conditions of Theorem 3.3 when we take p D 3 and q D 7,
and hence

N�.21/=��.21/ Š .Z=3Z/ Ì .Z=2Z/2:

More precisely, we take Œ2� D
�
2 1
21 11

�
, W3 D

�
9 �4
21 �9

�
and W7 D

�
7 2
21 7

�
. Then hŒ2�i D Z=3Z and hW3; W7i D

.Z=2Z/2, and we can check that

Œ2�W3 DW3Œ2�;

Œ2�W7 DW7Œ2�
�1;

Œ2�W3W7 DW3W7Œ2�
�1;

i.e. exactly one involution of .Z=2Z/2 operates tirivally on Z=3Z, and the other two operate nontrivially on Z=3Z.
Thus Œ2�W3 has order 6 and W7.Œ2�W3/ D .Œ2�W3/

�1W7 in N�.21/=��.21/, and hence N�.21/=��.21/ is
isomorphic to the dihedral group D6 of order 12.

Example 3.9. Let N D 105 D 3 � 5 � 7 and p1 D 3; p2 D 5; p3 D 7. Let � D f˙1;˙8;˙13;

˙22;˙29;˙34;˙41;˙43g: As mentioned in Example 3.8,� consists precisely of those residues that are congruent
to ˙1 modulo 7; hence t3, t5 and t7 preserve �. Put a1 D �43; a2 D �1; a3 D 13, then b12 D �13; b23 D
�8; b13 D �29, and they are all contained in �. From our criterion of Theorem 3.6, we can conclude that

N�.N /=��.N / Š Z=3Z Ì .Z=2Z/3:

4 The group structures of the quotient group N�.pq/=��.pq/ for
primes p; q: the non-split case

Usually it is not easy to determine the group structure of N�.N /=��.N / for N , if the short exact sequence (1)
does not split. In this section we find the group structure of N�.N /=��.N / when N D pq with distinct primes
p; q for which the exact sequence (1) does not split, and � D f˙1g � .Z=NZ/�.

If we take

Wp D

 
px1 y1

N pz1

!
; Wq D

 
qx2 y2

N qz2

!
;

then one can easily check that�
1
p
p
Wp

�2
D Œpx21 C qy1�;

�
1
p
q
Wq

�2
D Œqx22 C py2�: (11)

Put w1 D px21 C qy1 and w2 D qx22 C py2. Then from the fact that det.Wp/ D p and det.Wq/ D q the following
holds:

w1 �

(
�1 .mod p/

px2
1

.mod q/;
w2 �

(
qx2
2

.mod p/

�1 .mod q/:
(12)
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By using the fact that det.Wp/ D p and det.Wq/ D q again, we can show that the .1; 1/-component of
1
N
WqWpWqWp is as follows:

1

N
WqWpWqWpŒ1; 1� � qy1 C py2 �

(
�1 .mod p/;

�1 .mod q/;
(13)

and hence 1
N
WqWpWqWpŒ1; 1� � �1 .mod N/, which shows its triviality in the quotient group N�.N /=��.N /.

Now as the complement of Corollary 3.4, consider the non-split cases forN D pq with distinct two primes p; q
which can be divided into the following five sub-cases depending on the congruences of p and q:

(i) p D 2 and q � 5 .mod 8/.
(ii) p � q � 3 .mod 4/, in which case we choose p and q such that

�
p
q

�
D �1.

(iii) p � 1 and q � 3 .mod 4/ with
�
p
q

�
D �1.

(iv) p � 1 and q � 3 .mod 4/ with
�
p
q

�
D 1.

(v) p � q � 1 .mod 4/ with
�
p
q

�
D �1.

For the non-split case forN D pq, we have the following group presentations of the quotient group N�.N /=��.N /

where � D f˙1g.

