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Abstract: The main purpose of this paper is to investigate the uniqueness of meromorphic functions that share
two finite sets in the k-punctured complex plane. It is proved that there exist two sets S, S> with 57 = 2 and
fS> = 5, such that any two admissible meromorphic functions f and g in  must be identical if Eq(S;, f) =

Eq(Sj.8)(J =1.2).
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1 Introduction

We assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna value

distribution theory of meromorphic functions such as m(r, ), N(r, f), T(r, f), the first and second main theorem,

lemma on the logarithmic derivatives etc. of Nevalinna theory, (see Hayman [9], Yang [18] and Yi and Yang [19]).
In 1926, R.Nevanlinna [15] proved the following well-known theorems.

Theorem 1.1 (see [15]). If f and g are two non-constant meromorphic functions that share five distinct values
ai,az,as,aq,as5 IM in X =C, then f(z) = g(2).

Due to this theorem, the uniqueness of meromorphic functions with shared values in the whole complex plane
attracted many researchers (see [19]). In 1999, Fang [5] investigated the uniqueness of admissible functions in the
unit disc that shared some finite sets. In [20, 21], Zheng studied the uniqueness problem under the condition that five
values are shared in some angular domain in C.

In fact, the whole complex plane, unit disc and angular domain can be regarded as simply connected regions.
Thus, it is very interesting to consider the uniqueness of meromorphic functions on doubly and multiply connected
regions. For the double connected region, Khrystiyanyn and Kondratyuk [10, 11] proposed the Nevanlinna theory
for meromorphic functions on annuli (see also [12]) in 2005. In 2010, Fernandez [6] further investigated the value
distribution of meromorphic functions on annuli. In 2009 and 2011, Cao [2, 3] investigated the uniqueness of
meromorphic functions on annuli sharing some values and some sets, and obtained an analog of Nevanlinna’s famous
five-value theorem. In 2012, Cao and Deng [1], Xu and Xuan [16] studied the uniqueness of meromorphic functions
sharing some finite sets and four values on the annulus, respectively.
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However, there is no paper on uniqueness of meromorphic functions in a multiply connected region. The main
purpose of this article is to investigate the uniqueness of meromorphic functions in a special multiply connected
region—m-punctured complex plane.

The structure of this paper is as follows. In Section 2, we introduce the basic notations and fundamental theorems
of meromorphic functions m-punctured complex plane. Section 3 is devoted to study the uniqueness of meromorphic
functions that share some finite sets in m-punctured complex planes.

2 Nevanlinna theory in m-punctured complex planes

Given a set of distinct points ¢; € C, j € {1,2,...,k},k € Ny, wecall that Q = C\ Uf:l {c;} is a k-punctured
complex plane. The annulus is regarded as a special k-punctured plane if k = 1 see [10, 11]. The main purpose of
this article is to study meromorphic functions of those k-punctured planes for which k > 2.

Denote d = %min{|cs —cjl 1 j # stand ro = % + max{|c;| : j € {1,2,....k}}. Then % < d,
Di/ro(c;/)(\D1yrolcs) = @ for j # s and Dy/ro(c;) C Dyy(0) for j € {1,2,...,k}, where Ds(c) = {z :
|z —c| <d8}and Dg(c) = {z : |z —c| < §}. For an arbitrary r > rq, we define

Qp = Dr(o)\ U 5l/r(cj)-
Jj=1

Thus, it follows that Q, D Q,, for ro < r < +o00. Itis easy to see that 2, is k + 1 connected region.

In 2007, Hanyak and Kondratyuk [8] gave some extension of the Nevanlinna value distribution theory for
meromorphic functions in k-punctured complex planes and proved a series of theorems which is an analog of the
result on the whole plane C.

Let f be a meromorphic function in a k-punctured plane €2, we use no(r, f) to denote the counting function of

its poles in Q, ro < r < 400 and
-

Notr. ) = |

ro

nO(t’f)d[
: ,

and we also define
2

2
1 ) 1 & 1.
_ —+ i0 o + 3 - i0 _
molr. /) =5 [ 1og* | fre )\de+-2nd;;![10g ’fua-+re )| a6
0 ='o0

do,

! 2T ! m 2 !
[ 0 [0
—gflog_"’f(roe’ )‘de—hjzlflog"')f(q —I—%e’ )
0 -0

where 10g+ x = max{log x,0} and ro <r < 400, then

To(r, f) = mo(r, f) + No(r, f)

is called as the Nevanlinna characteristic of f.

