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1 Introduction

All groups considered in this paper are finite. Throughout the following, G always denotes a finite group. The symbol
7(G) denotes the set of the prime divisors of |G|. In 1903, Miller and Moreno [1] gave a complete classification
of finite groups in which all maximal subgroups are abelian. In 1924, Shmidt [2] described finite groups whose
maximal subgroups are all nilpotent. Suzuki [3] and Janko [4] have described finite unsolvable groups whose 2-
maximal subgroups are nilpotent. There are only two such groups: As and the special linear group SL(2,5). In
1968, V. A. Belonogov [5] described finite solvable groups whose 2-maximal subgroups are all nilpotent. In 1979,
De Vivo [6] investigated finite groups whose 2-maximal subgroups are all Sylow tower groups. In 1988, S.R. Li [7]
investigated finite unsolvable groups whose all 2-maximal 3d -subgroups are super solvable.

The aim of this paper is to describe finite groups whose second maximal subgroups are all cyclic. For
convenience, we introduce the definition as follows:

Definition 1.1. A group G is called an S M C -group if every second maximal subgroup of G is cyclic.

All unexplained notations and terminologies are standard and can be found in [8—10].

2 Main results

For the proof of the Main Theorem, we need some known results. Below we give the result of Janko, Miller and
Moreno.

Lemma 2.1 ([4]). Let G be an unsolvable group. If every second maximal subgroup of G is nilpotent, then G is
isomorphic to As or SL(2,5).
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Lemma 2.2 ([1]). Let G be a non-cyclic group all of whose proper subgroups are cyclic. Then one of the following
holds:

(1) G = Z, xZp, pisaprime.

2) G = Qs.

B)G = (a,b:a? =b?" =1,b" ab = a®), where s # 1(mod p), s9 = 1 (mod p), p and q are distinct

primes.
The following Theorem shows that S M C-groups are solvable.
Theorem 2.3. Let G be a non-cyclic SM C-group. Then G is solvable and |7 (G)| < 3.

Proof. Suppose G is an unsolvable S M C-group, then all second maximal subgroups of G are cyclic and hence they
are nilpotent. By Lemma 2.1, we know G = As or SL(2,5). Since each of the groups As and SL(2, 5) possesses
one non-cyclic second maximal subgroup, we have that G is solvable.

Let G be a solvable non-cyclic group having cyclic 2-maximal subgroups. Then every proper subgroup of G is a
cyclic group or a minimal non-cyclic group, and each minimal non-cyclic group is maximal in G. Because minimal
non-cyclic groups satisfy the thesis of Lemma 2.2, we can assume that one maximal subgroup M of G is a minimal
non-cyclic group, and since the index of evert maximal subgroup in a solvable group is a power of a prime, we have
that |7 (G)| < 3. m]

Corollary 2.4. Let G be an SM C -group. If |t(G)| = 4, then G is cyclic.

By Corollary 2.4, we only determine the structure of SM C-groups G with |7(G)| < 3. Firstly, we show the structure
of SM C-groups with |7(G)| = 3.

Lemma 2.5. Let G be a non-cyclic SM C-group with |7 (G)| = 3. Then all Sylow subgroups of G are cyclic.

Proof. Let G be a non-cyclic SM C-group and 7(G) = {p1, p2, p3}, where p, g and r are distinct primes.
By Theorem 2.3, we know that G is solvable and hence G possesses a Sylow system {P7p, P>, P3}, where
P; € Syly,(G). Thus, P; < P;P; < G foralli # j. Since every 2-maximal subgroup of G is cyclic, we
get each P; is cyclic fori =1,2,3. |

A famous result of Burnside, Holder and Zassenhaus is recalled below.

Lemma 2.6. Foranoddm > 1 and an arbitraryn > 1 such thatr™ = 1modm, 1 <r < mand gcd(n(r—1),m) =
1, the group
M@m-n) = {a,bla™ =b" =1,b"'ab =a")

is meta-cyclic and all its Sylow subgroups are cyclic. Conversely, each group with such a property has a presentation
of the form of M (m - n).