Theorem 4.1. Let N D 2q where q is a prime with q � 5 .mod 8/. Then,

N�.N /=��.N / Š ha; b j a
q�1
D b2 D .ab/2 D 1i:

In this case, N�.N /=��.N / is isomorphic to the Dihedral group Dq�1 of order 2.q � 1/.

Proof. From (10) and Euler’s criterion, we have�
2

q

�
� 2

q�1
2 � �1 .mod q/: (14)

Let d D ordq.2/. Then q�1
d

should be odd. Suppose that q�1
d

is even, then d jq�1
2

which is a contradiction to (14).

Take a primitive root r 2 .Z=NZ/� of q so that 2 � r
q�1
d .mod q/, and put x1 to be an integer satisfying x1 � rm

.mod q/ where m is the integer with q�1
d
C 2m D 1. Then 2x2

1
� r .mod q/, and ordq.2x21/ D q � 1. If we take

W2 D

 
2x1 y1

N 2z1

!
for some y1; z1, and let w1 D 2x21 C qy1, then W 2

2
D Œw1� in N�.N /=��.N / by (11). Since

ordN .w1/ D ordq.2x21/ D q� 1 and w
q�1
2

1
� �1 .mod N/, the order ofW2 in N�.N /=��.N / is equal to q� 1.

We recall that we work modulo � D f˙1g, so that the order q � 1 of w1 means an order of q�1
2

of W 2
2

, whence an
order of q � 1 of W2 itself.

If we take Wq D

 
qx2 y2

N qz2

!
and let w2 D qx2

2
C 2y2, then W 2

q D Œw2� in N�.N /=��.N / by (11). Since

w2 � �1 .mod N/ from (12), the order of Wq in N�.N /=��.N / is equal to 2.
Since w1 generate .Z=NZ/�, N�.N /=��.N / can be generated by W2 and Wq . From (13) we know that

.W2Wq/
2 D 1.

Let G D ha; b j aq�1 D b2 D .ab/2 D 1i. Then the map a 7! W2 and b 7! Wq can be extended to a unique
homomorphism from G to N�.N /=��.N / because W2 and Wq satisfy all the relations in G if we replace a and b
by W2 and Wq . Clearly, the order jGj of G is equal to 2.q � 1/ which is the same as jN�.N /=��.N /j. Thus G is
isomorphic to N�.N /=��.N /.

Theorem 4.2. Let N D pq where p and q are primes satisfying one of the following:
(a) p � q � 3 .mod 4/, in which case we choose p and q such that

�
p
q

�
D �1.
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(b) p � 1 .mod 4/ and q � 3 .mod 4/ with
�
p
q

�
D �1.

Then,
N�.N /=��.N / Š ha; b j a

q�1
D b2.p�1/ D .ba/2 D ba2b�1a2 D 1i:

Proof. Let us consider the case when p � q � 3 .mod 4/ by choosing the notation for p and q such that
�
p
q

�
D

�1. By the same reason as in the proof of Theorem 4.1, q�1
d1

is odd where d1 WD ordq.p/. Thus we can take a
primitive root r 2 .Z=NZ/� of q and an integer x1 so that px2

1
� r .mod q/, and hence ordq.px21/ D q� 1. Take

Wp D

 
px1 y1

N pz1

!
for some y1; z1, and let w1 D px21 C qy1. By the Chinese Remainder Theorem, we know that

.Z=NZ/� Š .Z=pZ/� � .Z=qZ/�;

and hence ordN .w1/ D lcm.ordq.px21/; ordp.qy1// D lcmfq � 1; 2g D q � 1 by (12). From (12), we also know

that w
q�1
2

1
� �1 .mod N/ because q�1

2
is odd, and hence the order of Wp in N�.N /=��.N / is equal to q � 1.

