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1 Introduction

All groups considered in this paper are finite. Throughout the following,G always denotes a finite group. The symbol
�.G/ denotes the set of the prime divisors of jGj. In 1903, Miller and Moreno [1] gave a complete classification
of finite groups in which all maximal subgroups are abelian. In 1924, Shmidt [2] described finite groups whose
maximal subgroups are all nilpotent. Suzuki [3] and Janko [4] have described finite unsolvable groups whose 2-
maximal subgroups are nilpotent. There are only two such groups: A5 and the special linear group SL.2; 5/. In
1968, V. A. Belonogov [5] described finite solvable groups whose 2-maximal subgroups are all nilpotent. In 1979,
De Vivo [6] investigated finite groups whose 2-maximal subgroups are all Sylow tower groups. In 1988, S.R. Li [7]
investigated finite unsolvable groups whose all 2-maximal 3d -subgroups are super solvable.

The aim of this paper is to describe finite groups whose second maximal subgroups are all cyclic. For
convenience, we introduce the definition as follows:

Definition 1.1. A group G is called an SMC -group if every second maximal subgroup of G is cyclic.

All unexplained notations and terminologies are standard and can be found in [8–10].

2 Main results

For the proof of the Main Theorem, we need some known results. Below we give the result of Janko, Miller and
Moreno.

Lemma 2.1 ([4]). Let G be an unsolvable group. If every second maximal subgroup of G is nilpotent, then G is
isomorphic to A5 or SL.2; 5/.
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Lemma 2.2 ([1]). Let G be a non-cyclic group all of whose proper subgroups are cyclic. Then one of the following
holds:
.1/ G Š Zp �Zp , p is a prime.
.2/ G Š Q8.
.3/ G Š ha; b W ap D bqm

D 1; b�1ab D asi, where s ¥ 1.modp/, sq � 1 .modp/, p and q are distinct
primes.

The following Theorem shows that SMC -groups are solvable.

Theorem 2.3. Let G be a non-cyclic SMC -group. Then G is solvable and j�.G/j � 3.

Proof. SupposeG is an unsolvable SMC -group, then all second maximal subgroups ofG are cyclic and hence they
are nilpotent. By Lemma 2.1, we know G Š A5 or SL.2; 5/. Since each of the groups A5 and SL.2; 5/ possesses
one non-cyclic second maximal subgroup, we have that G is solvable.

LetG be a solvable non-cyclic group having cyclic 2-maximal subgroups. Then every proper subgroup ofG is a
cyclic group or a minimal non-cyclic group, and each minimal non-cyclic group is maximal in G. Because minimal
non-cyclic groups satisfy the thesis of Lemma 2.2, we can assume that one maximal subgroup M of G is a minimal
non-cyclic group, and since the index of evert maximal subgroup in a solvable group is a power of a prime, we have
that j�.G/j � 3. �

Corollary 2.4. Let G be an SMC -group. If j�.G/j � 4, then G is cyclic.

By Corollary 2.4, we only determine the structure of SMC -groupsG with j�.G/j � 3. Firstly, we show the structure
of SMC -groups with j�.G/j D 3.

Lemma 2.5. Let G be a non-cyclic SMC -group with j�.G/j D 3. Then all Sylow subgroups of G are cyclic.

Proof. Let G be a non-cyclic SMC -group and �.G/ D fp1; p2; p3g, where p, q and r are distinct primes.
By Theorem 2.3, we know that G is solvable and hence G possesses a Sylow system fP1; P2; P3g, where
Pi 2 Sylpi

.G/. Thus, Pi < PiPj < G for all i ¤ j . Since every 2-maximal subgroup of G is cyclic, we
get each Pi is cyclic for i D 1; 2; 3. �

A famous result of Burnside, Hölder and Zassenhaus is recalled below.

Lemma 2.6. For an oddm � 1 and an arbitrary n � 1 such that rn � 1modm, 1 � r < m and gcd.n.r�1/;m/ D
1, the group

M.m � n/ D ha; bjam
D bn

D 1; b�1ab D ar
i

is meta-cyclic and all its Sylow subgroups are cyclic. Conversely, each group with such a property has a presentation
of the form of M.m � n/.

