
© 2017 Xu and Liu, published by De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Open Math. 2017; 15: 724–733

Open Mathematics Open Access

Research Article

Hong Yan Xu and San Yang Liu*

The uniqueness of meromorphic functions
in k-punctured complex plane
DOI 10.1515/math-2017-0063

Received November 3, 2016; accepted February 28, 2016.

Abstract: The main purpose of this paper is to investigate the uniqueness of meromorphic functions that share
two finite sets in the k-punctured complex plane. It is proved that there exist two sets S1; S2 with ]S1 D 2 and
]S2 D 5, such that any two admissible meromorphic functions f and g in � must be identical if E�.Sj ; f / D
E�.Sj ; g/.j D 1; 2/.
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1 Introduction

We assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna value
distribution theory of meromorphic functions such as m.r; f /, N.r; f /, T .r; f /, the first and second main theorem,
lemma on the logarithmic derivatives etc. of Nevalinna theory, (see Hayman [9], Yang [18] and Yi and Yang [19]).

In 1926, R.Nevanlinna [15] proved the following well-known theorems.

Theorem 1.1 (see [15]). If f and g are two non-constant meromorphic functions that share five distinct values
a1; a2; a3; a4; a5 IM in X D C, then f .z/ � g.z/.

Due to this theorem, the uniqueness of meromorphic functions with shared values in the whole complex plane
attracted many researchers (see [19]). In 1999, Fang [5] investigated the uniqueness of admissible functions in the
unit disc that shared some finite sets. In [20, 21], Zheng studied the uniqueness problem under the condition that five
values are shared in some angular domain in C.

In fact, the whole complex plane, unit disc and angular domain can be regarded as simply connected regions.
Thus, it is very interesting to consider the uniqueness of meromorphic functions on doubly and multiply connected
regions. For the double connected region, Khrystiyanyn and Kondratyuk [10, 11] proposed the Nevanlinna theory
for meromorphic functions on annuli (see also [12]) in 2005. In 2010, Fernández [6] further investigated the value
distribution of meromorphic functions on annuli. In 2009 and 2011, Cao [2, 3] investigated the uniqueness of
meromorphic functions on annuli sharing some values and some sets, and obtained an analog of Nevanlinna’s famous
five-value theorem. In 2012, Cao and Deng [1], Xu and Xuan [16] studied the uniqueness of meromorphic functions
sharing some finite sets and four values on the annulus, respectively.
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However, there is no paper on uniqueness of meromorphic functions in a multiply connected region. The main
purpose of this article is to investigate the uniqueness of meromorphic functions in a special multiply connected
region—m-punctured complex plane.

The structure of this paper is as follows. In Section 2, we introduce the basic notations and fundamental theorems
of meromorphic functionsm-punctured complex plane. Section 3 is devoted to study the uniqueness of meromorphic
functions that share some finite sets in m-punctured complex planes.

2 Nevanlinna theory in m-punctured complex planes

Given a set of distinct points cj 2 C, j 2 f1; 2; : : : ; kg; k 2 NC, we call that � D C n
Sk
jD1fcj g is a k-punctured

complex plane. The annulus is regarded as a special k-punctured plane if k D 1 see [10, 11]. The main purpose of
this article is to study meromorphic functions of those k-punctured planes for which k � 2.

Denote d D 1
2

minfjcs � cj j W j ¤ sg and r0 D 1
d
C maxfjcj j W j 2 f1; 2; : : : ; kgg. Then 1

r0
< d ,

D1=r0.cj /
T
D1=r0.cs/ D ; for j ¤ s and D1=r0.cj / � Dr0.0/ for j 2 f1; 2; : : : ; kg, where Dı.c/ D fz W

jz � cj < ıg and Dı.c/ D fz W jz � cj � ıg. For an arbitrary r � r0, we define

�r D Dr .0/ n

m[
jD1

D1=r .cj /:

Thus, it follows that �r � �r0 for r0 < r � C1. It is easy to see that �r is k C 1 connected region.
In 2007, Hanyak and Kondratyuk [8] gave some extension of the Nevanlinna value distribution theory for

meromorphic functions in k-punctured complex planes and proved a series of theorems which is an analog of the
result on the whole plane C.