On the other hand,
�
q
p

�
� q

p�1
2 � 1 .mod p/. Thus d2 WD ordp.q/jp�12 , and p�1

d2
is even. Take a primitive

root s 2 .Z=NZ/� of p so that q � s
q�1
d2 .mod p/, and put x2 to be an integer satisfying x2 � sm2 .mod p/

wherem2 is the integer with q�1
d1
C2m2 D 2. Then px2

2
� s2 .mod p/, and ordp.qx22/ D

p�1
2

. In fact, we cannot

take x2 so that ordp.qx22/ D p � 1. Now we take Wq D

 
qx2 y2

N qz2

!
for some y2; z2, and let w2 D qx2

2
C py2.

From (12), we know ordN .w2/ D lcm.p�1
2
; 2/; hence it is equal to p � 1 because p�1

2
is odd by our assumption

about p. From (12) again,

w
p�1
2

2
�

(
1 .mod p/

�1 .mod q/
;

and hence w
p�1
2

2
6� ˙1 .mod N/. Thus the order of w2 modulo � D f˙1g is equal to p � 1; hence the order of

Wq in N�.N /=��.N / is equal to 2.p � 1/.
Now we will show that Wp and Wq generate N�.N /=��.N /. For that it suffices to show that w1 and w2

generate .Z=NZ/�=f˙1g. Since

.Z=NZ/�=f˙1g Š
�
.Z=pZ/� � .Z=qZ/�

�
=f˙.1; 1/g;

from (12), we can view w1 and w2 as the elements .�1; r/ and .s2;�1/ of Œ.Z=pZ/� � .Z=qZ/�� =f˙.1; 1/g,
respectively . Since p�1

2
is odd, �s2 is a primitive root modulop. Thus .1; r/ D .�1; 1/.�1; r/ D

.�s2; 1/
p�1
2 .�1; r/, and hence .1; r/ and .�s2; 1/ are expressed by ˙.�1; r/ and ˙.s2;�1/. Since .1; r/ and

.�s2; 1/ generate Œ.Z=pZ/� � .Z=qZ/�� =f˙.1; 1/g, so do .�1; r/ and .s2;�1/. Thus w1 and w2 generate

.Z=NZ/�=f˙1g.
From (13) we know that .WqWp/2 D 1. For u 2 .Z=NZ/�, by the action of the Atkin-Lehner involution Wq

on .Z=NZ/� via the tq operator which is in correspondence with conjugation by the Wq on �0.N / modulo �1.N /,
we have the following:

Wq Œu�W
�1
q Œu�Œ1; 1� � 1 .mod q/: (15)

Thus Wq Œw1�W �1q Œw1�Œ1; 1� � 1 .mod q/, and clearly Wq Œw1�W �1q Œw1�Œ1; 1� � 1 .mod p/ because w1 � �1
.mod p/. Therefore, WqW 2

pW
�1
q W 2

p D 1 holds.
Let G D ha; b j aq�1 D b2.p�1/ D .ba/2 D ba2b�1a2 D 1i. Then there is a unique homomorphism from

G to N�.N /=��.N / determined by the map a 7! Wp and b 7! Wq . From the relations in G, we know that

a�1 D aq�2; b�1 D b2.p�1/�1; ba D a�1b�1; ba2 D a�2b;

and hence every element of G can be expressed as aibj with 0 � i < q � 1 and 0 � j < 2.p � 1/. Thus the order
jGj of G is less than or equal to 2.p � 1/.q � 1/. Since jN�.N /=��.N /j � jGj and N�.N /=��.N / is of order
2.p � 1/.q � 1/, G is isomorphic to N�.N /=��.N /.
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Next consider the case when p � 1 .mod 4/ and q � 3 .mod 4/ with
�
p
q

�
D �1. By the quadratic reciprocity

law,
�
q
p

�
D �1 too. Under the exact same notations as in the previous case, we know that ordq.w1/ D q � 1 and

ordp.w2/ D p � 1. The fact that ordq.w1/ D q � 1 comes from two conditions q � 3 .mod 4/ and
�
p
q

�
D �1

which is the same as in the previous case. Since
�
q
p

�
� q

p�1
2 � �1 .mod p/, p�1

d2
should be odd. Thus one can

take x2 so that qx2
2

is a primitive root modulop, and hence ordp.w2/ D p � 1.

