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Abstract: During the last years, several notions have been introduced for describing the dynamical behavior of linear
operators on infinite-dimensional spaces, such as hypercyclicity, chaos in the sense of Devaney, chaos in the sense of
Li-Yorke, subchaos, mixing and weakly mixing properties, and frequent hypercyclicity, among others. These notions
have been extended, as far as possible, to the setting of C0-semigroups of linear and continuous operators.

We will review some of these notions and we will discuss basic properties of the dynamics of C0-semigroups. We
will also study in detail the dynamics of the translation C0-semigroup on weighted spaces of integrable functions
and of continuous functions vanishing at infinity. Using the comparison lemma, these results can be transferred
to the solution C0-semigroups of some partial differential equations. Additionally, we will also visit the chaos for
infinite systems of ordinary differential equations, that can be of interest for representing birth-and-death process or
car-following traffic models.

Keywords: Hypercyclicity, Topological transitivity, Topologically mixing property, Devaney chaos, C0-semigroups

MSC: 47A16

Linear dynamics has attracted the interest of researchers during the last three decades, after the seminal works of
Kitai [1], Gethner and Shapiro [2] and Godefroy and Shapiro [3]. On the one hand, it is connected with the still
unsolved Invariant Subspace Problem on Hilbert spaces, which asks for the existence of an operator with no non-
trivial closed invariant subset. The answer was positive in Banach spaces, as it was seen by Read [4] in `1. On
the other hand, there is a number of different connections of linear dynamics with different areas such as algebra,
topology, real and complex analysis, functional analysis, approximation theory, number theory, and probability.

The advances in the area were first compiled by Grosse-Erdmann [5, 6]. The monographs of Bayart and
Matheron [7] and Grosse-Erdmann and Peris [8] represent a good source of the state of the art in the area. The
study of the size and the algebraic structure of the set of vectors with wild behaviour, provides an interesting field
for continuing with the quest of surprising examples of sets of pathological elements that, however, are preserved by
the elementary algebraic operators. In this line, a selection of topics was recently revisited by Aron et al. in [9, Ch.
4], see also [10].

Given a family fTi gi2I of linear and continuous operators on an infinite-dimensional separable Banach spaceX ,
we say that it is universal if there exists some element x 2 X such that, its orbit fTix W i 2 I g is dense in X .
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One of the core notions of linear dynamics is hypercyclicity, which corresponds to the particular case in which
the family of operators is given by the powers of a single operator, i.e. Ti D T i

0
for some T0 2 L.X/ and i 2 N.

Another particular case is the case of a C0-semigroup of operators fTt gt�0 in L.X/, or simply a semigroup.

Definition 0.1. A family of operators fTt gt�0 in L.X/ is said to be a semigroup if the following conditions hold:
(i) T0 D I ,

(ii) TtTs D TtCs for all t; s � 0 (semigroup law); and
(iii) limt!s Ttx D Tsx for all x 2 X; s � 0.

The last condition expresses the pointwise convergence of the operators. Many results in the study of the linear
dynamics of C0-semigroups yield from the semigroup law and from condition (iii) in the definition, since it permits
to obtain the local equicontinuity of the family of operators fTt gt�0.

Replacing in the last condition the pointwise convergence by the convergence over the bounded sets of X , we
say that the semigroup is uniformly continuous. These semigroups can be easily represented using the Taylor series
of the exponential function. More precisely, a semigroup fTt gt�0 is uniformly continuous if there exists A 2 L.X/
such that Tt D etA D

P1
nD0

.tA/n

nŠ
; t � 0. In fact, such a semigroup corresponds to the solution semigroup of the

following Abstract Cauchy Problem (ACP) (
ut .t; x/ D Au.t; x/

u.0; x/ D '.x/

)
; (1)

where A is a linear operator defined on X . If A is defined on the whole space X , then the unique solution of this
ACP is given by

u.t; x/ D etA'.x/ (2)

where '.x/ 2 X . In that sense, u.t; x/ is called a classical solution of the abstract Cauchy problem (1) and the
semigroup fTt gt�0 D fetAgt�0 is called the solution semigroup of (1). The operator A is considered to be the
infinitesimal generator of the C0-semigroup. This notion can be extended to C0-semigroups that are not uniformly
continuous. In this case, the infinitesimal generator is computed as

Ax WD lim
h!0C

Thx � x

h
: (3)

This is a closed and densely defined linear operator that determines the semigroup uniquely. For more information
about the properties of the infinitesimal generator of C0-semigroups we refer to [11–13]. For the case of Fréchet
spaces different from ! we refer to [14], and for ! we refer to [15, 16]. The corresponding study in locally convex
spaces was performed in [17].

The study of the distinguished translation semigroup f�t gt2C started with the work [18], where Birkhoff proved
its transitivity (hypercyclicity) on H.C/. After that, Rolewicz showed an analogous result in the space of weighted
spaces of p-integrable functions Lp� .R/, 1 � p < 1, �.s/ WD a�s ; a > 1 [19]. The first systematic study
on hypercyclic semigroups was initiated by Desch, Schappacher and Webb in [20]. However, some examples and
previous results were already obtained by that time, see for instance [21–25]. In that work, Desch et al introduced
some computable conditions for hypercyclicity and Devaney chaos. One of them is stated in terms of the abundance
of eigenvalues of the infinitesimal generator of the semigroup, see Theorem 2.7. This criterion allowed to extend
several known examples whose solutions present a wild behaviour.

In this paper we review some results concerning the linear dynamics of C0-semigroups of operators. In Section
1 we present several notions that have been considered in the study of linear dynamics of C0-semigroups. For the
clarity of the exposition, the formulations of these notions for single linear operators are omitted. The existence of
computable criteria for hypercyclicity and other dynamical properties is considered in Section 2. One of the most
well-known criteria in the area is the Desch, Schappacher, and Webb criterion in any of their formulations. We revisit
different versions of the criterion, and some examples for which the criteria were applied.

In the same way as the (weighted) shifts are considered as a model for understanding the dynamics of linear
operators on sequence spaces [26–28], the translation semigroup works in the same manner for the dynamics of
semigroups [20, Sec. 4]. This has been fostered part because of the use of the comparison lemma for extending
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the results to other semigroups. The characterization of the dynamics of the translation semigroup is considered in
Section 3.

A special case is provided by semigroups generated by partial differential equations in spaces of analytic
functions with some growth control, which is analyzed in Section 4. The revision of solution semigroups of partial
differential equations defined on a special Banach sequence space, the Herzog space, is provided in Section 5. Finally,
Section 6 deals with some open problems for future study on the dynamics of semigroups.

1 Preliminaries on the dynamics of semigroups

In this section, we gather the most significant notions that have been considered in the study of linear dynamics of
semigroups in the last years.

1.1 Transitivity and hypercyclicity

First of all, we will recall the basic notions on linear dynamics. The study of hypercyclicity started with the work of
Kitai [1, 29]. Beauzamy coined the notion of hypercyclicity for linear operators, see [30, 31]. Further information on
the origins of this notion can be found in [5].

This concept is stronger than the ones of supercyclicity or cyclicity, in which one considers the multiples of
the elements of the orbit or their linear combinations, respectively, instead of the orbit itself. In this work we will
restrict ourselves to hypercyclicity. It consists on the existence of elements with dense orbit. The generalization to
semigroups is natural, replacing the discrete orbit of an element by a continuous one.

Definition 1.1. A semigroup fTt gt�0 is said to be hypercyclic if there exists some x 2 X such that

Orb.fTt gt�0; x/ WD fTtx W t � 0g is dense in X . (4)

From hypercyclicity it directly follows that the space X must be separable and infinite-dimensional. A surprising
result is that the orbit of a vector under a semigroup is dense as soon as it is somewhere dense (see [32], based on a
result of Bourdon and Feldman [33]). This notion is equivalent to transitivity.

Definition 1.2. fTt gt�0 is transitive if for every pair of non-empty open sets U; V ¤ ; there exists some t > 0 such
that Tt .U / \ V ¤ ;.

Both notions are equivalent since Birkhoff transitivity theorem [34] also holds for C0-semigroups, which relies on
an application of Baire’s Category Theorem [5, Th. 1], or [3, Th. 1.2] in the operator case. Hypercyclicity is a quite
unstable property, since by small perturbations of the infinitesimal generator we can destroy it [35].