Suppose that G is a non-cyclic SMC -group with j�.G/j D 3, then G is a meta-cyclic group by Lemma 2.6.
Furthermore, the following results hold.

Theorem 2.7. Let G be a non-cyclic group with j�.G/j D 3. If G is an SMC -group, then one of the following
statements holds.
(1) G D ha; b; ci, where apm

D bq D cr D Œb; c� D 1, ab D as ; ac D at , s ¥ 1.mod q/, sp � 1 .mod q/,
t ¥ 1.mod r/, tp � 1 .mod r/, p, q and r are distinct primes.
(2) G D H �Zr , where H Š ha; b W apm

D bq D 1; a�1ba D bs ; s ¥ 1.mod q/, sp � 1 .mod q/ i, p, q and r
are distinct primes.
(3) G D ha; b; ci, where ap D bqm

D cr D Œa; b� D Œa; c� D 1; ac D as , s ¥ 1.mod r/, sq � 1 .mod r/, p, q
and r are distinct primes.
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(4) G D ha; b; ci, where apm
D bq D cr D Œa; b� D Œb; c� D 1, ac D as , s ¥ 1.mod q/, sp � 1 .mod q/, p, q

and r are distinct primes.
(5) G D ha; b; ci, where apm

D bq D cr D Œa; b� D 1, ac D as ; bc D bt , s ¥ 1.mod q/, sp � 1 .mod q/,
t ¥ 1.mod r/, tq � 1 .mod r/ p, q and r are distinct primes.

Proof. Suppose that G is a non-cyclic SMC -group and �.G/ D fp; q; rg.p < q < r/. As G is solvable, we know
that G possesses a Sylow system fP;Q;Rg. Assume that P D hai, Q D hbi and R D hci.

Firstly, suppose ŒP;Q� ¤ 1, then PQ is non-cyclic and hence PQ is a maximal subgroup ofG and ı.PQ/ D 1.
By Lemma 2.2, we get that PQ D ha; b W apm

D bq D 1; ba D bsi. Suppose that ŒP;R� ¤ 1. As in the above
argument, then PR D ha; c W apm

D cr D 1; ca D ct i. By Lemma 2.6, we get ŒQ;R� D 1 and hence the
conclusion (1) holds.

Assume ŒP;R� D 1. Then PR is a cyclic group. We claim that ŒQ;R� D 1. Suppose that ŒQ;R� ¤ 1, we get
one of Q and PR is normal in G by Lemma 2.6. If PR is normal in G, then P is normal in G, which is contrary to
ŒP;Q� ¤ 1. Thus,Q is normal inG. In another,R is normal inG. Hence we haveQR D Q�R, that is, ŒQ;R� D 1.
The conclusion (2) holds.

Secondly, suppose ŒP;Q� D 1. If ŒP;R� D 1, then ŒQ;R� ¤ 1 andQR is a minimal non-cyclic group. Thus, we
get the conclusion (3). In the following, suppose ŒP;R� ¤ 1. Similarly to the above argument, we get the conclusion
(4) and (5). �

The following Theorem shows the structure of SMC -groups G with j�.G/j D 2.

Theorem 2.8. Let G be a non-cyclic group with j�.G/j D 2. If G is an SMC -group, then one of the following
statements hold.
(1) G is a minimal non-cyclic group.
(2) G D .Zp �Zp/Zq , where Zp �Zp E G, p and q are distinct primes.
(3) G D Q8 �Zp , p is an odd prime.
(4) G D Q8 Y Z3.
(5) G D ha; bi, where ap D bqm

D 1, b�1ab D as , sq ¥ 1.modp/, sq2
� 1 .modp/, m � 2, p and q are

distinct primes.
(6) G D ha; b; ci, where ap D b2 D Œa; b� D 1; b2 D c2; b�1cb D c�1; c�1ac D cat ; t ¥ 1.modp/, t2 � 1

.modp/.
(7) G Š ha; bi, where ap2

D bqm
D 1; ; b�1ab D at ; tq ¥ 1.modp/, tq

2
� 1 .modp/.