Theorem 2.1 (see [8, Theorem 3]). Let f, f1, f> be meromorphic functions in a k-punctured plane 2. Then

(i) the function To(r, f) is non-negative, continuous, non-decreasing and convex with respect to logr on
[r0. +00), To(ro. f) = 0;

(ii) if f identically equals a constant, then To(r, f) vanishes identically;

(iii) if f is not identically equal to zero, then To(r, f) = To(r,1/f),ro <r < +o00;

(iv) To(r, f1.f2) < To(r, /1) + To(r, f2) + O(1) and To(r, f1 + f2) < To(r, f1) + To(r, f2) + O(1), for
ro <r < +o0.
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Theorem 2.2 (see [8, Theorem 4]). Let f be a non-constant meromorphic function in a k-punctured plane Q2. Then
1
T()(r, 7) = TO(}’, f) + 0(1)’
f—a

forany fixeda € Cand allr, ro <r < +00.

Theorem 2.3 (see [8, Theorem 6], The second fundamental theorem in k-punctured planes). Let f be a non-
constant meromorphic function in a k-punctured plane 2, and let ay,az,...,aq be distinct complex numbers.

Then
1

—ay

) <2To(r, f) — No(r, f) + S(r, f), 1o <1 < +00,

q
mo(r’f)+ Zmo(rsf

v=1

where No(r, f) = No(r, }—,) + 2No(r, f) — No(r, }*/) and
S(r. f) = O(log To(r, f)) + O(log™ r), r — +o0,

outside a set of finite measure.

Remark 2.4. For non-constant meromorphic function f in a k-punctured plane 2, and any a € C, we use
no(r, flfa) to denote the counting function of zeros of f — a with the multiplicities reduced by 1, then no(r, %) =

Y geco(r, 35) forro < r < +o0, and

Ao(r, f) :==To(r. f) + Q;C'ﬁo(r, T—a l_a) = no(r, %) + 2no(r, f) — no(r. %),

-~

and No(r, ) = No(r, %) +2No(r, ) — No(r, %), where No(r, f) = I8 Mdt, r > 1, holds forrg <r <
+00.

The following theorem is the other interesting form of the second fundamental theorem in k-punctured planes, and
plays an important role in this paper.

Theorem 2.5 ([17, Theorem 2.5]). Let f be a non-constant meromorphic function in an m-punctured plane 2, and
letay,az,...,aq(q > 3) be distinct complex numbers in the extended complex plane C := C U {oo}. Then for
ro <1 < 4009,

q
) =200/ = Y- No (m 7o) = Notri )+ 5. 1)

v=1 f/
L 1

(i) (@-DTo(r )= Y. No (r, — )+S(r,f),
v=1 v

-~ 1
v 1 _rr nO(’s/‘j)
where No(r, f—au) =/ ri—

dt,r = 1 and S(r, ) is stated as in Theorem 2.3.

Proof. To facilitate the reading and save the readers’ time, we show the proof of this theorem as follows. If zg is a
pole of f in k-punctured plane 2, with multiply s, then 7o(r, f) counts s — 1 times at zg, and if zg is a zero of
f — a in Q, with multiply s, then 77 (r, f) also counts s — 1 times at zg. Then we have

1

q q
> Notr——) = Nor. ) = 3 Notr.

), ro <r < +o0. (@))
v=1 f_av v=1 f_av
By Theorem 2.2, for any a € Cand ro <r < 400, we have
1 1
mo(r, ——) = To(r, f) — No(r, ——) + O(1), 2)
f—a f—a

where mq(r, ﬁ) = mo(r, f) and No(r, ﬁ) = No(r, f) asa = oo. From (1),(2) and Theorem 2.3, we can get
Theorem 2.5 (ii). Noting that 2No (r, ) — No(r, %) > 0, from (2) and Theorem 2.3, we can easily get Theorem (i).
Thus, this completes the proof of Theorem 2.5. O
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3 The uniqueness for meromorphic functions in k-punctured
planes

In this section, the uniqueness of meromorphic functions in k& punctured planes that shared some values and sets will
be investigated. So, we firstly introduced some basic notations of uniqueness of meromorphic functions as follows.
Let S be a set of distinct elements in C and 2 C C. Define

Eq(S, f) = U {z € Q|fu(z) =0, counting multiplicities},

acs

Eq(S, f) = U {z€Q|fy(z) =0, ignoring multiplicities},

acs
where f,(z) = f(z) —aifa € Cand foo(z) = 1/f(2).