The separability of X also yields that the hypercyclicity of fTt gt�0 is equivalent to the hypercyclicity of a
sequence of operators fTtngn for some discretization of the semigroup given by the sequence .tn/n with limn tn D
1, see for instance [36, Prop. 2.1] and [8, Page 186]. A detailed study of the equivalences between the dynamics
of semigroups and the dynamics of their discretizations can be found in [36]. The particular case of autonomous
discretizations, that is the existence of hypercyclic operators in the semigroup, requires a special attention. Oxtoby
and Ulam obtained, from a clever use of the Baire’s Category Theorem, that there is a Gı set A � .0;C1/ such
that Tt0 is hypercyclic for every t0 2 A. Costakis and Sambarino proved that such a set can be shared by all the
non-trivial operators of the translation semigroup on the complex plane [37]. Those results were later improved in
[38], where it is shown that in a hypercylic semigroup fTt gt�0 all the operators Tt0 , t0 > 0 are hypercyclic and they
share the set of hypercyclic vectors. This also holds for supercyclic semigroups and their non-trivial operators [39].

However, these results cannot be extended to the frame of semigroups whose index set is a sector, or the whole,
complex plane. The translation semigroup considered on a suitable Lp-space may result to be hypercylic, or even
mixing, but with no single operator satisfying such property [36, Ex. 4.14 and 4.15]. The situation does not improve
if we restrict ourselves to holomorphic semigroups [40].
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After the aforementioned works of Birkhoff and Rolewicz, the study of the wild dynamics of semigroups
was taken on by Lasota, who considered the existence of turbulent orbits in [21]. In fluid dynamics, turbulence
is associated with low momentum diffusion, high momentum convection, and rapid variation of pressure and flow
velocity in space and time. The model in which he shows his results was given by the solution C0-semigroup of

ut .x; t/ D� xux.x; t/C �u.x; t/

u.x; 0/ Df .x/ for x � 0; f 2 C.RC
0
/ with f .0/ D 0

(5)

where � denotes the Reynolds number. On the one hand, if � < 1 the solutions converge to the laminar solution u �
0. On the other hand, if � � 2 there are infinitely many turbulent solutions. A solution is strictly turbulent if its closure
is a compact non-empty set and it does not contain periodic points. Roughly speaking, they are complicated and
irregular. This was quite surprising since turbulence seemed to be tied to very strongly nonlinear partial differential
equations of higher order.

Following this line, in [41], Lasota also showed an example of a solution semigroup associated to the following
Abstract Cauchy Problem that describes the growth of a population of cells which constantly differentiate (change
their properties) in time.

ut .x; t/ D �c.t; x/ux.x; t/C f .t; x; u/ for some .t; x/ 2 Œ0;1/ � Œ0; 1�

u.0; x/ D v.x/ for x 2 Œ0; 1�:

Here t represents the time, x the degree of differentiation which goes from x D 0 (undifferentiated cells) to x D L
(mature cells), and c.x; t/ the velocity of cell differentiation [42–44]. The usual setting for posing these problems
are the spaces of continuous or integrable functions on the interval.

The existence of semigroups is not limited to partial differential operators in function spaces. It is known
that every separable infinite-dimensional Banach space admits a hypercyclic semigroup [45]. The proof relies on
a construction based on a result on biorthogonal sequences on Banach spaces by Ovsepian and Pelczynski [46] and
on an analogous result for single operators [47]. An alternative shorter proof was given in [48]. The generalization to
Fréchet spaces different from ! was presented in [49]. In this case, the role of the result of Ovsepian and Pelczynski
is played by a more general result on the setting of Fréchet spaces [50].

1.2 Devaney chaos

Godefroy and Shapiro introduced the notion of chaos in the sense of Devaney [51] for linear operators [3]. We recall
that x 2 X is a periodic point for a C0-semigroup fTt gt�0 if there is some t0 > 0 such that Tt0x D x.

Definition 1.3. A semigroup fTt gt�0 is chaotic in the sense of Devaney if it is hypercyclic (transitive), it has a dense
set of periodic points, and the sensitive dependence to initial conditions (SDIC) holds.

In our setting, the last condition can be directly obtained from hypercyclicity. In the particular setting of linear
operators the SDIC can be deduced from the mere hypercyclity [52].

In [53], following an ergodic-theoretical approach, Rudnicki showed the existence of invariant measures having
strong analytic and mixing properties of the solution semigroup of equation (5). He also showed the existence of
Devaney chaos, see also [54–56]. An updated revision of these results can be found in [57, 58].

The dynamics associated to this equation has been also considered in other spaces: in Hölder spaces of
continuous functions [59–61] and Orlicz spaces [62], and in Sobolev spaces of type W 1;p , 1 � p < 1 [63].
The reader can find more information about the study of the dynamics of semigroups induced by semiflows in [64].

1.3 Mixing & weakly mixing properties

The notion of transitivity can be strengthened in some ways. The weak mixing property was considered in the setting
of linear dynamics by Herrero [65].
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Definition 1.4. A semigroup fTt gt�0 is said to be weakly mixing if fTt ˚ Tt gt�0 is hypercyclic (transitive).

He also posed there the question whether every hypercyclic operator was weakly mixing. This question was shown
to be negative by De la Rosa and Read [66], see also [67]. However, the weakly mixing property was seen to be
equivalent to the Hypercyclicity Criterion [68]. This link can be shown in the following result:

Theorem 1.5 ([36, Th. 2.4]). Let fTt gt�0 be a semigroup in L(X). The following are equivalent:
1. fTt gt�0 is weakly mixing.
2. There exists a weakly mixing discretization.
3. All autonomous discretizations are weakly mixing.

As a matter of fact, the weak mixing property is obtained whenever we have Devaney chaos [68].
The (topologically) mixing property was first analyzed for single operators in [69], and later studied for

semigroups in [70].

Definition 1.6. fTt gt�0 is said to be mixing if for every pair of non-empty open sets U; V ¤ ; there exists some
t0 > 0 such that

Tt .U / \ V ¤ ; for all t � t0: (6)

This notion is clearly stronger than transitivity and weakly mixing. However, when all the discretizations of a
semigroup satisfy either transitive, weakly mixing, or the mixing property, the other properties also hold.

Theorem 1.7 ([36, Th. 2.3]). Let fTt gt�0 be a semigroup in L.X/. The following are equivalent:
1. fTt gt�0 is mixing.
2. Every discretization of fTt gt�0 is mixing.
3. Every discretization of fTt gt�0 is weakly mixing.
4. Every discretization of fTt gt�0 is transitive.

Other recurrent properties for hypercyclic semigroups were considered in [71] (see also [72] for a recent thorough
study in the case of a single operator).

1.4 Frequent hypercyclicity

With the goal of studying linear transformations from the point of view of ergodic theory, Bayart and Grivaux
introduced the notion of frequent hypercyclicity in order to quantify the frequency with which an orbit meets open
sets [73]. This notion was extended to semigroups in [74]. For this purpose we recall the notion of lower density of

a set of real numbers: Let B � RC
0

, we define the lower density of B as Dens.B/ D lim inf
t!1

�.B \ Œ0; t �/

t
and the

upper density as Dens.B/ D lim sup
t!1

�.B \ Œ0; t �/

t
, where � denotes the Lebesgue measure on RC

0
.

Definition 1.8. fTt gt�0 is frequently hypercyclic if there exits some x 2 X such that for every ; ¤ U � X , we
have

Dens.ft > 0 W Tt .x/ \ U g/ > 0: (7)

It is well-known that when a semigroup is frequent hypercyclic, all their non-trivial operators share the set of
frequently hypercyclic vectors too [38, Th. 3.2]. The set of frequent hypercyclic vectors for an operator is meager
[75]. However, if one considers the use of the upper density in the definition of frequent hypercyclicity, the set of
upper frequent hypercyclic vectors is residual [75].
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1.5 Li-Yorke chaos

In the celebrated paper of Li and Yorke [76], they introduced the concept of scrambled set. In this flavor, this notion
was studied in linear dynamics in [77] and [78].

Definition 1.9. fTt gt�0 is said to be Li-Yorke chaotic if there exists an uncountable subset � � X , called the
scrambled set, such that for every pair x; y 2 � of distinct points, we have

lim inf
t!1

jjTtx � Ttyjj D 0; lim inf
t!1

jjTtx � Ttyjj > 0: (8)

Clearly, every hypercyclic semigroup is Li-Yorke chaotic: we just have to fix a hypercyclic vector x 2 X and
consider � WD f�xI j�j � 1g as the scrambled set.