Proof. Let G be an SMC -group with �.G/ D fp; qg. Since G is solvable, there exists a maximal subgroup M of
G such that M is normal in G. Hence jG W M j is a prime. Suppose that jG W M j D q, then there exists a q-element
c such that G D M hci with cq 2 M . Suppose G is not a minimal non-cyclic group, then every maximal subgroup
of G is either a cyclic group or a minimal non-cyclic group. Thus, we need to treat the following two cases for M .

Case I: M is a minimal non-cyclic group.
By Lemma 2.2, we need to treat the following three cases for M .

(1) M Š Zp �Zp .
SinceG is not a p-group, we haveG DMZq for some prime q.¤ p/. Thus,G proves to be a group of type (2).

(2) M Š Q8.
In this case, G D Q8Zq , where Q8 E G and q is an odd prime. If G D Q8 �Zq , then we get conclusion (3).

SupposeZq is not normal inG, thenZq induces an automorphism ofQ8 of order q. We know that Aut.Q8/ Š S4.
Hence q D 3, which gives conclusion (4): G D Q8 Y Z3.

(3) M D ha; bi, ap D bqm
D 1, b�1ab D as , s ¥ 1.modp/, sq � 1 .modp/

In this case, let H D hai be normal of order p in G and a … Z.G/. Thus CG.H/ < G. Moreover, G=CG.H/

is cyclic of order dividing p � 1. Hence G=CG.H/ is a cyclic q-group. Since CG.H/ ¤M , we see that CG.H/ is
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cyclic. Also, as CG.H/ E G, we can assume that CG.H/ is not maximal in G. Consequently jG=CG.H/j D qt ,
t � 2. Moreover, by the definition of M , we have bq 2 CG.H/ but b … CG.H/. This shows that hbiCG.H/ is
non-abelian of index qt�1. As M D ha; bi � hbiCG.H/, we get that hbiCG.H/ D M and hence t D 2. Now,
G=CG.H/ is cyclic of order q2 and the Sylow q-subgroup Q D hxi of G is cyclic of order qmC1, xq2

2 CG.H/

but xq … CG.H/. The above argument implies conclusion(5).

G D ha; x W ap D xqm
D 1; x�1ax D as , sq ¥ 1.modp/, sq2

� 1 .modp/i, m � 2.

Case II: M is a cyclic group.

(1) �.M/ D �.G/.
Write jM j D pm1qm2 . We consider the Sylow decomposition of M as

M D hai � hbi, where apm1
D bqm2

D 1.

Firstly, we suppose that Œa; c� D Œb; c� D 1. Then G is abelian. Hence H D hb; ci is a non-cyclic proper subgroup
of order a power of q. So H is a maximal subgroup of G and is a minimal non-cyclic subgroup. By Lemma 2.2,
H Š Zq �Zq and hence G Š Zq �Zq �Zp . Thus, G proves to be a group of type (2).

Secondly, suppose that G is non-abelian.
Assume that Œb; c� ¤ 1. Consider the non-abelian subgroup H D hb; ci, then H is a maximal subgroup of G of

order a power of q. By Lemma 2.2, we see thatH Š Q8 and q D 2. If Œa; c� D 1, then G Š Q8�Zp , which yields
conclusion (3).

Assume that Œa; c� ¤ 1. Set K D ha; ci, then K is a non-cyclic subgroup of G and hence H is a minimal non-
cyclic group. By Lemma 2.2, we get K D ha; c W c4 D ap D 1; c�1ac D at ; t ¥ 1.modp/, s2 � 1 .mod q/ i.

G D ha; b; c W ap D b2 D Œa; b� D 1; b2 D c2; b�1cb D c�1; c�1ac D cat ; t ¥ 1.modp/, t2 � 1 .modp/ i.

Therefore G is of type (6).