Let f be a meromorphic function in a k-punctured plane �, we use n0.r; f / to denote the counting function of
its poles in �r , r0 � r < C1 and

N0.r; f / D

rZ
r0

n0.t; f /

t
dt;

and we also define

m0.r; f / D
1

2�

2�Z
0

logC
ˇ̌̌
f .rei� /

ˇ̌̌
d� C

1

2�

mX
jD1

2�Z
0

logC
ˇ̌̌̌
f .cj C

1

r
ei� /

ˇ̌̌̌
d��

�
1

2�

2�Z
0

logC
ˇ̌̌
f .r0e

i� /
ˇ̌̌
d� �

1

2�

mX
jD1

2�Z
0

logC
ˇ̌̌̌
f .cj C

1

r0
ei� /

ˇ̌̌̌
d�;

where logC x D maxflog x; 0g and r0 � r < C1, then

T0.r; f / D m0.r; f /CN0.r; f /

is called as the Nevanlinna characteristic of f .

Theorem 2.1 (see [8, Theorem 3]). Let f; f1; f2 be meromorphic functions in a k-punctured plane �. Then
(i) the function T0.r; f / is non-negative, continuous, non-decreasing and convex with respect to log r on

Œr0;C1/, T0.r0; f / D 0;
(ii) if f identically equals a constant, then T0.r; f / vanishes identically;
(iii) if f is not identically equal to zero, then T0.r; f / D T0.r; 1=f /; r0 � r < C1;
(iv) T0.r; f1f2/ � T0.r; f1/ C T0.r; f2/ C O.1/ and T0.r; f1 C f2/ � T0.r; f1/ C T0.r; f2/ C O.1/, for

r0 � r < C1.
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Theorem 2.2 (see [8, Theorem 4]). Let f be a non-constant meromorphic function in a k-punctured plane�. Then

T0.r;
1

f � a
/ D T0.r; f /CO.1/;

for any fixed a 2 C and all r , r0 � r < C1.

Theorem 2.3 (see [8, Theorem 6], The second fundamental theorem in k-punctured planes). Let f be a non-
constant meromorphic function in a k-punctured plane �, and let a1; a2; : : : ; aq be distinct complex numbers.
Then

m0.r; f /C

qX
�D1

m0.r;
1

f � a�
/ � 2T0.r; f / � bN 0.r; f /C S.r; f /; r0 � r < C1;

where bN 0.r; f / D N0.r; 1f 0 /C 2N0.r; f / �N0.r; 1f 0 / and

S.r; f / D O.logT0.r; f //CO.logC r/; r !C1;

outside a set of finite measure.

Remark 2.4. For non-constant meromorphic function f in a k-punctured plane �, and any a 2 C, we useen0.r; 1
f�a

/ to denote the counting function of zeros of f � a with the multiplicities reduced by 1, then n0.r; 1f 0 / DP
a2Cen0.r; 1

f�a
/ for r0 � r < C1, and

bn0.r; f / WDen0.r; f /CX
a2C

en0.r; 1

f � a
/ D n0.r;

1

f 0
/C 2n0.r; f / � n0.r;

1

f 0
/;

and bN 0.r; f / D N0.r; 1f 0 /C 2N0.r; f /�N0.r; 1f 0 /, where bN 0.r; f / D R r1 bn0.t;f /t
dt , r � 1, holds for r0 � r <

C1.

The following theorem is the other interesting form of the second fundamental theorem in k-punctured planes, and
plays an important role in this paper.

Theorem 2.5 ([17, Theorem 2.5]). Let f be a non-constant meromorphic function in an m-punctured plane �, and
let a1; a2; : : : ; aq.q � 3/ be distinct complex numbers in the extended complex plane bC WD C [ f1g. Then for
r0 � r < C1;

.i/ .q � 2/T0.r; f / �

qX
�D1

N0

�
r;

1

f � a�

�
�N0.r;

1

f 0
/C S.r; f /;

.i i/ .q � 2/T0.r; f / �

qX
�D1

eN 0 �r; 1

f � a�

�
C S.r; f /;

where eN 0.r; 1
f�a�

/ D
R r
1

en0.t; 1
f�a�

/

t
dt , r � 1 and S.r; f / is stated as in Theorem 2.3.