Irregular vectors were introduced by Beauzamy [79], and their existence turned out to be equivalent to Li-
Yorke chaos [77]. For a C0-semigroup fTt gt�0, a vector x is said to be irregular if lim inft!1 jjTtxjj D 0 and
lim inft!1 jjTtxjj D 1.

1.6 Distributional chaos

The notion of distributional chaos was inspired by the work of Schweizer and Smítal [80]. It was incorporated to the
setting of linear dynamics in [81, 82], and thoroughly studied in [83]. The corresponding version for C0-semigroups
was given in [84]. In this notion we require a scrambled set S such that the orbits of any couple of distinct points are
closed enough or at least at some distance, measured in terms of upper densities. We say that a semigroup fTt gt�0
is distributionally chaotic if there is an uncountable set � � X , ı > 0, so that for each " > 0 and pair x; y 2 � of
distinct points

Dens.fs � 0 W jjTsx � Tsyjj � ıg/ D 1; Dens.fs � 0 W jjTsx � Tsyjj < "g/ D 1: (9)

See also [85, 86] where distributionally chaotic semigroups defined on Fréchet spaces are characterized.
Inspired by the concept of irregular vectors, a new notion of distributionally irregular vector was given in [77]

for single operators, later generalized for C0-semigroups:

Definition 1.10 ([84]). A vector x 2 X is said to be distributionally irregular for fTt gt�0 if for every ı > 0 we
have:

Dens.fs � 0 W jjTsxjj > ıg/ D 1; & Dens.fs � 0 W jjTsxjj < ıg/ D 1: (10)

It was shown in [83] that the existence of distributionally irregular vectors was equivalent to distributional chaos for
single operators, and later generalized for C0-semigroups in [84].

1.7 The specification property

The specification property was introduced by Bowen in [87] in order to indicate that there exist periodic points that
can approximate prescribed parts of the orbits of certain elements. It is a very strong property, and it was stated
for compact metric spaces. In the context of linear dynamics, the corresponding concept was given in [88], and
thoroughly studied in [89] for single operators. A recent adaptation to C0-semigroups was provided:

Definition 1.11 ([90]). A C0-semigroup fTt gt�0 on a separable Banach space X has the Semigroup Specification
Property (SgSP) if there exists an increasing sequence .Kn/n of T -invariant sets with 0 2 K1 and [n2NKn D X

and there exists a t0 > 0, such that for each n 2 N and for any ı > 0 there is a positive real number Mı;n 2 RC

such that for any integer s � 2, any set fy1; : : : ; ysg � Kn and any real numbers: 0 D a1 � b1 < a2 � b2 < � � � <
as � bs satisfying bs CMı;n 2 N � t0 and arC1 � br � Mı;n for r D 1; : : : ; s � 1, there is a point x 2 Kn such
that, for each tr 2 Œar ; br �, r D 1; 2; :::; s, the following conditions hold:

jjTtr .x/ � Ttr .yr /jj < ı;
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Tt .x/ D x; where t DMı;n C bs :

The SgSP implies the mixing property, Devaney chaos, frequent hypercyclicity, and distributional chaos. Moreover,
it holds for the semigroup if, and only if, it holds for some of its nontrivial operators [90].

2 A review of dynamical criteria

The existence of computable criteria for hypercyclicity and for stronger notions allowed a wide range of examples
with wild behaviour. In the operator case, the first result in this line was the Hypercyclicity Criterion, that was
first stated by Kitai [1], and later rediscovered by Gethner and Shapiro [2]. The following version is inspired in a
reformulation by Bès and the fourth author [68].

Criterion 2.1 (Hypercyclicity Criterion (HC)). Let fTt gt�0 be a semigroup on X . Let us also consider Y;Z � X
dense subsets ofX , an increasing sequence of real positive numbers .tk/k tending to1, and a sequence of mappings
Stk W Z ! X , k 2 N such that
(a) limk!1 Ttky D 0 for all y 2 Y ,
(b) limk!1 Stkz D 0 for all z 2 Z, and
(c) limk!1 TtkStkz D z for all z 2 Z.
Then, the semigroup fTt gt�0 is hypercyclic.

There are alternative formulations of this criterion that result to be equivalent:

Theorem 2.2 ([91]). Let fTt gt�0 be a semigroup. The following formulations are equivalent to the Hypercyclicity
Criterion:

1. There exist .tk/k � RC strictly increasing and tending to infinity, dense subspaces Y;Z � X , satisfying
(i) For all y 2 Y , limk!1 Ttky D 0.

(ii) Every z 2 Z admits a backward orbit fzt W t � 0g such that limk ztk D 0.
2. There exist .tk/k � RC strictly increasing and tending to infinity, dense subspaces Y;Z � X , satisfying

(i) For all y 2 Y , limk!1 Ttky D 0.
(ii) For all z 2 Z there is .zk/k in X with limk!1 zk D 0 and limk!1 Ttkzk D z.

In the same way as for linear operators, fTt gt�0 is weakly mixing if, and only if, there exists a discretization
fTtk gk satisfying the HC [36, 91], which is also equivalent to the existence of a single weakly mixing operator Tt0 .
Semigroups satisfying the HC were also characterized by El Mourchid [92].

The HC can be strengthened in order to get the mixing property [70].

Criterion 2.3 (Mixing Criterion (MC)). Let fTt gt�0 be a semigroup on X . Let us also consider Y;Z � X dense
subsets of X and a family of mappings St W Z ! X such that
(a) limt!1 Tty D 0 for all y 2 Y ,
(b) limt!1 Stz D 0 for all z 2 Z, and
(c) limt!1 TtStz D z for all z 2 Z.
Then, the semigroup fTt gt�0 is mixing.

Theorem 2.4 ([36, Th. 2.4]). Let fTt gt�0 be a semigroup in L.X/. The following are equivalent:
1. fTt gt�0 is weakly mixing.
2. There exists a weakly mixing discretization.
3. All autonomous discretizations are weakly mixing,
4. There exists a discretization verifying the HC for sequences of operators.
5. All autonomous discretizations verify the HC for sequences of operators.
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6. For every increasing sequence ftkgk tending to1 with supk2N jtkC1 � tk j < 1, the discretization fTtk gk is
hypercyclic.

Condition 6 above is expressed in terms of syndetic sequences in RC, and was inspired by the corresponding result
for single operators [93].

In [94], Mangino and Peris obtained a sufficient condition for frequent hypercyclicity. This frequent hypercyclic-
ity criterion is based on the Pettis integral.

Criterion 2.5 (Frequently Hypercyclicity Criterion). Let fTt gt�0 be a semigroup in L.X/. If there exist X0 � X
dense in X and maps St W X0 ! X0; t > 0, such that
(i) TtStx D x; TtSrx D Sr�tx; t > 0; r > t > 0 for all x 2 X0,

(ii) t ! Ttx is Pettis integrable on Œ0;1/ for all x 2 X0,
(iii) t ! Stx is Pettis integrable on Œ0;1/ for all x 2 X0,
then fTt gt�0 is frequently hypercyclic.

Moreover, in [95] it was shown that this criterion suffices for the existence of invariant Borel probability measures
on X that are strongly mixing and have full support. In the same work, the authors analyzed the existence of these
measures for the solution semigroup of the Black-Scholes equation completing the previous work performed in [20]
where the authors studied its chaotic behaviour.

2.1 The role of the infinitesimal generator

Godefroy and Shapiro reformulated the HC in terms of the abundance of vectors of an operator [3], also known as
the Eigenvalue Criterion, see also [96, Th. 3.7] and [97]. For hypercyclicity, it was necessary to have “plenty of”
eigenvalues of modulus greater than 1 and smaller than 1 (and for Devaney chaos to have additionally many of them
with modulus equal to 1).

For C0-semigroups, especially for those associated to solutions of linear PDEs and infinite systems of linear
ODEs, it turns out to be necessary to have at our disposal dynamical criteria that can be expressed in terms of the
infinitesimal generator. In this subsection X will be a complex Banach space.