Suppose that G is a non-cyclic SM C-group with |7(G)| = 3, then G is a meta-cyclic group by Lemma 2.6.
Furthermore, the following results hold.

Theorem 2.7. Let G be a non-cyclic group with |n(G)| = 3. If G is an SM C-group, then one of the following
statements holds.

(1) G = (a,b,c), where a?” = b9 = ¢ =[b,c] = 1,a? = a%,a¢ = a’, s # 1(modg), s” = 1 (modgq),
t # 1(modr), t? =1 (modr), p, g and r are distinct primes.

(2)G =H xZ,, where H = (a,b:a?”" =b? =1,a 'ba =b*, s # 1(modg), s” = 1 (modq) ), p, g and r
are distinct primes.

(3) G = (a,b,c), where a? = b9" = ¢" = [a,b] = [a.c] = 1,a° = a®, s # 1(modr), s9 = 1 (modr), p, g
and r are distinct primes.
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(4) G = (a.,b,c), where a?" = b9 =¢" =[a,b] = [b,c] =1,a° =a*,s # I(modg), s” = 1 (modq), p, q
and r are distinct primes.

(5) G = {a,b,c), where a?” = b? = ¢" = [a,b] = 1, a¢ = a*,b¢ = b' , s # 1(modq), s” = 1 (modq),
t # 1(modr), t9 =1 (modr) p, q and r are distinct primes.

Proof. Suppose that G is a non-cyclic SM C-group and 7(G) = {p,q,r}(p < q < r). As G is solvable, we know
that G possesses a Sylow system { P, Q, R}. Assume that P = {(a), Q = (b) and R = (c).

Firstly, suppose [P, Q] # 1, then P Q is non-cyclic and hence P Q is a maximal subgroup of G and §(PQ) = 1.
By Lemma 2.2, we get that PQ = (a,b : a?” = b9 = 1,b% = b*). Suppose that [P, R] # 1. As in the above
argument, then PR = (a,c : a?” = ¢" = 1,¢% = ¢'). By Lemma 2.6, we get [0, R] = 1 and hence the
conclusion (1) holds.

Assume [P, R] = 1. Then PR is a cyclic group. We claim that [Q, R] = 1. Suppose that [Q, R] # 1, we get
one of Q and PR is normal in G by Lemma 2.6. If PR is normal in G, then P is normal in G, which is contrary to
[P, Q] # 1. Thus, Q is normal in G. In another, R is normal in G. Hence we have QR = Q x R, thatis, [Q, R] = 1.
The conclusion (2) holds.

Secondly, suppose [P, Q] = 1.If [P, R] = 1, then [Q, R] # 1 and QR is a minimal non-cyclic group. Thus, we
get the conclusion (3). In the following, suppose [P, R] # 1. Similarly to the above argument, we get the conclusion
(4) and (5). O

The following Theorem shows the structure of SM C-groups G with |7(G)| = 2.

Theorem 2.8. Let G be a non-cyclic group with |n(G)| = 2. If G is an SM C-group, then one of the following
statements hold.

(1) G is a minimal non-cyclic group.

(2)G = (Zp xZp)Zy, where Z, x Zp, I G, p and q are distinct primes.

(3) G = Qg x Zp, p is an odd prime.

(4)G = Qg >Zs.

(5) G = (a,b), where a? = b9" =1, b"Vab = a*, s7 # 1(mod p), s = 1 (mod p), m > 2, p and q are
distinct primes.

(6) G = (a,b,c), where a? = b2 = [a,b] = 1,b> = c2,b~'¢cb = ¢, ¢ lac = ca’,t # 1(mod p), t? = 1
(mod p).

(7) G = (a,b), where a?’> =p4" =1, b= lab =a' 14 # 1(mod p), 11 =1 (mod p).