Proof. To facilitate the reading and save the readers’ time, we show the proof of this theorem as follows. If z0 is a
pole of f in k-punctured plane �r with multiply s, thenen0.r; f / counts s � 1 times at z0, and if z0 is a zero of
f � a in �r with multiply s, thenen0.r; f / also counts s � 1 times at z0. Then we have

qX
�D1

N0.r;
1

f � a�
/ � bN 0.r; f / � qX

�D1

eN 0.r; 1

f � a�
/; r0 � r < C1: (1)

By Theorem 2.2, for any a 2 bC and r0 � r < C1, we have

m0.r;
1

f � a
/ D T0.r; f / �N0.r;

1

f � a
/CO.1/; (2)

wherem0.r; 1
f�a

/ D m0.r; f / and N0.r; 1
f�a

/ D N0.r; f / as a D1. From (1),(2) and Theorem 2.3, we can get
Theorem 2.5 (ii). Noting that 2N0.r; f /�N0.r; 1f 0 / � 0, from (2) and Theorem 2.3, we can easily get Theorem (i).

Thus, this completes the proof of Theorem 2.5.
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3 The uniqueness for meromorphic functions in k-punctured
planes

In this section, the uniqueness of meromorphic functions in k punctured planes that shared some values and sets will
be investigated. So, we firstly introduced some basic notations of uniqueness of meromorphic functions as follows.

Let S be a set of distinct elements in bC and � � C. Define

E�.S; f / D
[
a2S

fz 2 �jfa.z/ D 0; counting multiplici t iesg;

E�.S; f / D
[
a2S

fz 2 �jfa.z/ D 0; ignoring multiplici t iesg;

where fa.z/ D f .z/ � a if a 2 C and f1.z/ D 1=f .z/.
For two non-constant meromorphic functions f and g in C, we say that f and g share the set S CM (counting

the multiplicities) in � if E�.S; f / D E�.S; g/; we say that f and g share the set S IM (ignoring the
multiplicities) in � if E�.S; f / D E�.S; g/. In particular, when S D fag, where a 2 bC, we say that f and
g share the value a CM in � if E�.S; f / D E�.S; g/, and we say that f and g share the value a IM in � if
E�.S; f / D E�.S; g/.

Definition 3.1. Let f be a nonconstant meromorphic function in k-punctured plane �. The function f is called
admissible in k-punctured plane � provided that

lim sup
r!C1

T0.r; f /

log r
D C1; r0 � r < C1:

Similar to the proof of Five-Values theorems [15, 19] of Nevanlinna theory, we can easily get the following theorem
by Theorem 2.5.

Theorem 3.2. Let f and g be two admissible meromorphic functions in �, if f; g share five distinct values
a1; a2; a3; a4; a5 IM in �, then f .z/ � g.z/.

Remark 3.3. A question is: does the conclusion of Theorem 2.5 still hold if aj .j D 1; : : : ; 5/ are replaced by small
functions aj .z/.j D 1; : : : ; 5/, where a.z/ is called a small function of f if T0.r; a.z// D o.T0.r; f // as r !C1.

Now, we will show the main theorem of this article as follows.

Theorem 3.4. Let f and g be two admissible meromorphic functions in �, and let S1 D f0; 1g, S2 D fw W
.n�1/.n�2/

2
wn�n.n�2/wn�1Cn.n�1/

2
wn�2C1 D 0g. IfE�.Si ; f / D E�.Si ; g/ and n � 5, then f .z/ � g.z/.

Corollary 3.5. There exist two sets S1; S2 with ]S1 D 2 and ]S2 D 5, such that any two admissible meromorphic
functions f and g must be identical if E�.Sj ; f / D E�.Sj ; g/.j D 1; 2/, where ]S is to denote the cardinality of
a set S .

To prove this theorem, we require some lemmas as follows.

Lemma 3.6 ([17, Lemma 3.1]). Let f; g be two non-constant meromorphic functions in m-punctured plane �, and
let z0 be a common pole of f; g in � with multiply 1, then z0 is a zero of f

00

f 0
�
g00

g0
in � with multiply k � 1.

Lemma 3.7 (see [7, Page 192]). Let

Q.w/ D .n � 1/2.wn � 1/.wn�2 � 1/ � n.n � 2/.wn�1 � 1/2;

then
Q.w/ D .w � 1/4.w � ˇ1/.w � ˇ2/ � � � .w � ˇ2n�6/;
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where ǰ 2 Cnf0; 1g.j D 1; 2; : : : ; 2n � 6/, which are distinct respectively.