Criterion 2.6. Let fTt gt�0 be a semigroup whose infinitesimal generator is A. Suppose that the subspaces

X0 WD spanfx 2 X I Ax D �x for some � 2 K with <.�/ < 1g;

Y0 WD spanfx 2 X I Ax D �x for some � 2 K with <.�/ > 1g;

are dense in X . Then fTt gt�0 is mixing (in particular hypercyclic).
If, moreover, X is a complex space and also the subspace

Z0 WD spanfx 2 X I Ax D �x for some � 2 C with <.�/ D 0 and Im.�/ 2 2�iQg:

is dense in X , then fTt gt�0 is Devaney chaotic.

The abundance of eigenvectors of the infinitesimal generator can be obtained by applying the Hahn-Banach theorem.

Criterion 2.7 (Desch-Schappacher-Webb Criterion [20]). Let X be a complex Banach space, and let .A;D.A// be
the generator of the semigroup fTt gt�0. Assume that there exist an open connected subset U � C and a weakly
holomorphic function f W U ! X such that
(i) U \ iR ¤ ;.

(ii) f .�/ 2 ker.�I � A/ for every � 2 U ,
(iii) If for some ' 2 X� the function hf .�/; 'i is identically zero on U , then ' D 0.
Then the semigroup fTt gt�0 is Devaney chaotic and mixing.
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Kalmes showed that all the nontrivial operators of such semigroups are in fact Devaney chaotic [98, Th. 2.1]. This
criterion has presented several different formulations along the time, in order to relax the hypothesis, as far as possible
[8, 94, 99–102]. Banasiak and Moszynski [103] reformulated it in order to find subspaces where hypercyclicity and
chaos hold (sub-hypercyclicity and sub-chaoticity). A fractional version of criterion 2.7 for semigroups was provided
in [104]. As an illustration of its usefulness, we recall the following result. The Desch-Schappacher-Webb Criterion
is very strong since it also implies the Semigroup Specification Property [90], which is the strongest dynamical
property mentioned in this paper.

Example 2.8 ([20]). Consider the following PDE in L2.RC;C/:

ut .x; t/ D aux;x.x; t/C bux.x; t/C cu.x; t/;

u.0; t/ D 0 for t � 0;

u.x; 0/ D f .x/ for x � 0; with some f 2 X:

The solution semigroup is generated by the operator Au WD aux;x.x; t/C bux.x; t/C cu.x; t/. When a; b; c > 0

and c < b2=2a < 1 then the solution semigroup generated by A is Devaney chaotic.

The next example is given by a perturbation of an Ornstein-Uhlenbeck operator [100]. A slight modification in the
formulation of condition (ii) and (iii) is needed.

Example 2.9. Consider the following PDE in L2.RC;C/:

ut .x; t/ D ux;x.x; t/C bxux.x; t/C cu.x; t/;

u.0; t/ D 0 for t � 0;

u.x; 0/ D f .x/ for x � 0; with some f 2 X:

The solution semigroup generated by the operator Au WD ux;x.x; t/ C bxux.x; t/ C cu.x; t/, with b > 0 with
c > b=2 is Devaney chaotic.

Concerning distributional chaos, some criteria for C0-semigroups were provided in [84], inspired by the ones given
for single operators in [83]. We recall the following useful one:

Theorem 2.10 ([84]). If there exist a dense subset X0 � X with limt!1 Ttx D 0 for each x 2 X0, and a
measurable subset B � RC

0
with Dens.B/ D 1. If either

1.
Z
B

1

kTtk
<1 or

2.
Z
B

1

kTtk2
<1 when X is a complex Hilbert space,

then fTt gt�0 has a dense manifold whose nonzero vectors are distributionally irregular vectors (i.e., a dense
distributionally irregular manifold).

This theorem can be rephrased in terms of the infinitesimal generator of the semigroup, in order to try to use directly
some of its spectral properties, see [77, Cor. 31] for the discrete case and [105, Th. 3.7] for the continuous version.

Criterion 2.11. Let fTt gt�0 be a semigroup with infinitesimal generator A. If the following conditions hold:
1. there is a dense subset X0 � X with limt!1 Ttx D 0, for each x 2 X0, and
2. there is some � 2 �p.A/ with <.�/ > 0,

then fTt gt�0 has a dense distributionally irregular manifold. In particular, fTt gt�0 is distributionally chaotic.

Thus, whenever we obtain Devaney chaos due to an application of Desch-Schappacher-Webb criterion we, in fact,
get the existence of a dense distributionally irregular manifold. For facilitating the lecture, we will omit this part in
the sequel.
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3 Dynamics of the translation semigroup and applications

The translation semigroup f�t gt�0 has become one of the most clear test case to study and analyze different
dynamical properties. Birkhoff proved the transtivity of the operator �1 on H.C/, the space of entire functions
endowed with the compact open topology [18], and this yields the transitivity of the whole translation semigroup
f�t gt2C on H.C/. A revision of this result can be also found in [106]. Chan and Shapiro also considered the dynamics
of the translation semigroup on Hilbert spaces of entire functions [107] (see also [108] for an analogous result on
translations of harmonic functions).

Other important settings where the translation semigroup is considered are the weighted spaces of continuous
and integrable functions vanishing at1. In this way, we define the following function spaces

Lp� .I / WD

8<:f W I ! R W f measurable with
Z
I

jf .t/jp�.t/dt

9=; (11)

endowed with the norm jjf jjp;� WD
�R
I
jf .t/jp�.t/dt

�1=p and

C0;�.I / WD
n
f W I ! R W f continuous, with lim

t!1
f .t/�.t/ D 0

o
(12)

endowed with the norm jjf jjp;1 WD supt2I jf .t/j�.t/ where I D R or I D RC
0

.
The weight function � W I ! RC is said to be an admissible weight function if the following property holds:

There exist M � 1 and ! 2 R such that �.s/ � Mewt�.t C s/ for all s 2 I and t > 0. These conditions yield that
the translation semigroup defined as �tf .x/ D f .x C t /; for t � 0; x 2 R; f 2 X; where X is any of the spaces
above, is strongly continuous [8].

3.1 The translation semigroup of L
p
� , 1 � p <1

Rolewicz analyzed the dynamics of the translation semigroup in the setting of weighted spaces of p-integrable
functions Lp� .R/, 1 � p <1, with �.s/ WD a�s ; a > 1 [19]. As we will see, the linear dynamics of the translation
semigroup has permitted to express the dynamics in terms of the behaviour of the weight function �.

Desch et al. showed that the translation semigroup f�t gt�0 is hypercyclic in Lp� .R/ if, and only if,

lim inf
t!˙1

�.t/ D 0: (13)

Devaney chaos can also be characterized, but in this case the condition is stated in terms of the integrability of �. In
[109] it is proved that f�t gt�0 is Devaney chaotic on Lp� .R/ if, and only if,

C1Z
�1

�.t/ <1: (14)

Moreover, this condition results to be equivalent to the existence of a single periodic point.
The mixing property for the translation semigroup on Lp� is, somehow, in the middle of hypercyclicity and

Devaney chaos. This can be seen in the corresponding characterization provided by [70]. f�t gt�0 is mixing on
L
p
� .R/ if, and only if

lim
t!˙1

�.t/ D 0: (15)

The translation semigroup is frequently hypercyclic onLp� .R/ if and only if
RC1
�1

�.t/dt <1, as it was completely
characterized in [94], see also [110] for a generalization of this result.

Barrachina and Peris [111] showed that f�t gt�0 is (densely) distributionally chaotic on Lp� .RC0 / if we can find
a measurable subset A � RC

0
such that Dens.A/ D 1 and

R
A
�.s/ds <1. Sufficient conditions for Li-Yorke chaos

were provided in [112]. The interrelations between Devaney chaos and distributional chaos for this semigroup were
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studied in [105]: There are examples of a hypercyclic and distributionally chaotic translations that are not Devaney
chaotic. This fact can be compared with the one provided in [111, Ex. 2] of a distributionally chaotic translation
semigroup that is neither hypercyclic nor Devaney chaotic. In [90] we get that the translation semigroup has the
Semigroup Specification Property on Lp� .R/ if, and only if,

RC1
�1

�.s/ds < 1 , which is in fact the condition for
Devaney chaos.