For two non-constant meromorphic functions f and g in C, we say that f and g share the set S CM (counting
the multiplicities) in Q if Eq(S, f) = Eq(S,g); we say that f and g share the set S /M (ignoring the
multiplicities) in Q if Eq(S, f) = Eq(S, g). In particular, when S = {a}, where a € C, we say that f and
g share the value a CM in Q if Eq(S, f) = Eq(S, g), and we say that f and g share the value a IM in Q if
Eqo(S, f) = Ea(S.g).

Definition 3.1. Let f be a nonconstant meromorphic function in k-punctured plane Q2. The function f is called
admissible in k-punctured plane Q provided that

. To(r, f)
im sup ——~~

=400, 1ro=<r <-+oo.
r—o+oo logr

Similar to the proof of Five-Values theorems [15, 19] of Nevanlinna theory, we can easily get the following theorem
by Theorem 2.5.

Theorem 3.2. Let f and g be two admissible meromorphic functions in Q, if f,g share five distinct values
ai,az,as,aq,as IM in Q, then f(z) = g(z).

Remark 3.3. A question is: does the conclusion of Theorem 2.5 still hold if a; (j = 1,...,5) are replaced by small
functionsaj(z)(j =1,...,5), where a(z) is called a small function of f if To(r,a(z)) = o(To(r, f)) asr — +o0.

Now, we will show the main theorem of this article as follows.

Theorem 3.4. Let f and g be two admissible meromorphic functions in Q, and let S1 = {0,1}, S» = {w :
O=D0=2) 1 _p(n—2)w" 4 2D =2 4| = 0} If Eq(S;, f) = Eq(S;,g) andn > 5, then f(2) = g(2).

Corollary 3.5. There exist two sets S1, Sz with §S1 = 2 and §S2 = 5, such that any two admissible meromorphic
Sfunctions f and g must be identical if EQ(S;, f) = EQ(S;,g)(j = 1,2), where S is to denote the cardinality of
asetS.

To prove this theorem, we require some lemmas as follows.

Lemma 3.6 ([17, Lemma 3.1]). Let f, g be two non-constant meromorphic functions in m-punctured plane 2, and
let zo be a common pole of f, g in Q with multiply 1, then zq is a zero off—f,/ — gg—/,, in Q with multiply k > 1.

Lemma 3.7 (see [7, Page 192]). Let
Ow)=(n—12W" - D" 2=1)—nn—-2)w" ' =1)>2,

then

Q(w) = (w—D*w = p1)(w = B2)--- (w = an—s),
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where B; € C\{0,1}(j = 1,2,...,2n — 6), which are distinct respectively.
By a similar discussion as in [14], we can obtain a stand and Valiron-Mohonzko type theorem in €2 as follows.

Lemma 3.8. Let f be a nonconstant meromorphic function in m-punctured plane 2, and let
n m .
R(f)=Y axf /> bjf’
k=0 Jj=0

be an irreducible rational function in f with coefficients {ay } and {b;}, where a,, # 0 and by, # 0. Then

T(r.R(f) =dT(r. f)+ S f).

where d = max{n, m}.

Proof of Theorem 3.4. Here, we only give the proof of Theorem 3.2 as n = 5, because the case n > 6 is similar to
the case n = 5.

Set F =6f>—15f*+10f3+1and G = 6g° —15g* + 10g> + 1. Since Eq(S;, f) = Eq(S;, g), then we
have F, G to share 0, 1 CM in Q and F’ = 30f2(f — 1)2f’,G’ = 30g%(g — 1)®g’. From Lemma 3.3, we have
To(r, F) = 5To(r, f) + S(r, ), To(r,G) = 5To(r.g) + S(r.g) and S(r, F) = S(r, /). S(r.G) = S(r, ).

We consider the following two cases.