(2) jM j D pn.
Let M D hai, where o.a/ D pn. Then the G D ha; bi is a non-abelian group, where hai is normal in G, hbi

is non-normal with order qm, n � 1, m � 1. By a simple theorem, we know that q < p and so p is an odd prime.
Thus b as an automorphism of hai is fixed point free. If n � 2, then the subgroup B generalized by apn�1

and b is
non-abelian of order pqm. Hence B is a minimal non-cyclic group. By Lemma 2.2, we know that n D 2. and we
obtain

G Š ha; b W ap2
D bqm

D 1; ; b�1ab D at ; tq ¥ 1.modp/, tq
2
� 1 .modp/i.

Therefore G is of type (7).
The proof is now complete. �

To determine the structure of SMC -p-groups, we need the following known results.

Lemma 2.9 ([11]). Let G be a group of order 24 and M Š Q8 be a maximal subgroup of G. Then one of the
following statements is true:
(1) G Š Q16, a generalized quaternion 2-group of order 24.
(2) G Š Q8 �Z2.
(3) G Š Q8 �Z4, where � denotes a central product.

Theorem 2.10. LetG be a p-group. ThenG is a non-cyclic SMC -group if and only if either jGj � p3 orG Š Q16.

Proof. If all maximal subgroups of G are cyclic, then G is a minimal non-cyclic p-group. By Lemma 2.2, we know
thatG is isomorphic toQ8 orZp �Zp , hence jGj � p3. LetM be a non-cyclic maximal subgroup ofG, thenM is
a minimal non-cyclic group and hence jM j � p3. So we have jGj � p4. If jGj D p4, then jM j D p3. By Lemma
2.2, we know M Š Q8. Hence G is a group of order 24 and M Š Q8 is a maximal subgroup of G. By Lemma
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2.9, we know that G is one of the groups Q16, Q8 �Z2 or Q8 �Z4. It can be easily shown that both Q8 �Z2 and
Q8 �Z4 have a non-cyclic 2-maximal subgroups. Thus, we have G Š Q16. The proof is now complete. �

Theorem. Let G be a non-cyclic SMC -group. Then G is solvable and j�.G/j � 3. Furthermore, one of the
following statements is true:
(1) G is a minimal non-cyclic group.
(2) G is a p-group of order p3.
(3) G is a generalized quaternion 2-group of order 24.
(4) G D .Zp �Zp/Zq , where Zp �Zp E G, p and q are distinct primes.
(5) G D Q8 �Zp , p is an odd prime.
(6) G D ha; bi, where ap2

D bqm
D 1, b�1ab D as , s ¥ 1.modp2/, sq � 1 .modp2/, p and q are distinct

primes.
(7) G D Q8 Y Z3.
(8) G D ha; bi, where ap D bqm

D 1, b�1ab D as , sq ¥ 1.modp/, sq2
� 1 .modp/, m � 2, p and q are

distinct primes.
(9) G D ha; b; ci, where ap D b2 D Œa; b� D 1; b2 D c2; b�1cb D c�1; c�1ac D cat ; t ¥ 1.modp/, t2 � 1

.modp/.
(10) G D ha; b; ci, where apm

D bq D cr D Œb; c� D 1, ab D as ; ac D at , s ¥ 1.mod q/, sp � 1 .mod q/,
t ¥ 1.mod r/, tp � 1 .mod r/, p, q and r are distinct primes.
(11) G D H � Zr , where H Š ha; b W apm

D bq D 1; a�1ba D bs ; s ¥ 1.mod q/, sp � 1 .mod q/ i, p, q and
r are distinct primes.
(12) G D ha; b; ci, where ap D bqm

D cr D Œa; b� D Œa; c� D 1; ac D as , s ¥ 1.mod r/, sq � 1 .mod r/, p, q
and r are distinct primes.
(13) G D ha; b; ci, where apm

D bq D cr D Œa; b� D Œb; c� D 1, ac D as , s ¥ 1.mod q/, sp � 1 .mod q/, p, q
and r are distinct primes.
(14) G D ha; b; ci, where apm

D bq D cr D Œa; b� D 1, ac D as ; bc D bt , s ¥ 1.mod q/, sp � 1 .mod q/,
t ¥ 1.mod r/, tq � 1 .mod r/ p, q and r are distinct primes.

Proof. The proof of Main Theorem comes from the Theorem 2.7, 2.8 and 2.10. �
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