From (12), w
q�1
2

1
� �1 .mod N/ because q�1

2
is odd, but w

p�1
2

2
6� �1 .mod N/ because p�1

2
is even. Thus

the order of Wp and Wq in N�.N /=��.N / are equal to q � 1 and 2.p � 1/ respectively.
In this case we can view w1 and w2 as the elements .�1; r/ and .s;�1/ in Œ.Z=pZ/� � .Z=qZ/��=f˙.1; 1/g.

Since p�1
2

is even, �s is a primitive root modulo p too. By the similar argument as in the previous case, .1; r/ can
be expressed by .�1; r/ and .�s; 1/. Since .�s; 1/ and .1; r/ generate Œ.Z=pZ/� � .Z=qZ/��=f˙.1; 1/g, so w1 and
w2 generate .Z=NZ/�=f˙1g. Thus the result follows.

Theorem 4.3. Let N D pq where p and q are primes satisfying p � q � 1 .mod 4/ with
�
p
q

�
D �1, Then,

N�.N /=��.N / Š ha; b j a
2.q�1/

D b2.p�1/ D .ba/2 D ba2b�1a2 D aq�1bp�1 D 1i:

Proof. The notations are exactly the same as in the proof of Theorem 4.2. By quadratic reciprocity law,
�
p
q

�
D�

q
p

�
D �1; hence p

q�1
2 � �1 .mod q/ and q

p�1
2 � �1 .mod p/, and hence q�1

d1
and p�1

d2
are odd. Thus we

can take x1 and x2 so that px2
1

and qx2
2

are primitive roots of q and p, respectively. Thus ordN .w1/ D q � 1 and

ordN .w2/ D p � 1. Since q�1
2

and p�1
2

are even, w
q�1
2

1
6� ˙1 .mod N/ and w

p�1
2

2
6� ˙1 .mod N/ from (12),

and hence the orders of Wp and Wq in N�.N /=��.N / are equal to 2.q � 1/ and 2.p � 1/ respectively.
Since

w
q�1
2

1
�

(
1 .mod p/

�1 .mod q/
; w

p�1
2

2
�

(
�1 .mod p/

1 .mod q/
;

w
q�1
2

1
w
p�1
2

2
� �1 .mod N/, and hence W q�1

p W
p�1
q D 1. It holds that .WqWp/2 D 1 and WqW 2

pW
�1
q W 2

p D 1

as before.
In this case we can vieww1 andw2 as the elements .�1; r/ and .s;�1/ in Œ.Z=pZ/��.Z=qZ/��=f˙.1; 1/g, and

�s and �r are primitive roots of p and q. Thus �.1;�r/ and �.�s; 1/ generate Œ.Z=pZ/� � .Z=qZ/��=f˙.1; 1/g,
and so w1 and w2 generate .Z=NZ/�=f˙1g.

Finally consider the isomorphism. Let G D ha; b j a2.q�1/ D b2.p�1/ D .ba/2 D ba2b�1a2 D

aq�1bp�1 D 1i. From the first four relations, we know that any element of G can be expressed as aibj with
0 � i < 2.q � 1/ and 0 � j < 2.p � 1/. However due to the relation aq�1bp�1 D 1, it can be boiled down to be
aibj with 0 � i < q � 1 and 0 � j < 2.p � 1/. Thus jGj � 2.p � 1/.q � 1/, and hence the result follows by the
same argument as in the proof of Theorem 4.2.

Theorem 4.4. LetN D pq where p and q are primes satisfying p � 1 .mod 4/ and q � 3 .mod 4/with
�
p
q

�
D 1.