Case 1: Suppose that there exists a constant A (> %) and a set I C [rg, +00)(mesl = +00) such that

No(r. ) + Notr. =

Setting U = % — % from [8, Lemma 6] we have mo(r,U) = S(r, F) + S(r,G) = S(r, f) + S(r, g). It is easy
to see that the pole of U may occur at the poles of F, G or the zeros of F, G. However, if zg is a common zero

)ZA(TO(r,f)+T0(r,g))+S(r,f)+S(r,g), (r—)—i—oo,rel) (3)

of F, G, by simple calculating we get that U is analytic at zg. Since F, G share 0 CM in 2, then it follows that
No(r,U) < No(r, f) + No(r, g). Hence, To(r,U) < No(r, f)+ No(r, g) + S(r, f) + S(r, g). On the other hand,
if U # 0, the zeros of U may occur at the zeros of F’, G’, and since Eq(S1, f) = Eq(S1, g), we have

1 1 1
2No(r, ?) + 2No(r, ﬁ) < No(r, U) 4)
From (3) and (4), it follows that
1
2AM(To(r, f) + To(r,g)) + S(r, ) + S(r, g) < No(r, U) =To(r,U)+ 0O(1) (5)

<To(r,f)+To(r,g)+ S, f)+ S(r,g), r - +oo,r € 1.

Since p > % and f, g are admissible functions in €2, we can get a contradiction. Thus, it follows that U = 0, and by

integration we have
G = KF, (©)

where K is a non-zero constant. From Lemma 3.3, we have

To(r. f) = To(r.g) + S(r. &) 0

The following four subcases will be considered.
Subcase 1.1. Suppose that there exists zg € €2 such that f(z9) = 0 and g(z9) = 0. From (6), we have K = 1,
that is,
6/>—15f* +10f3 +1=06g" —15g* +10g> + 1. ®)

2

Let a1, @p be two distinct roots of equation w= — %w + % = 0, obviously, a1, @2 # 0, 1. Then, it follows from (7)

that
F3f —a)(f —a2) = g (g —a1)(g — a2).
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From the above equation and Eq(S1, f) = Eq(S1,g), we have f, g to share 0,1,00 CM in Q. Thus, let h = %,

then 4 is analytic in Q. From (8), we have
6(h> —1)g? —15(h* — 1)g> + 10(h> = 1)g3 =0, )

it follows that 5
[4(h° — g —5(h* — D> = —3 Q(h), 10)

where Q(h) is stated as in Lemma 3.2 and

Q(h) = (h = 1)*(h = B1)(h — B2) -+~ (h = Ba),

where B; € C\{0,1}(j = 1,2,3,4), which are distinct respectively. From (10) we know that every zero of h —
Bi(j = 1,2,3,4) is of order at least 2. By Theorem 2.5 we have n < 4, which is a contradiction. Hence % is a
constant. Then from (9) we can getthat 4 = 1l i.e., f = g.
Subcase 1.2. Suppose that there exists zg € Q2 such that f(zg) = 0 and g(z9) = 1. Then from (6) we have
K = 2, that is,
261> —15f* +10f3 + 1) = 6g° — 15g% + 10g> + 1. an

It follows that 1 is a Picard exceptional value of f and O is a Picard exceptional value of g. Since Eq(S1, f) =
Eq(S1, g), it follows that 0,1 are all Picard exceptional values of f, g, which contradicts with (1).

Subcase 1.3. Suppose that there exists zg € 2 such that f(zg) = 1 and g(zo9) = 0. From (6), we have K = %
Similarly to the argument in Subcase 1.2, we can get a contradiction.

Subcase 1.4. Suppose that there exists zg € 2 such that f(zg) = 1 and g(z9) = 1. From (6), we have K = 1.
Similarly to the argument in Subcase 1.1, we can get that f = g.