By a similar discussion as in [14], we can obtain a stand and Valiron-Mohonzko type theorem in � as follows.

Lemma 3.8. Let f be a nonconstant meromorphic function in m-punctured plane �, and let

R.f / D

nX
kD0

akf
k=

mX
jD0

bjf
j

be an irreducible rational function in f with coefficients fakg and fbj g, where an ¤ 0 and bm ¤ 0. Then

T .r; R.f // D dT .r; f /C S.r; f /;

where d D maxfn;mg.

Proof of Theorem 3.4. Here, we only give the proof of Theorem 3.2 as n D 5, because the case n � 6 is similar to
the case n D 5.

Set F D 6f 5�15f 4C10f 3C1 and G D 6g5�15g4C10g3C1. Since E�.Sj ; f / D E�.Sj ; g/, then we
have F;G to share 0, 1 CM in � and F 0 D 30f 2.f � 1/2f 0; G0 D 30g2.g � 1/2g0. From Lemma 3.3, we have
T0.r; F / D 5T0.r; f /C S.r; f /; T0.r; G/ D 5T0.r; g/C S.r; g/ and S.r; F / D S.r; f /; S.r; G/ D S.r; g/.

We consider the following two cases.
Case 1: Suppose that there exists a constant �.> 1

2
/ and a set I � Œr0;C1/.mesI D C1/ such that

N0.r;
1

f
/CN0.r;

1

f � 1
/ � �.T0.r; f /C T0.r; g//C S.r; f /C S.r; g/; .r !C1; r 2 I /: (3)

Setting U D F 0

F
�
G0

G
, from [8, Lemma 6] we have m0.r; U / D S.r; F /C S.r;G/ D S.r; f /C S.r; g/. It is easy

to see that the pole of U may occur at the poles of F;G or the zeros of F;G. However, if z0 is a common zero
of F;G, by simple calculating we get that U is analytic at z0. Since F;G share 0 CM in �, then it follows that
N0.r; U / � eN 0.r; f /CeN 0.r; g/. Hence, T0.r; U / � eN 0.r; f /CeN 0.r; g/CS.r; f /CS.r; g/. On the other hand,
if U 6� 0, the zeros of U may occur at the zeros of F 0; G0, and since E�.S1; f / D E�.S1; g/, we have

2N0.r;
1

f
/C 2N0.r;

1

f � 1
/ � N0.r;

1

U
/: (4)

From (3) and (4), it follows that

2�.T0.r; f /C T0.r; g//C S.r; f /C S.r; g/ � N0.r;
1

U
/ � T0.r; U /CO.1/ (5)

� T0.r; f /C T0.r; g/C S.r; f /C S.r; g/; r !C1; r 2 I:

Since � > 1
2

and f; g are admissible functions in�, we can get a contradiction. Thus, it follows that U � 0, and by
integration we have

G D KF; (6)

where K is a non-zero constant. From Lemma 3.3, we have

T0.r; f / D T0.r; g/C S.r; g/: (7)

The following four subcases will be considered.
Subcase 1.1. Suppose that there exists z0 2 � such that f .z0/ D 0 and g.z0/ D 0. From (6), we have K D 1,

that is,
6f 5 � 15f 4 C 10f 3 C 1 D 6g5 � 15g4 C 10g3 C 1: (8)

Let ˛1; ˛2 be two distinct roots of equation w2 � 5
2
w C 5

3
D 0, obviously, ˛1; ˛2 ¤ 0; 1. Then, it follows from (7)

that
f 3.f � ˛1/.f � ˛2/ D g

3.g � ˛1/.g � ˛2/:
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From the above equation and E�.S1; f / D E�.S1; g/, we have f; g to share 0,1,1 CM in �. Thus, let h D f
g

,
then h is analytic in �. From (8), we have

6.h5 � 1/g2 � 15.h4 � 1/g3 C 10.h3 � 1/g3 � 0; (9)

it follows that
Œ4.h5 � 1/g � 5.h4 � 1/�2 D �

5

3
Q.h/; (10)

where Q.h/ is stated as in Lemma 3.2 and

Q.h/ D .h � 1/4.h � ˇ1/.h � ˇ2/ � � � .h � ˇ4/;

where ǰ 2 Cnf0; 1g.j D 1; 2; 3; 4/, which are distinct respectively. From (10) we know that every zero of h �

ǰ .j D 1; 2; 3; 4/ is of order at least 2. By Theorem 2.5 we have n � 4, which is a contradiction. Hence h is a
constant. Then from (9) we can get that h D 1 i.e., f � g.