3.2 The water hammer equations

A direct application of some of the aforementioned results can be seen when studying the solution of the water
hammer equations [113]. A water hammer is a pressure wave that occurs, accidentally or intentionally, in a filled
liquid pipeline when a tap is suddenly closed, or a pump starts or stops, or when a valve closes or opens. A water
hammer wave propagates through pipes reflecting on features and boundaries. This phenomenon is governed by
a pair of coupled quasi-linear partial differential equations of first order, the dynamic and continuity equations. A
detailed derivation of the governing water hammer equations can be found in Chaudry [114]. Here we provide
a representation of the classical solution of the linear water hammer equations with the help of the translation
semigroup [113, Cor. 4.2].

Qt C gAHx C
f

2DA
QjQj D 0; (Dynamic equation) (16)

v2

gA
Qx CHt D 0; (Continuity equation) (17)

where Q.x; t/ represents the discharge, H.x; t/ denotes the piezometric head at the centerline of the conduit above
the specified datum, f is the friction factor (which is assumed to be constant), g is the acceleration due to gravity, v
is the fluid wave velocity, and A and D are the the cross-sectional area and the diameter of a conduit, respectively.
The parameters A and D, are characteristics of the conduit system and are time invariant, but may be functions of x.

This strategy is similar to the case in which the dynamics of the cosine family is analyzed [115, 116] to describe
the orbit in terms of a forward and backward orbit. Here, we present how the discharge and the piezometric head
evolve from a given initial condition Q.x; 0/ D '.x/ and H.x; 0/ D �.x/.

Q.x; t/ D
1

2
'.x � vt/C

gA
2v
�.x � vt/C

1

2
'.x C vt/C

gA
2v
'.x C vt/

H.x; t/ D
v

2gA
'.x � vt/C

1

2
�.x � vt/ �

v

2gA
'.x C vt/C

1

2
�.x C vt/

for every x 2 R; t � 0 and initial conditions .Q.0/;H.0// D .�; '/ 2 X �X .
Kalmes studied the semigroup induced by semiflows in [117]. He characterized hypercyclicity and mixing

property for cosine operator functions generated by second order partial differential operators on space of integrable
functions and continuous functions. Similar results for the case of cosine operator functions generated from shifts
have been given by Chang and Chen in [118]. In addition, Chen also considered chaos in the sense of Devaney [116],
giving a characterization of chaotic cosine operator functions generated by weighted translations on the Lebesgue
space Lp.G/, where G is a locally compact group.

3.3 The quasi-linear Lasota equation

Hung has recently studied the hypercyclicity and Devaney chaos for the quasi-linear Lasota equation by reducing
their dynamics to the one of the translation semigroup [119]. He considered the equation

ut .x; t/ D k.x/u � c.x/ux.x; t/

u.x; 0/ D f .x/ for 0 � x � 1; f 2 C.Œ0; 1�/ with f .0/ D 0
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where k.x/ is a bounded function on the interval and c.x/ satisfies

c.0/ D 0; c.x/ > 0; for x 2 .0; 1�; and

1Z
0

dx

c.x/
D1: (18)

The particular case c.x/ D �1 and k.x/ D 0 yields the translation semigroup.

3.4 The conjugation lemma

The dynamics of the translation semigroup has many applications, since the study of the behaviour of the solution
semigroups associated to many partial differential equations and infinite systems of linear ordinary differential
equations, can be reduced to the analysis of the translation semigroup in certain spaces. This is due to an application
of the conjugation lemma, which can be formulated as follows: Given fSt gt�0 a C0-semigroup on a Banach space Y
and fTt gt�0 on a Banach space X . Then fTt gt�0 is called conjugate to fSt gt�0 if there exists a homeomorphism
ˆ W Y ! X such that Tt ı ˆ D ˆ ı St for all t � 0. Dynamical properties such as frequent hypercyclicity,
hypercyclicity, mixing, weak mixing and Devaney chaos for a C0-semigroup are preserved under conjugacy.

Using the conjugation lemma we are going to revisit the dynamics of solution semigroups to some Lasota type
equation. Further information on these examples can be found in [54, 105].

Example 3.1. Let us consider

ut .x; t/ D k.x/u � c.x/ux.x; t/

u.x; 0/ D f .x/ for x 2 RC
0
; f 2 C.RC

0
/

with k.x/; c.x/ bounded and continuous functions on RC
0

. If c.x/ D 1, the solution semigroup fTt gt�0 is given by

Ttf .x/ D exp

0@ xCtZ
x

h.s/ds

1Af .x C t /; for f 2 X: (19)

Its dynamics can be reduced to the one of the translation semigroup on certain Lp spaces. If we define �.x/ D
exp.�

R x
0
k.s/ds/ and �.f /.x/ D .�.x//1=pf .x/, we have:

L
p
� .RC0 ;C/

�t
�����! L

p
� .RC0 ;C/

�

??y ??y�
Lp.RC

0
;C/

Tt
�����! Lp.RC

0
;C/

(20)

Clearly, if k.x/ is constant and equal to 1 then Devaney and distributional chaos hold. However, if k.x/ D �1 for
x 2 Œn2; n2 C 1Œ for some n 2 N, and k.x/ D 1 elsewhere, we have distributional but not Devaney chaos.

Example 3.2. Let now consider

ut .x; t/ D k.x/u � c.x/ux.x; t/

u.x; 0/ D f .x/ for x 2 RC
0
; f 2 C.RC

0
/:

Take c.x/ D 
x, 
 < 0 and k continuous. If there is ı > 0 such that R.k.x// � 0 for 0 � x � ı, then the solution
semigroup fTt gt�0 is given by

Ttf .x/ D exp

0@ tZ
0

k.e
.t�r/x/f .e
tx/

1A for t � 0: (21)
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Define �.x/ D expf.1=
/
R 1
x
.h.s/=s/dsg and set �.f /.x/ D .�.x//1=pf .x/:

L
p
� .Œ0; 1�;C/

St
�����! L

p
� .Œ0; 1�;C/

�

??y ??y�
Lp.Œ0; 1�;C/

Tt
�����! Lp.Œ0; 1�;C/

(22)

then we have distributional chaos.
If we consider c.x/ D 1, k.x/ D

˛x

1C x˛
, then the solution is given by

Ttf .x/ D
1C .x C t /˛

1C x˛
f .x C t / for x;� 0; t � 0: (23)

If we define �.x/ D
1

1C x˛
and set �.f /.x/ D .�.x//1=pf .x/, we have:

L
p
� .RC0 ;C/

�t
�����! L

p
� .RC0 ;C/

�

??y ??y�
Lp.RC

0
;C/

Tt
�����! Lp.RC

0
;C/

(24)

This semigroup was known to be Devaney chaotic by El Mourchid [101], since
R1
0
�.x/dx <1.

4 Chaos on cell growth models

As mentioned before, Lasota considered in [41] a model that describes the growth of a population of cells which
constantly differentiate (change their properties) in time. This type of process has been later studied either by single
partial differential equations that described the evolution within a structured population, or by coupled infinite system
of ordinary differential equations that represent “birth-and-death” process. These models are inspired in kinetic
theory, and they have been also used to describe the chaotic behaviour of car-following models in traffic [120–122].

4.1 Cell structured models

Howard [123] studied the linear dynamics of the solution semigroup of a size structured model for describing cell
growth that can be found in [124, 125].

ut .x; t/C .xu.x; t//x D �u.x; t/ � �.x/u.x; t/ � ˇ.x/u.x; t/C 4ˇ.2x/u.2x; t/; for 0 � x � 1; t � 0:

u.x; 0/ D '.x/; 0 � x � 1:
(25)

In particular, the idea of cells of size zero is considered for describing an abnormality in the division process within
our population resulting in a accumulation of cells of various size including a population of non-functional “dwarf”
cells. The presence of such “dwarf” cells is seen in the blood disorder Alpha-thalassemia, a genetic disease associated
with sickle cell anemia [126].

If �.x/ WD �.x/� �.x/� ˇ.x/� 1 and there exists some �0 2 R such that �1 < �0 � �.x/ for all 0 � x � 1,
then the solution semigroup of (25) is hypercyclic [123, Prop. 5.3]. This model was also considered by El Mourchid
et al. [127, 128].

4.2 Birth-and-death models

Protopopescu and Azmy introduced kinetic models that describe “death” process in the study of linear dynamics
[23].