Case 2. Suppose that there exist a constant K(% <Kk < %) and aset I C [ro, +00) (mesl = 400) such that

No(r. }) + No(r ﬁ) < k(To(r. f) + To(r.8)) + S(r f) + S(r. g). (12)

asr — +oo,r € I. Set
(L)// (L)// F 2F’ G” 2G’
=Gy ) G
Gy Gy FF GG
From [8, Lemma 6] we have mo(r, H) = S(r, F) + S(r,G) = S(r, f) + S(r, 2).
Suppose that H # 0, since F, G share 0 CM in 2, we know that the pole of H may occur at the simple zeros
of F’, G’ which are not the zeros of F,G in 2, and the poles of F, G. Since the simple zeros of F’ are only the

)- 13)

simple zeros of f” and the simple zeros of G’ are only the simple zeros of g’, then we have
1
1

where N o(r, %) is the reduced counting function of those zeros of f” in © which are not the zeros of f(f —1) and

~ ~ 1 ~ ~
No(r, H) < No(r, —) + N (r, ?)-FNO(V, )+ N9, (14)

N o(r, é) is similarly defined. From Lemma 3.1, we have Nol)(r, %) < No(r, %) where N(})(r, %) is the counting
function of those zeros of F with multiply 1. Then for ro < r < +o00, we have

1 D 1 2, 1 1 2, 1
NO(r,F):NO (rvf)_'—NO (raf) ENO(r5ﬁ)+NO (rif)

1 1
< To(r. H) + Ng*(r. ) + 0(1) < No(r. H) + Ng(r. ) + S(r. f)
1
1
where N(gz (r, %) is the counting function of those zeros of F with multiply > 2, N(()) (r, _}—,) is the counting function

of those zeros of f’ in © which are not the zeros of f(f — 1) and N(()) (r, é) is similarly defined.
Similarly, we have

<N 1y 4 MO é) + No(r f) + N(r.g) + SGr. f) + S(r. ). (15)

1

1
No(r. =) < N (r, Z

)+ NS (r, é) + No(r, f) + N(r,g) + S(r, f) + S(r.g). (16)
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asrg <r < +4oo. LetV = fT/ + f—,l’ from [8, Lemma 6] we have mo(r, V) = S(r, f) as r — +oo and
No(r,V) < No(r, %) + No(r, ﬁ) + No(r, f). Noting the zeros of V', we have No(r, f%) + N(())(r, %) <
2

No(r, 7). Thus, it follows that

1 1 1 1
No(r, fi—%) + NJ(r, 7) < No(r, V) < To(r, V) <To(r,V)+ 0()
< No(r.V) + (7. f)
< ot )+ No(r. ) + Nolr. /) + 5./ 1)

Similarly, we have

1 1 ~ 1 ~ ~
No(r, F) + NG (r., ?) = No(r, §) + No(r, )+ No(r.g) + S(r.8). (18)

3 g—1

Noting that P(w) = 6w> — 15w* + 10w3 + 1 = 0 have five roots, then by using Theorem 2.5 and from (15) and
(17), we have

67001 1) = Vot )+ NoCr )+ Nolr )+ Notr, ) = Mot ) + )

~ ~ 1 1 1 1
<2No(r, )+ No(r,g) + 2(No(r, ?) + No(r, ﬁ)) + N(S)(r, ?) — No(r, 7) + S f)+ S(r,g).
Similarly, we have
1
f
Noting that N(())(r, %) — No(r, %) <0, N(?(r, %) — No(r, é) < 0, and f, g share 0,1 CM in €2, then it follows
from (12) that

6o(r,) = 20(r,2) + Nor. £) + 20N ) + Mo, ) + N (1. 5) = Mot 25) + S f) + 5.,

670 1)+ Tolr, ] <3For. 1)+ No(r. ) + 4080t )+ NoCr, ) + 5 )+ 5.

=@+ 40)[To(r, f) + To(r, @) + S, f) + S(r.8), rel, r— +o0,

which is a contradiction with k¥ < % and f, g are admissible functions in Q. Thus, H = 0, i.e.,

F// 2F/ G// 2G/
=T (19)

By integration, we have from (19) that % = % + B where A, B are constants which are not equal to zero at the

same time. Thus, it follows that
_ 1-B)(G—-1)+1—-—A-—B

F=1 B(G—1)+ A+ B 20)
and To(r, f) + S(r, f) = To(r,g) + S(r, g) by Lemma 3.3.