Subcase 1.2. Suppose that there exists z0 2 � such that f .z0/ D 0 and g.z0/ D 1. Then from (6) we have
K D 2, that is,

2.6f 5 � 15f 4 C 10f 3 C 1/ D 6g5 � 15g4 C 10g3 C 1: (11)

It follows that 1 is a Picard exceptional value of f and 0 is a Picard exceptional value of g. Since E�.S1; f / D
E�.S1; g/, it follows that 0,1 are all Picard exceptional values of f; g, which contradicts with (1).

Subcase 1.3. Suppose that there exists z0 2 � such that f .z0/ D 1 and g.z0/ D 0. From (6), we have K D 1
2

.
Similarly to the argument in Subcase 1.2, we can get a contradiction.

Subcase 1.4. Suppose that there exists z0 2 � such that f .z0/ D 1 and g.z0/ D 1. From (6), we have K D 1.
Similarly to the argument in Subcase 1.1, we can get that f � g.

Case 2. Suppose that there exist a constant �.1
2
� � < 3

4
/ and a set I � Œr0;C1/ .mesI D C1/ such that

N0.r;
1

f
/CN0.r;

1

f � 1
/ � �.T0.r; f /C T0.r; g//C S.r; f /C S.r; g/; (12)

as r !C1; r 2 I . Set

H D
. 1
F
/00

. 1
F
/0
�
. 1
G
/00

. 1
G
/0
D .

F 00

F 0
�
2F 0

F
/ � .

G00

G0
�
2G0

G
/: (13)

From [8, Lemma 6] we have m0.r;H/ D S.r; F /C S.r;G/ D S.r; f /C S.r; g/.
Suppose that H 6� 0, since F;G share 0 CM in �, we know that the pole of H may occur at the simple zeros

of F 0; G0 which are not the zeros of F;G in �, and the poles of F;G. Since the simple zeros of F 0 are only the
simple zeros of f 0 and the simple zeros of G0 are only the simple zeros of g0, then we have

N0.r;H/ � eN�0.r; 1f 0 /C eN�0.r; 1g0 /C eN 0.r; f /C eN.r; g/; (14)

where eN�
0
.r; 1

f 0
/ is the reduced counting function of those zeros of f 0 in� which are not the zeros of f .f �1/ andeN�

0
.r; 1

g0
/ is similarly defined. From Lemma 3.1, we haveN 1/

0
.r; 1

F
/ � N0.r;

1
H
/ whereN 1/

0
.r; 1

F
/ is the counting

function of those zeros of F with multiply 1. Then for r0 � r < C1; we have

N0.r;
1

F
/ D N

1/

0
.r;

1

F
/CN

Œ2

0
.r;

1

F
/ � N0.r;

1

H
/CN

Œ2

0
.r;

1

F
/

� T0.r;H/CN
Œ2

0
.r;

1

F
/CO.1/ � N0.r;H/CN

Œ2

0
.r;

1

F
/C S.r; f /

� N 00 .r;
1

f 0
/CN 00 .r;

1

g0
/C eN 0.r; f /C eN.r; g/C S.r; f /C S.r; g/; (15)

where N Œ2
0
.r; 1

F
/ is the counting function of those zeros of F with multiply � 2, N 0

0
.r; 1

f 0
/ is the counting function

of those zeros of f 0 in � which are not the zeros of f .f � 1/ and N 0
0
.r; 1

g0
/ is similarly defined.