.fn/t D � f̨n C f̌nC1; n 2 N0: (26)
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Such a model can be used for describing chemical reactions, biological process, or a generalized automaton rule.
From the biological point of view, this represents a population of neoplastic cells divided into subpopulations
characterized by different levels of cellular resistance to antineoplastic drugs [129]. Here, particles at level n are
absorbed at rate ˛ > 0 and particles of level n C 1 are re-emited at rate ˇ > 0 to level n. Particles with internal
energy n D 0 are absorbed and cease to exist. The solution semigroup generated by the associated linear operator is
Devaney chaotic provided that ˇ > ˛ � 0 [23] and [130, Ex. 2.1].

The study of the dynamics of the general case in which the rates ˛ and ˇ are different for every stage was started
in [131] and continued in [132, 133]:

.fn/t D �˛nfn C ˇnfnC1; n 2 N0 (27)

The associated Abstract Cauchy Problem can be restated as

ft .t/ D Af.t/; f.0/ D Af0 (28)

with

A D

0BBBBBBB@

˛1 ˇ2

0 ˛2 ˇ3

0 ˛3 ˇ4

0 ˛4
: : :

: : :
: : :

1CCCCCCCA : (29)

The natural setting for considering this problem is the space of summable sequences `1. The most general result that
ensures its chaotic dynamics is the following [8, Ch. 7].

Theorem 4.1. Let ˛n > 0; ˇn 2 R for every n 2 N, such that

˛ WD sup
k

˛k < ˇ WD lim inf
k

ˇk (30)

then the solution semigroup generated by A is Devaney chaotic.

In a similar way, the general “birth-and-death” process can be described as:

.f1/t D ˛nf1 C ˇnf2;

.fn/t D 
nfnC1 C ˛nfn C ˇnfnC1; n � 2:
(31)

In this case, the Abstract Cauchy Problem is also stated as (28) but with

B D

0BBBBBBB@

˛ ˇ


 ˛ ˇ


 ˛ ˇ


 ˛
: : :

: : :
: : :

1CCCCCCCA : (32)

The case in which we have constant coefficients, ˛n WD ˛0; ˇn WD ˇ0 and 
n WD 
0, n 2 N0, was considered in
[129] and by Banasiak and Moszynski [133] in the more general form.

Theorem 4.2. If 0 < j
 j < jˇj and j˛j < jˇ C 
 j, then the semigroup generated by B is Devaney chaotic.

The general case of the “birth-and-death” with variable coefficients was studied in [134], obtaining conditions for
sub-chaos. The generation of these semigroups was obtained in [135]. More information on kinetic models can be
found in [136].
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5 Dynamics of semigroups on Herzog spaces

In [137] Herzog introduced the following spaces when studying the universality of the solutions of the classical
Fourier heat equation:

ut .x; t/ D ux;x.x; t/: (33)

In order to have well-defined orbits, he considered spaces of analytic functions regulated by a parameter, or a tuner,
that allows to control their growth at infinity. The dynamics of the heat semigroup was also considered in Lp-
symmetric spaces of non-compact type [138] and on Damek-Ricci spaces [139].

Searching for universal elements for the solution family of operators

.Tt'/.x/
1

2
p
�t

1Z
�1

exp

 
�
.x � s/2

4t

!
'.s/ds t > 0; (34)

Herzog defined the following spaces of analytic functions. For every � > 0 he considered

X� D

(
f W R! CIf .x/ D

1X
nD0

an�
n

nŠ
xn; .an/n�0 2 c0.N0/

)
(35)

endowed with the norm jjf jj D supn�0 janj. This space is isometrically isomorphic to c0.N0/ WD fan W N0 ! C W
limn!1 janj D 0g.

In this way the operators Tt W X� ! C.R/, where C.R/ is the space of continuous functions endowed with the
compact open topolgy, are well defined. Herzog achieved to show that there is a huge amount of universal functions
for fTt gt�0.

Theorem 5.1 ([137, Th. 1.1]). The set of universal functions of X� that are universal for fTt gt�0 is residual.

As a generalization, deLaubenfels, Emamirad and Grosse-Erdmann studied the dynamics of semigroups of C -
regularized semigroups of unbounded operators [140].

5.1 Solution semigroups associated to second order PDEs

The classical Fourier heat equation is not the right governing equation to model heat transfer processes in which
extremely short periods of time or extreme temperature gradients are involved. In these situations, in order to obtain
the adequate temperature profiles, we need to use the hyperbolic heat transfer equation (HHTE).

�utt .x; t/C ut .x; t/ D ˛uxx.x; t/

u.x; 0/ D '1.x/

ut .x; 0/ D '2.x/:

(36)

This last equation predicts a finite speed of heat conduction and assumes a wavy character of the heat transfer,
contrary to the FHTE.

This equation can be reduced to a first order differential equation as follows,8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

@
@t

 
u1

u2

!
D

 
0 I

˛
�
@2

@x2
�
1
�
I

! 
u1

u2

!
I

 
u1.0; x/

u2.0; x/

!
D

 
'1.x/

'2.x/

!
; x 2 R:

(37)

which permits to express its solution in terms of semigroups.
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Theorem 5.2 ([8, 141]). If � > 0 and ˛��2 > 2, then the solution semigroup fetAgt�0 is Devaney chaotic on
X� ˚X�.

In the case of the wave equation,
utt .x; t/ D ˛uxx.x; t/ with ˛ > 0; (38)

the result is even more compelling. The solution semigroup fetAgt�0 is Devaney chaotic on X� ˚ X� for every
˛; � > 0 [141, Th. 2.3].

For the general case of second order partial differential equations of the form

utt .x; t/C 
ut .x; t/C �u.x; t/ D ˛uxx.x; t/ with t � 0; x 2 R (39)

we have recenlty obtained the following results in [142]:

Theorem 5.3. Let 
; �; ˛ > 0. Suppose that 
2 D 4� . Then the solution semigroup of the abstract Cauchy problem
given by (39) is Devaney chaotic.

The results can be also extended for the non-homogenous version of equation (33), that is also known as the bioheat
equation, which corresponds to the HHTE but with an additional source term [143].

5.2 Semigroups associated to PDEs of order greater than or equal to 2

Following a similar approach as described in the previous section, one can analyze the chaotic behavior of different
linear partial differential equations that describe physical phenomena that include an underlying propagation process.
We gather here some of these examples.

5.2.1 Moore-Gibson-Thompson equation

The Kuznetsov’s equation had been considered by many authors as the “classical" acoustics equation. This equation
for the velocity potential  is:

 tt � c
2� � ı� t D

�
1

c2
B

2A
. t /

2
C jr j2

�
t

; (40)

where c is the sound speed, ı is the diffusivity of the sound and B=A is the parameter of nonlinearity.
If the heat flux is described by the classical Fourier transfer heat equation, the energy propagation has infinite

speed. To avoid this paradox, other equations were considered to model the heat transfer in order to obtain a nonlinear
acoustics wave equation. The Maxwell-Cattaneo equation combined with fluid physics equations leads to a third
order in time partial differential equation model, known as the Jordan-Moore-Gibson-Thompson equation:

� ttt C  tt � c
2� � b� t D

�
1

c2
B

2A
. t /

2
C jr j2

�
t

; (41)

where b D ı C �c2. We consider the one-dimensional version of (41), which is usually referred to as the Moore-
Gibson-Thompson equation:

�uttt .x; t/C ˛utt .x; t/ � c
2uxx.x; t/ � buxxt .x; t/ D 0; for every t � 0; x 2 R: (42)

with the initial conditions given by u.0; x/ D '1.x/; ut .0; x/ D '2.x/; utt .0; x/ D '3.x/; x 2 R and where � ,
˛, c2 and b are positive constants. Its solutions exhibit very different qualitative behavior from the familiar second
order complete equation (� D 0; ˛ > 0/: For third order in time equations, the critical parameter


 � ˛ �
�c2

b
; (43)
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plays a fundamental role in the asymptotic behavior, energy estimates and regularity of solutions [144]. Indeed, all
studies require the positivity assumption 
 > 0. This is the common case considered in nonlinear acoustics, where
b
 is equal to the Lighthill’s diffusivity of sound, which is always positive [145, 146].

However, and excepting few results on the subject, the analysis of the behavior of (42) in case 
 � 0 remains
largely open. In [147] we have considered the dynamics in this case. Indeed, we prove the remarkable fact that for

 < 0 the corresponding initial value problem (42) exhibits chaotic behaviour (Theorem 5.4). Our arguments are
analytical rather than numerical and give new insights about the dynamical behaviour in more general situations.