Proof. Let G be an SM C-group with 7(G) = {p, q}. Since G is solvable, there exists a maximal subgroup M of
G such that M is normal in G. Hence |G : M| is a prime. Suppose that |G : M| = ¢, then there exists a g-element
¢ such that G = M (c) with ¢ € M. Suppose G is not a minimal non-cyclic group, then every maximal subgroup
of G is either a cyclic group or a minimal non-cyclic group. Thus, we need to treat the following two cases for M.

Case I: M is a minimal non-cyclic group.
By Lemma 2.2, we need to treat the following three cases for M.

OM =Z,xZp.
Since G is not a p-group, we have G = M Z,, for some prime ¢(# p). Thus, G proves to be a group of type (2).

2)M =~ Qsg.

In this case, G = QgZ,, where Og < G and g is an odd prime. If G = Qg x Z, then we get conclusion (3).
Suppose Z is not normal in G, then Z, induces an automorphism of Qg of order q. We know that Aut(Qg) = S4.
Hence g = 3, which gives conclusion (4): G = Qg > Z3.

BYM = (a,b),a? =b9" =1,b"'ab =a®,s # 1(mod p), s? = 1 (mod p)
In this case, let H = (a) be normal of order p in G and a ¢ Z(G). Thus Cg(H) < G. Moreover, G/Cg (H)
is cyclic of order dividing p — 1. Hence G/Cg (H) is a cyclic g-group. Since Cg (H) # M, we see that Cg (H) is
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cyclic. Also, as Cg (H) < G, we can assume that C (H) is not maximal in G. Consequently |G/Cg (H)| = ¢*,
t > 2. Moreover, by the definition of M, we have b? € Cg(H) but b ¢ Cg(H). This shows that (b)Cg (H) is
non-abelian of index ¢’ ~!. As M = (a,b) C (b)Cs(H), we get that (b)Cs (H) = M and hence t = 2. Now,
G/Cg (H) is cyclic of order g2 and the Sylow g-subgroup Q = (x) of G is cyclic of order g1, X9 e Cg(H)
but x4 ¢ Cg (H). The above argument implies conclusion(5).

G=(ax:aP =x9" =1,x"lax =a’,s9 # l(modp),s‘]2 =1 (mod p)), m > 2.

Case II: M is a cyclic group.

(D) n(M) = n(G).
Write |[M| = p™1¢"2 . We consider the Sylow decomposition of M as

M = (a) x (b), where a?"'" = p9"? = 1.

Firstly, we suppose that [a, c] = [b,c] = 1. Then G is abelian. Hence H = (b, ¢) is a non-cyclic proper subgroup
of order a power of ¢g. So H is a maximal subgroup of G and is a minimal non-cyclic subgroup. By Lemma 2.2,
H=>~=Z,;xZjandhence G = Z,; x Z4 x Z,. Thus, G proves to be a group of type (2).

Secondly, suppose that G is non-abelian.

Assume that [b, ¢] # 1. Consider the non-abelian subgroup H = (b, ¢}, then H is a maximal subgroup of G of
order a power of ¢. By Lemma 2.2, we see that H =~ Qg andg = 2.1f [a,c] = 1, then G = Qg x Z,, which yields
conclusion (3).

Assume that [a,c] # 1. Set K = (a, c¢), then K is a non-cyclic subgroup of G and hence H is a minimal non-
cyclic group. By Lemma 2.2, we get K = {(a,c : ¢* = a? = 1,c " lac = a’,t # 1(mod p), s> = 1 (modq) ).

G=(abc:a?=b>=a,bl=10b%>=c2b"leb=c""' clac =ca’,t # 1(mod p), 1> = 1 (mod p) ).

Therefore G is of type (6).