Similarly, we have

N0.r;
1

G
/ � N 00 .r;

1

f 0
/CN 00 .r;

1

g0
/C eN 0.r; f /C eN.r; g/C S.r; f /C S.r; g/; (16)
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as r0 � r < C1: Let V D f 0

f
C

f 0

f�1
, from [8, Lemma 6] we have m0.r; V / D S.r; f / as r ! C1 and

N0.r; V / � eN 0.r; 1f / C eN 0.r; 1
f�1

/ C eN 0.r; f /. Noting the zeros of V , we have N0.r; 1

f� 12
/ C N 0

0
.r; 1

f 0
/ �

N0.r;
1
V
/. Thus, it follows that

N0.r;
1

f � 1
2

/CN 00 .r;
1

f 0
/ � N0.r;

1

V
/ � T0.r;

1

V
/ � T0.r; V /CO.1/

� N0.r; V /C S.r; f /

� eN 0.r; 1
f
/C eN 0.r; 1

f � 1
/C eN 0.r; f /C S.r; f /: (17)

Similarly, we have

N0.r;
1

g � 1
2

/CN 00 .r;
1

g0
/ � eN 0.r; 1

g
/C eN 0.r; 1

g � 1
/C eN 0.r; g/C S.r; g/: (18)

Noting that P.w/ D 6w5 � 15w4 C 10w3 C 1 D 0 have five roots, then by using Theorem 2.5 and from (15) and
(17), we have

6T0.r; f / � N0.r;
1

F
/CN0.r;

1

f
/CN0.r;

1

f � 1
/CN0.r;

1

f � 1
2

/ �N0.r;
1

f 0
/C S.r; f /

� 2eN 0.r; f /C eN 0.r; g/C 2.N0.r; 1
f
/CN0.r;

1

f � 1
//CN 00 .r;

1

g0
/ �N0.r;

1

f 0
/C S.r; f /C S.r; g/:

Similarly, we have

6T0.r; g/ � 2eN 0.r; g/C eN 0.r; f /C 2.N0.r; 1
g
/CN0.r;

1

g � 1
//CN 00 .r;

1

f 0
/ �N0.r;

1

g0
/C S.r; f /C S.r; g/:

Noting that N 0
0
.r; 1

f 0
/ � N0.r;

1
f 0
/ � 0, N 0

0
.r; 1

g0
/ � N0.r;

1
g0
/ � 0, and f; g share 0,1 CM in �, then it follows

from (12) that

6ŒT0.r; f /C T0.r; g/� �3.eN 0.r; f /C eN 0.r; g//C 4.N0.r; 1
f
/CN0.r;

1

f � 1
//C S.r; f /C S.r; g/

�.3C 4�/ŒT0.r; f /C T0.r; g/�C S.r; f /C S.r; g/; r 2 I; r !C1;

which is a contradiction with � < 3
4

and f; g are admissible functions in �. Thus, H � 0, i.e.,

F 00

F 0
�
2F 0

F
�
G00

G0
�
2G0

G
: (19)

By integration, we have from (19) that 1
F
D

A
G
C B where A;B are constants which are not equal to zero at the

same time. Thus, it follows that

F � 1 D
.1 � B/.G � 1/C 1 � A � B

B.G � 1/C AC B
: (20)

and T0.r; f /C S.r; f / D T0.r; g/C S.r; g/ by Lemma 3.3.
We consider two subcases as follows.
Subcase 2.1. Suppose that B D 0. Thus G D AF and A ¤ 0.
If A D 1, that is, F � G. Similarly to Subcase 1.1, we get f � g.
If A D 1

2
, that is, 1

2
F D G. Similarly to Subcase 1.3, we get a contradiction.

If A ¤ 1 and A ¤ 1
2

. Since AF D G, we have

A.6f 5 � 15f 4 C 10f 3/C A � 1 D 6g3.g � ˛1/.g � ˛2/: (21)

Let 
1; 
2; : : : ; 
5 be five distinct roots of equation Aw5 � 15Aw4 C 10Aw3 C A � 1 D 0, then from (21) and
Theorem 2.5, we have

5T0.r; f / �

5X
vD1

eN 0.r; 1

f � 
v
/CN0.r;

1

f
/C eN 0.r; 1

f � 1
/C S.r; f /
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� eN 0.r; 1
g
/C eN 0.r; 1

g � ˛1
/C eN 0.r; 1

g � ˛2
/C

CN0.r;
1

f
/C eN 0.r; 1

f � 1
/C S.r; f /

� .3C 2�/T0.r; f /C S.r; f /; r 2 I; r !C1;

which is a contradiction with � < 3
4

and f is an admissible function in �.
Subcase 2.2. Suppose that B ¤ 0.
If B D 1, then 1

F
�
A
G
C 1, that is, .F � 1/.G C A/ � �A. Thus, it follows that

6f 3.f � ˛1/.f � ˛2/.6g
5
� 15g4 C 10g3 C AC 1/ � �A: (22)