We consider two subcases as follows.
Subcase 2.1. Suppose that B = 0. Thus G = AF and A # 0.
If A = 1,thatis, F = G. Similarly to Subcase 1.1, we get f = g.
IfA= %, that is, lp=¢. Similarly to Subcase 1.3, we get a contradiction.
If A # land A # 4. Since AF = G, we have

A6 =154 +10f3) + A— 1 = 6g°(g — 1) (g — a2). 1)

Let y1, y2,...,y5 be five distinct roots of equation Aw® — 154Aw* + 10Aw3 + A — 1 = 0, then from (21) and
Theorem 2.5, we have

! ) + No(r, l) + No(r, L S(r, f)

5
5To(r. /) < ) No(r, 2 7 r

v=1
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< No(r 2) + No(r ——) + No(r ——)+
g g — o] g— 02
+ Mo, )+ Rolr )+ 50.1)

<@B+2)To(r, )+ S, f), rel, r— +oo,

which is a contradiction with k < % and f is an admissible function in 2.
Subcase 2.2. Suppose that B # 0.
If B =1, then % = % + 1, thatis, (F — 1)(G 4+ A) = —A. Thus, it follows that

6/3(f —a)(f —a2)(6g° —15g% +10g> + A+ 1) = —A. (22)

Note that the zeros of f — a1 or f — ap in Q must be the poles of g in  with multiply > 5, then by Theorem 2.2,
Theorem 2.5 and (12) we have

2To(r. £) < No(r +) + Nor. )+ No(r

1 1
f f=1 S -
§(2K+§)To(r,f)+S(r,f), rel, r— +oo,

)+ Nt L) 4501
2

f

which implies a contradiction with k¥ < % and f is an admissible function in .
If B = 1, then
G-24 (G-1)+1-24

F—1= = . 23
G+24 (G-1)+1+24 23)

Note that 1 is a multiply zero of F’ in 2, and 1 is also a zero of F — 2 in , then 1 is a zero of F — 2 with multiply
> 3, thatis, F —2=6(f — D3(f — ap)(f — af). From (23), we have

No(r,g) = No(r,G — 1) = No(r,

=) 24)

No( L ) + No - ) + No( S ) <r<+
= r, r, r, , ro=<r 0.
0 T 0 7o 0 7~ 0

By Theorem 2.5 we have

1 1 ~
f)+N0(rf )+N0(rf_a,1)+N0(ﬁf

~ 1 ~
ENO(rﬁ?)_'—NO(r’g)—i_S(r’f)’ ro <r < +oo.

2To(r, f) < Nol(r,

L st
~

Since To(r, f) = To(r,g) + S(r,g) and f, g are admissible functions in €2, it follows that O is not a Picard
exceptional value of f in . Thus, there exists zg € 2 such that f(zg) = 0. Since Eq(S1, f) = EQ(S1,9),

we have g(zg) = 0, it follows that A = %, thatis, FF — 1 = _l . Thus
(6/° —15f* +10f7)(6g° — 15g* + 10g° + 1) = 6¢° (¢ — a1)(g — @2). (25)
If y1,v2,...,ys are five distinct roots of equation 6w’ — 15w* + 10w3 4+ 1 = 0, from (25), we can see that the

zeros of g — y; (j = 1,...5) in  must be the poles of f in . Thus by applying Theorem 2.5 for g, we have

5
3To(r, g) < Z No(r, e

1 -
7/.) + S(r.g) < No(r, f) + S(r.g), ro<r < +oo.
i=1 e

Since To(r, f) = To(r,g) + S(r, g) and f, g are admissible functions in €2, it is easy to get a contradiction from the
above inequality.
IfB;ézandBaélthen B £ 0,1, 00. Thus, for ro < r < +00, we have

~ 1 ~ 1
No(" )_NO(V f)+NO(r’m)+N0(r’f—a2)’
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1 ~ 1 ~ 1 ~ 1
No(r, ﬁ) = No(r, ﬁ)"’NO(", m) + No(r, W),
~ 1 ~ ~ ~ ~
No(r,ﬁ) = No(r,G—1) = No(r,g), No(r, F —1) = No(r, f).
— T 7B

Then by applying Theorem 2.5 and Lemma 3.3 for F — 1, we have

10To(r, ) + S(r, f) = To(r, F — 1) < No(r,

)+ No(r, 7 )+

F—-1 —-1-1

+ No(r, + No(r, F=1)+ S(r, F)

—1—5)
1—B
F—1-7F

<(6+2)To(r, f)+ S, f), r > 400, rel,

which is a contradiction with k¥ < % and f is admissible in 2.
Therefore, from Case 1 and Case 2, we complete the proof of Theorem 3.2. O
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