Then,

N�.N /=��.N /

Š

8̂̂̂̂
<̂̂
ˆ̂̂̂:
ha; b; c j a2.q�1/ D bp�1 D cp�1 D .ba/2 D ba2b�1a2 D aq�1b

p�1
2

D aq�1b2c�2 D aca�1c D bcb�1c�1 D 1i;
if p � 1 .mod 8/;

ha; b; c j a2.q�1/ D b
p�1
2 D cp�1 D .ba/2 D ba2b�1a2

D aq�1b2c�2 D aca�1c D bcb�1c�1 D 1i;
if p � 5 .mod 8/:

Proof. The notations are exactly the same as in the proof of Theorem 4.2. Since
�
p
q

�
D

�
q
p

�
D 1, p

q�1
2 �

1 .mod q/ and q
p�1
2 � 1 .mod p/, and hence q�1

d1
and p�1

d2
are even. Thus we can take x1 and x2 so that
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ordq.px21/ D
q�1
2

and ordp.qx22/ D
p�1
2

. Since q�1
2

is odd and p�1
2

is even, ordN .w1/ D q�1 and ordN .w2/ D
p�1
2

by (12). Then the order of Wp in N�.N /=��.N / is equal to 2.q � 1/ because w
q�1
2

1
6� ˙1 .mod N/ from

(12). However, the order of Wq in N�.N /=��.N / is equal to p � 1 (resp. p�1
2

) if p � 1 .mod 8/ (resp. p � 5

.mod 8/), because w
p�1
4

2
6� ˙1 .mod N/ if p�1

4
is even but w

p�1
4

2
� �1 .mod N/ if p�1

4
is odd from (12).

First consider the case p � 1 .mod 8/. Then w
q�1
2

1
w
p�1
4

2
� 1 .mod N/, and hence W q�1

p W
p�1
2

q D 1. It
holds that .WqWp/2 D 1 and WqW 2

pW
�1
q W 2

p D 1 as before.
In this case we can view w1 and w2 as the elements .�1; r2/ and .s2;�1/ in Œ.Z=pZ/� � .Z=qZ/��=f˙.1; 1/g.

Then �r2 is a primitive root modulo q, but ordp.�s2/ D p�1
2

. Thus ˙.s; 1/ cannot be expressed by .�1; r2/
and .s2;�1/, and then Œ.Z=NZ/�=f˙1g W hw1; w2i� D 2 and ŒN�.N /=��.N / W hWp; Wqi� D 2. If we take
u 2 .Z=NZ/� so that u � s .mod p/ and u � 1 .mod q/, then N�.N /=��.N / D hWp; Wq ; Œu�i. As explained
for the equation (15), we have

WpŒu�W
�1
p Œu�Œ1; 1� � 1 .mod p/;

and clearly WpŒu�W �1p Œu�Œ1; 1� � 1 .mod q/: Thus WpŒu�W �1p Œu� D 1 in N�.N /=��.N /. We can compute

Wq Œu�W
�1
q Œu��1Œ1; 1� �

(
uu�1qx2z2 � 1 .mod p/;

�u2py2 � 1 .mod q/;

and hence Wq Œu�W �1q Œu��1 D 1 in N�.N /=��.N /. Let G D ha; b; c j a2.q�1/ D bp�1 D cp�1 D .ba/2 D

ba2b�1a2 D aq�1b
p�1
2 D aq�1b2c�2 D aca�1c D bcb�1c�1 D 1i. Then there is a unique homomorphism

from G to N�.N /=��.N / determined by the map a 7! Wp , b 7! Wq , and c 7! Œu�. By the same reason as in the
proof of Theorem 4.3, all the products of a; b can be expressed as aibj with 0 � i < .q�1/, 0 � j < .p�1/. From
the relations a

q�1
2 b2c�2 D aca�1c D bcb�1c�1 D 1, we can check that every element of G can be expressed as

aibj ck with 0 � i < .q � 1/, 0 � j < .p � 1/, and k D 0; 1. Thus jGj � 2.p � 1/.q � 1/, and hence we have an
isomorphism.