Note that the zeros of f � ˛1 or f � ˛2 in � must be the poles of g in � with multiply � 5, then by Theorem 2.2,
Theorem 2.5 and (12) we have

2T0.r; f / � eN 0.r; 1
f
/C eN 0.r; 1

f � 1
/C eN 0.r; 1

f � ˛1
/C eN 0.r; 1

f � ˛2
/C S.r; f /

� .2� C
2

5
/T0.r; f /C S.r; f /; r 2 I; r !C1;

which implies a contradiction with � < 3
4

and f is an admissible function in �.
If B D 1

2
, then

F � 1 D
G � 2A

G C 2A
D
.G � 1/C 1 � 2A

.G � 1/C 1C 2A
: (23)

Note that 1 is a multiply zero of F 0 in �, and 1 is also a zero of F � 2 in �, then 1 is a zero of F � 2 with multiply
� 3, that is, F � 2 D 6.f � 1/3.f � ˛0

1
/.f � ˛0

2
/. From (23), we have

eN 0.r; g/ D eN 0.r; G � 1/ D eN 0.r; 1

F � 2
/ (24)

D eN 0.r; 1

f � 1
/C eN 0.r; 1

f � ˛0
1

/C eN 0.r; 1

f � ˛0
2

/; r0 � r < C1:

By Theorem 2.5 we have

2T0.r; f / � eN 0.r; 1
f
/C eN 0.r; 1

f � 1
/C eN 0.r; 1

f � ˛0
1

/C eN 0.r; 1

f � ˛0
2

/C S.r; f /

� eN 0.r; 1
f
/C eN 0.r; g/C S.r; f /; r0 � r < C1:

Since T0.r; f / D T0.r; g/ C S.r; g/ and f; g are admissible functions in �, it follows that 0 is not a Picard
exceptional value of f in �. Thus, there exists z0 2 � such that f .z0/ D 0. Since E�.S1; f / D E�.S1; g/,
we have g.z0/ D 0, it follows that A D 1

2
, that is, F � 1 D G�1

G
. Thus

.6f 5 � 15f 4 C 10f 3/.6g5 � 15g4 C 10g3 C 1/ D 6g3.g � ˛1/.g � ˛2/: (25)

If 
1; 
2; : : : ; 
5 are five distinct roots of equation 6w5 � 15w4 C 10w3 C 1 D 0, from (25), we can see that the
zeros of g � 
j .j D 1; : : : 5/ in � must be the poles of f in �. Thus by applying Theorem 2.5 for g, we have

3T0.r; g/ �

5X
jD1

eN 0.r; 1

g � 
j
/C S.r; g/ � eN 0.r; f /C S.r; g/; r0 � r < C1:

Since T0.r; f / D T0.r; g/CS.r; g/ and f; g are admissible functions in�, it is easy to get a contradiction from the
above inequality.

If B ¤ 1
2

and B ¤ 1, then 1�B
B
¤ 0; 1;1. Thus, for r0 � r < C1, we have

eN 0.r; 1

F � 1
/ D eN 0.r; 1

f
/C eN 0.r; 1

f � ˛1
/C eN 0.r; 1

f � ˛2
/;



732 H. Xu, S. Liu

eN 0.r; 1

F � 1 � 1
/ D eN 0.r; 1

f � 1
/C eN 0.r; 1

f � ˛0
1

/C eN 0.r; 1

f � ˛0
2

/;

eN 0.r; 1

F � 1 � 1�B
B

/ D eN 0.r; G � 1/ D eN 0.r; g/; eN 0.r; F � 1/ D eN 0.r; f /:
Then by applying Theorem 2.5 and Lemma 3.3 for F � 1, we have

10T0.r; f /C S.r; f / D T0.r; F � 1/ � eN 0.r; 1

F � 1
/C eN 0.r; 1

F � 1 � 1
/C

C eN 0.r; 1

F � 1 � 1�B
B

/C eN 0.r; F � 1/C S.r; F /
� .6C 2�/T0.r; f /C S.r; f /; r !C1; r 2 I;

which is a contradiction with � < 3
4

and f is admissible in �.
Therefore, from Case 1 and Case 2, we complete the proof of Theorem 3.2.
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