Theorem 5.4. Let �; b > 0 and ˛ � 0 be given. Assume 
 WD ˛ � �c
2

b
< 0: Then the solution semigroup to (42) is

uniformly continuous and Devaney chaotic on X� ˚X� for each �2 > 2c4�˛

b2.�c2�b˛/
.

5.2.2 Lighthill-Whitham-Richards equation

Chaos is present in mathematical nonlinear models that describe traffic flows, see [148, 149]. Apart from the presence
at microscopic level in [120, 121], we have also shown the existence of chaos for the macroscopic model in [122],
given by the Lighthill-Whitmam-Richards equation [150, 151]. It is described by the following continuity equation:

Ft .x; t/C qx.x; t/ D 0; (44)

where F is the flow rate of traffic and q is the traffic density, that considers that the number of cars is preserved along
the track between any pair of points and times, which permits to model shocking waves [152]. Flow and density are
related by the velocity as follows

F.x; t/ D v.x; t/q.x; t/; for every t � 0; x 2 R: (45)

However, this model does not consider inertial effects, and speeds of vehicles are adapted instantaneously. The
addition of a diffusive term would model how drivers look ahead to adjust their speed. Therefore, Lighthill and
Whitham proposed this second order linear model:

ut .x; t/C Cux C T utt �Duxx D 0 (46)

where, T is the inertial time constant for speed variation,C is the wave speed, andD denotes the diffusion coefficient
that shows how drivers respond to changes far away from their position. In this situation, there exists �0 > 0 such
that the solution semigroup of (46) exhibits Devaney chaos on X� ˚X� for all � � �0, as was shown in [122].

5.2.3 van Wijgaarden-Eringen

The linearized version of viscous van Wijngaarden–Eringen equation models the acoustic planar propagation in
bubbly liquids.

utt .x; t/ � uxx.x; t/ D .Red /�1uxxt .x; t/C a20uxxtt .x; t/ for all x 2 R; t � 0 (47)

being Red D ceL=ı a Reynolds number, where ce.> 0/ is the adiabatic sound speed, ı is the diffusivity of sound
[153], and L is a characteristic (macroscopic length). The constant a0 is a Knudsen number that corresponds to
the dimensionless bubble radius. The interest in studying the propagation of pressure waves of small amplitude in
bubbly liquids appeared in order to try to take advantage of these acoustical properties to control the sound produced
by propellers, both of surface ships and submerged ship. This linear version is known as the viscous (or dissipative)
van Wijngaarden–Eringen equation, see [154, 155]. More details on the formulation of this equation can be found in
[156] and [157].

Theorem 5.5. Suppose that a0 < 1 and

0:3726 �

p
5

6
< a0 Reb <

1

2
: (48)
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Then for each � satisfying
� >

r0

. 1

2a20 Reb
� 3r0/a0

; (49)

where r0 WD 1
2

q
1�4a20 Re2

b

2a20 Reb
the solution semigroup to (47) is a uniformly continuous Devaney chaotic on X� ˚X�.

Remark 5.6. For the sake of completeness, we recall that the semigroups generated are distributionally chaotic and
topologically mixing, too. Besides, they admit a strongly mixing measure with full support on X� ˚X� [158].

6 Some open problems

In this section we pose some open problems that can be considered in the study of the dynamics of semigroups.
It is well-known that if x is a hypercyclic vector for T , then its orbit fx; T x; T 2x; : : : g is a linearly independent

set. However, we do not know if this property also holds for the hypercyclic vectors of a semigroup.

Problem 6.1 ([91]). Is the orbit of a hypercyclic vector for a C0-semigroup fTt gt�0 always a linearly independent
set?

In contrast to the case of hypercyclicity, Bayart and Bermúdez show the existence of Devaney chaotic semigroups
that do not contain any single Devaney chaotic operator. Based on a result of the authors [159], Muñoz-Fernández et
al. proved the following result [160, 161].

Theorem 6.2. Let P be the set of periods of a given semigroup fTt gt�0.
1. If i.0; 2�c� � �p.A/ for some c > 0, then Œ1=c;1/ � P .
2. If i.0; 2�c� D �p.A/ for some c > 0, then P D Œ1=c;1/.
3. If i Œ2�c;1� � �p.A/ for some c > 0, then P D .0;1/.

Additionally, based on a result of Kalisch [162] generalized by Bayart et al. in [163, Th. 2.11] and [164, Lem. 2.5],
these authors obtained the next result:

Theorem 6.3. Let c > 0. Then there exists a uniformly continuous, Devaney chaotic semigroup fTt gt�0 such that
the set of periods of the semigroup is f0g [ Œc;1/.

This result leads us to recall the following question of [160].

Problem 6.4. For which subsets P � Œ0I1/ does there exist a Devaney chaotic semigroup whose set of periods is
P ?

In Section 5 we have seen many examples of partial differential equations related to acoustics and fluid dynamics,
that describe an underlying propagation phenomena. We wonder what other examples can be found in this line:

Problem 6.5. Is it possible to find more examples of partial differential equations of order higher than two that
present a chaotic behaviour on Herzog spaces?

There are several problems whose associated semigroups are positive, and whose only solutions that make sense are
positive too. Therefore, it is natural to ask (Banasiak, Desch and Rudnicki in personal communication) for positive
solutions whose orbits are dense in the positive cone in these cases. Sufficient conditions that partially solve this
problem were provided in [165]. They are expressed in terms of the operators of the semigroup, and it would be
desirable to obtain them in terms of the generator.
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Problem 6.6. Given a semigroup fTt gt�0 of positive operators on a Banach lattice, is it possible to find conditions
expressed in terms of the infinitesimal generator which ensure the existence of positive vectors whose orbit is dense
in the positive cone?
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[60] Brzeźniak, Z., Dawidowicz, A.L. On periodic solutions to the von Foerster-Lasota equation. Semigroup Forum, 2009, 78(1),

118–137.
[61] Dawidowicz, A.L., Poskrobko, A. On periodic and stable solutions of the Lasota equation in different phase spaces. Opuscula

Math., 2008, 28(4), 453–461.
[62] Dawidowicz, A.L., Poskrobko, A. On chaotic and stable behaviour of the von Foerster-Lasota equation in some Orlicz spaces.

Proc. Est. Acad. Sci., 2008, 57(2), 61–69.
[63] Aroza, J., Kalmes, T., Mangino, E. Chaotic C0-semigroups induced by semiflows in Lebesgue and Sobolev spaces. J. Math. Anal.

Appl., 2014, 412(1), 77–98.
[64] Kalmes, T. Hypercyclic, mixing, and chaotic C0-semigroups induced by semiflows. Ergodic Theory Dynam. Systems, 2007,

27(5), 1599–1631.
[65] Herrero, D.A. Hypercyclic operators and chaos. J. Operator Theory, 1992, 28(1), 93–103.
[66] de la Rosa, M., Read, C. A hypercyclic operator whose direct sum T ˚ T is not hypercyclic. J. Operator Theory, 2009, 61(2),

369–380.
[67] Bayart, F., Matheron, E. Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces. J. Funct. Anal.,

2007, 250(2), 426–441.
[68] Bès, J., Peris, A. Hereditarily hypercyclic operators. J. Funct. Anal., 1999, 167(1), 94–112.



Linear dynamics of semigroups generated by differential operators 765

[69] Costakis, G., Sambarino, M.n. Topologically mixing hypercyclic operators. Proc. Amer. Math. Soc., 2004, 132(2), 385–389.
[70] Bermúdez, T., Bonilla, A., Conejero, J.A., Peris, A. Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces.