Let us consider the case p � 5 .mod 8/. We can take Wp , Wq , and Œu� as the same as in the case p � 1

.mod 8/. Then they satisfy all the relations in G WD ha; b; c j a2.q�1/ D b
p�1
2 D cp�1 D .ba/2 D ba2b�1a2 D

aq�1b2c�2 D aca�1c D bcb�1c�1 D 1i if we replace a, b, and c byWp ,Wq , and Œu�, respectively. By the same
argument as in the case p � 1 .mod 8/, we can show that G is isomorphic to N�.N /=��.N /.

Corollary 4.5. For the non-split cases for N D pq with distinct two primes p; q, we have

jN�.N /=��.N /j D 2.p � 1/.q � 1/:

Proof. It follows from the proofs of Theorem 4.1, Theorem 4.2, Theorem 4.3, and Theorem 4.4.

Remark 4.6. (1) In Theorem 4.4, N�.N /=��.N / cannot have two generators. Suppose it can be generated by
two elements, say ˛ and ˇ. In the sequence (1), they map to generators of N�.N /=�0.N / under the map g. Since
N�.N /=�0.N / is the Klein four-group and it is generated by Wp and Wq , we can assume ˛ and ˇ are same
as Wp and Wq . In fact, if one of g.˛/ and g.ˇ/ is equal to WN , say g.ˇ/, we can take ˛ and ˛ˇ as generators
of N�.N /=��.N /, and then g.˛/ and g.˛ˇ/ are equal to Wp and Wq . However, Wp and Wq cannot generate
N�.N /=��.N / as shown in the proof of Theorem 4.4.

(2) Consider the non-split cases for N D pq and let � � .Z=NZ/�. Suppose tQ.�/ D � for all QjjN .
Then one can obtain a group presentation of N�.N /=��.N / by using the methods used in the proofs of Theorem
4.1, Theorem 4.2, Theorem 4.3, and Theorem 4.4. Since N�.N / D Nf˙1g.N /, there is a natural projection
Nf˙1g.N /=�f˙1g.N /! N�.N /=��.N /, and hence we can take the same generators of N�.N /=��.N / as of
Nf˙1g.N /=�f˙1g.N /. Thus it suffices to change the order of generators and the relations between them for getting
a group presentation.

We give an example in the non-split case which shows the orders that generators Wp and Wq can have and their
relations depending on �.
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Example 4.7. Let N D 35, which is in the case of Theorem 4.2, and let �1 D f˙1;˙6g and �2 D

f˙1;˙11;˙16g. Take

W5 D

 
5 2

35 15

!
; W7 D

 
7 4

35 21

!
;

then w1 D 19 and w2 D 27. Since w3
1
� �1 .mod 35/, the order of W5 in N�1.N /=��1.35/ is 6, and since

w2
2
� �6 .mod 35/, the order of W7 in N�1.N /=��1.35/ is 4. Consider the group G1 D ha; b j a6 D b4 D

.ba/2 D ba2b�1a2 D 1i. Then W5 and W7 satisfy all the relations of G1 in N�1.N /=��1.35/ if we replace
a and b by W5 and W7. Clearly jG1j D 24 which is the same as the order of N�1.N /=��1.35/, and hence
N�1.N /=��1.35/ is isomorphic to G1.

Since w1 2 �2, the order of W5 in N�2.N /=��2.35/ is 2, and since w4
2
� 1 .mod 35/, the order of W7 in

N�2.N /=��2.35/ is 8. Consider the group G2 D ha; b j a2 D b8 D .ba/2 D 1i. Since the order of a is 2, we
can remove the relation ba2b�1a2 D 1. Then one can easily confirm that N�2.N /=��2.35/ is isomorphic to G2
which is a dihedral group of order 16.
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