2 M| = p".

Let M = (a), where o(a) = p”. Then the G = (a, b) is a non-abelian group, where (a) is normal in G, (b)
is non-normal with order ¢, n > 1, m > 1. By a simple theorem, we know that ¢ < p and so p is an odd prime.
Thus b as an automorphism of (a) is fixed point free. If n > 2, then the subgroup B generalized by a?""and b is
non-abelian of order pg”. Hence B is a minimal non-cyclic group. By Lemma 2.2, we know that n = 2. and we
obtain

G={ab:aP’ =p?" =1,,b=lab = a’,19 # 1(mod p), t9° = 1 (mod p)).

Therefore G is of type (7).
The proof is now complete. o

To determine the structure of S M C - p-groups, we need the following known results.

Lemma 2.9 ([11]). Let G be a group of order 2* and M = Qg be a maximal subgroup of G. Then one of the
following statements is true:

(1) G = Q1e, a generalized quaternion 2-group of order 2*.

(2) G = Qg x Z».

(3) G = Qg * Z4, where * denotes a central product.

Theorem 2.10. Let G be a p-group. Then G is a non-cyclic SM C -group if and only if either |G| < p3 orG = Qie.

Proof. If all maximal subgroups of G are cyclic, then G is a minimal non-cyclic p-group. By Lemma 2.2, we know
that G is isomorphic to Qg or Z,, x Z,,, hence |G| < p3.Let M be a non-cyclic maximal subgroup of G, then M is
a minimal non-cyclic group and hence |M | < p3. So we have |G| < p*.If |G| = p*, then |[M| = p3. By Lemma
2.2, we know M = Qg. Hence G is a group of order 2* and M = Qg is a maximal subgroup of G. By Lemma
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2.9, we know that G is one of the groups Q16, Q8 X Z5 or Qg * Z4. It can be easily shown that both Qg x Z» and
Qs * Z4 have a non-cyclic 2-maximal subgroups. Thus, we have G =~ Q¢. The proof is now complete. O

Theorem. Let G be a non-cyclic SM C-group. Then G is solvable and |n(G)| < 3. Furthermore, one of the
following statements is true:

(1) G is a minimal non-cyclic group.

(2) G is a p-group of order p3.

(3) G is a generalized quaternion 2-group of order 2*.

(4)G = (Zp x Zp)Zy, where Z, x Zp, ] G, p and q are distinct primes.

(5) G = Qg x Zp, pis an odd prime.

(6) G = {(a,b), where a?’ = p?" =1, b7 lab = a%, s # 1(mod p?), s = 1 (mod p?), p and q are distinct
primes.

(7)G = Qg >« Z3.

(8) G = (a,b), where a? = b9" =1, b"Yab = a*, s7 # 1(mod p), s =1 (mod p), m > 2, p and q are
distinct primes.

(9) G = {a,b,c), where a? = b? = [a,b] = 1,b2 =c2, b7 Yeb =c e tac = ca’,t # 1(mod p), 2 =1
(mod p).

(10) G = (a,b,c), where a?” = b9 = ¢" = [b,c] = 1,a® = a*,a = a’, s # 1(modq), s? = 1 (modq),
t # 1(modr), t? =1 (modr), p, q and r are distinct primes.

(11)G = H x Z,, where H = (a, b : a”" = b =1, a 'ha = b*, s # 1(modgq), s” = 1 (modq) ), p, q and
r are distinct primes.

(12) G = (a,b,c), where a? = b?" = ¢" = [a,b] = [a,c] = 1,a° = a®, s # 1(modr), s9 = 1 (modr), p, ¢
and r are distinct primes.
(13) G = (a.b,c), where a?”" =b9 = ¢" =[a,b] = [b.c] = 1,a¢ =a*,s # 1(modg), s” = 1 (modq), p, q

and r are distinct primes.
(14) G = (a,b,c), where a?" = b9 = ¢" = [a,b] = 1,a = a®,b¢ = b’ , 5 # 1(modq), s” = 1 (modg),
t # 1(modr), t?9 =1 (modr) p, q and r are distinct primes.

Proof. The proof of Main Theorem comes from the Theorem 2.7, 2.8 and 2.10. O
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