Studia Math., 2005, 170(1), 57–75.
[71] Desch, W., Schappacher, W. On products of hypercyclic semigroups. Semigroup Forum, 2005, 71(2), 301–311.
[72] Bès, J., Menet, Q., Peris, A., Puig, Y. Recurrence properties of hypercyclic operators. Math. Ann., 2016, 366(1-2), 545–572.
[73] Bayart, F., Grivaux, S. Frequently hypercyclic operators. Trans. Amer. Math. Soc., 2006, 358(11), 5083–5117 (electronic).
[74] Badea, C., Grivaux, S. Unimodular eigenvalues, uniformly distributed sequences and linear dynamics. Adv. Math., 2007, 211(2),

766–793.
[75] Bayart, F., Ruzsa, I.Z. Difference sets and frequently hypercyclic weighted shifts. Ergodic Theory Dynam. Systems, 2015, 35(3),

691–709.
[76] Li, T.Y., Yorke, J.A. Period three implies chaos. Amer. Math. Monthly, 1975, 82(10), 985–992.
[77] Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A. Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl.,

2011, 373(1), 83–93.
[78] Bernardes, Jr., N.C., Bonilla, A., Müller, V., Peris, A. Li-Yorke chaos in linear dynamics. Ergodic Theory Dynam. Systems, 2015,

35(6), 1723–1745.
[79] Beauzamy, B. Introduction to operator theory and invariant subspaces, North-Holland Mathematical Library, volume 42. North-

Holland Publishing Co., Amsterdam, 1988.
[80] Schweizer, B., Smítal, J. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Amer.

Math. Soc., 1994, 344(2), 737–754.
[81] Oprocha, P. A quantum harmonic oscillator and strong chaos. J. Phys. A, 2006, 39(47), 14559–14565.
[82] Martínez-Giménez, F., Oprocha, P., Peris, A. Distributional chaos for backward shifts. J. Math. Anal. Appl., 2009, 351(2), 607–

615.
[83] Bernardes, Jr., N.C., Bonilla, A., Müller, V., Peris, A. Distributional chaos for linear operators. J. Funct. Anal., 2013, 265(9),

2143–2163.
[84] Albanese, A.A., Barrachina, X., Mangino, E.M., Peris, A. Distributional chaos for strongly continuous semigroups of operators.

Commun. Pure Appl. Anal., 2013, 12(5), 2069–2082.
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[135] Banasiak, J., Lachowicz, M.a., Moszyński, M. Semigroups for generalized birth-and-death equations in lp spaces. Semigroup

Forum, 2006, 73(2), 175–193.
[136] Banasiak, J. Kinetic models in natural sciences. In Evolutionary equations with applications in natural sciences, Lecture Notes in

Math., volume 2126, 133–198. Springer, Cham, 2015.
[137] Herzog, G. On a universality of the heat equation. Math. Nachr., 1997, 188, 169–171.
[138] Ji, L., Weber, A. Dynamics of the heat semigroup on symmetric spaces. Ergodic Theory Dynam. Systems, 2010, 30(2), 457–

468.
[139] Sarkar, R.P. Chaotic dynamics of the heat semigroup on the Damek-Ricci spaces. Israel J. Math., 2013, 198(1), 487–508.
[140] deLaubenfels, R., Emamirad, H., Grosse-Erdmann, K.G. Chaos for semigroups of unbounded operators. Math. Nachr., 2003,

261/262, 47–59.
[141] Conejero, J.A., Peris, A., Trujillo, M. Chaotic asymptotic behavior of the hyperbolic heat transfer equation solutions. Internat. J.

Bifur. Chaos Appl. Sci. Engrg., 2010, 20(9), 2943–2947.



Linear dynamics of semigroups generated by differential operators 767

[142] Conejero, J.A., Lizama, C., Murillo-Arcila, M. Chaotic behavior for partial differential equations of order two. Preprint, 2017.
[143] Conejero, J.A., Rodenas, F., Trujillo, M. Chaos for the Hyperbolic Bioheat Equation. Discrete Contin. Dyn. Syst., 2015, 35(2),

653–668.
[144] Marchand, R., McDevitt, T., Triggiani, R. An abstract semigroup approach to the third-order moore–gibson–thompson partial

differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability.
Mathematical Methods in the Applied Sciences, 2012, 35(15), 1896–1929.

[145] Jordan, P. An analytical study of Kuznetsov’s equation: diffusive solitons, shock formation, and solution bifurcation. Physics
Letters A, 2004, 326(1–2), 77 – 84.

[146] Jordan, P. Nonlinear acoustic phenomena in viscous thermally relaxing fluids: Shock bifurcation and the emergence of diffusive
solitons. In The 9th Interna- tional Conf. on Theoretical and Computational Acoustics (ICTCA 2009). Dresde, Germany, 2009.

[147] Conejero, J.A., Lizama, C., Rodenas, F. Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation. Appl.
Math. Inf. Sci., 2015, 9(5), 2233–2238.

[148] Li, T. Nonlinear dynamics of traffic jams. Physica D: Nonlinear Phenomena, 2005, 207(1–2), 41 – 51.
[149] Li, K., Gao, Z. Nonlinear dynamics analysis of traffic time series. Modern Physics Letters B, 2004, 18(26n27), 1395–1402.
[150] Lighthill, M.J., Whitham, G.B. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London.

Ser. A., 1955, 229, 317–345.
[151] Richards, P.I. Shock waves on the highway. Operations Res., 1956, 4, 42–51.
[152] Lustri, C. Continuum modelling of traffic flow. Special topic report, Oxford University, 2010.
[153] Thompson, P.A. Compressible-Fluid Dynamics. McGraw Hill, New York, NY, 1972.
[154] Wijngaar, L.V. One-dimensional flow of liquids containing small gas bubbles. Annual review of fluid Mechanics, 1972, 4, 369–

396.
[155] Eringen, A.C. Theory of thermo-microstretch fluids and bubbly liquids. International Journal of Engineering Science, 1990,

28(2), 133 – 143.
[156] Jordan, P.M., Keiffer, R.S., Saccomandi, G. Anomalous propagation of acoustic traveling waves in thermoviscous fluids under

the Rubin-Rosenau-Gottlieb theory of dispersive media. Wave Motion, 2014, 51(2), 382–388.
[157] Jordan, P.M., Feuillade, C. On the propagation of transient of acoustic waves in isothermal bubbly liquids. Physics Letters A,

2006, 350(12), 56–62.
[158] Murillo-Arcila, M., Peris, A. Strong mixing measures for C0-semigroups. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math.

RACSAM, 2015, 109(1), 101–115.
[159] Conejero, J.A., Martínez-Giménez, F., Peris, A. Sets of periods for chaotic linear operators. Preprint.
[160] Muñoz-Fernández, G.A., Seoane-Sepúlveda, J.B., Weber, A. The set of periods of chaotic operators and semigroups. Rev. R.

Acad. Cienc. Exactas ís. Nat. Ser. A Math. RACSAM, 2011, 105(2), 397–402.
[161] Muñoz-Fernández, G.A., Seoane-Sepúlveda, J.B., Weber, A. Periods of strongly continuous semigroups. Bull. Lond. Math. Soc.,

2012, 44(3), 480–488.
[162] Kalisch, G.K. On operators on separable Banach spaces with arbitrary prescribed point spectrum. Proc. Amer. Math. Soc.,

1972, 34, 207–208.
[163] Bayart, F., Grivaux, S. Hypercyclicity and unimodular point spectrum. J. Funct. Anal., 2005, 226(2), 281–300.
[164] Bayart, F., Bermúdez, T. Semigroups of chaotic operators. Bull. Lond. Math. Soc., 2009, 41(5), 823–830.
[165] Murillo-Arcila, M., Peris, A. Chaotic behaviour on invariant sets of linear operators. Integral Equations Operator Theory, 2015,

81(4), 483–497.


	Linear dynamics of semigroups generated by differential operators
	1 Preliminaries on the dynamics of semigroups
	1.1 Transitivity and hypercyclicity
	1.2 Devaney chaos
	1.3 Mixing & weakly mixing properties
	1.4 Frequent hypercyclicity
	1.5 Li-Yorke chaos
	1.6 Distributional chaos
	1.7 The specification property

	2 A review of dynamical criteria
	2.1 The role of the infinitesimal generator

	3 Dynamics of the translation semigroup and applications
	3.1 The translation semigroup of Lp_, 1p<
	3.2 The water hammer equations
	3.3 The quasi-linear Lasota equation
	3.4 The conjugation lemma

	4 Chaos on cell growth models
	4.1 Cell structured models
	4.2 Birth-and-death models

	5 Dynamics of semigroups on Herzog spaces
	5.1 Solution semigroups associated to second order PDEs
	5.2 Semigroups associated to PDEs of order greater than or equal to 2
	5.2.1 Moore-Gibson-Thompson equation
	5.2.2 Lighthill-Whitham-Richards equation
	5.2.3 van Wijgaarden-Eringen


	6 Some open problems


