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Abstract: This paper is concerned with the existence and uniqueness of asymptotically almost automorphic solutions
to differential equations with piecewise constant argument. To study that, we first introduce several notions about
asymptotically almost automorphic type functions and obtain some properties of such functions. Then, on the basis
of a systematic study on the associated difference system, the existence and uniqueness theorem is established.
Compared with some earlier results, we do not assume directly that the Green’s function is a Bi-almost automorphic
type function.
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1 Introduction

In this paper, we aim to study the existence and uniqueness of asymptotically almost automorphic solution for the
following differential equation with piecewise constant argument (DEPCA):

Y(t) =A@y + BOy () + ft.y@).y([r]). teR, (1

where y(¢) is a p-dimensional complex vector (p is a fixed positive integer), A(¢) and B(¢) are p x p complex
matrices, and the coefficients satisfy some conditions recalled in the sequel.

As noted in some earlier works (cf. [2, 3]), differential equations with piecewise constant argument (DEPCA)
are of considerable importance in applications to some biomedical dynamics, physical phenomena, discretization
problems, etc., and there is a large literature on qualitative properties of solutions to DEPCA, like uniqueness,
boundedness, periodicity, almost periodicity, pseudo almost periodicity, stability, etc. However, it seems that there
are only few results concerning almost automorphic type solutions for DEPCA (cf. [2-5, 7, 11]).

Recall that since Bochner [1] introduced the concept of almost automorphy, the automorphic functions have
been applied to many areas including ordinary as well as partial differential equations, abstract differential equations,
functional-differential equations, integral equations, dynamical systems, etc. We refer the reader to the monographs
of N’Guéréata [8, 9] for the basic theory of almost automorphic functions and their applications.

Stimulated by a recent work of Chavez, Castillo, and Pinto [3], in this paper we investigate the existence and
uniqueness of asymptotically almost automorphic solution to equation (1). In order to establish our main results,
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we recall some notions about asymptotically almost automorphic type functions. Also, we make a systematic study
on the properties of the introduced asymptotically almost automorphic type functions and the associated difference
system for equation (1). Compared with some earlier results (e.g., [2, 3]), we do not assume directly that the Green’s
function is a Bi-almost automorphic type function. In fact, under some assumptions, we prove that the Green’s
function is Bi-asymptotically almost automorphic (see Lemma 3.4).

Before closing this section, we recall what is understood by a solution of DEPCA (1).

Definition 1.1 ([2, 3]). A function y : R — C? is called a solution of DEPCA (1) if the following assertions are
satisfied:

(a) y is continuous on R;

(b) y is differentiable on R\Z and for every n € Z, yﬁ’_ (n) and y’_(n) exsit;

(c) there hold yfl_(n) = A(n)y(n) + B(n)y(n) + f(t, y(n), y(n)) for every n € Z and

Yty =A@y + BOy () + fe.y@).y([1]). te€@n+1). nel

2 Almost automorphic type functions

In this paper, we denote by Z the set of all integers, by R the set of all real numbers, by C the set of all complex
numbers, by C? the set of all p-dimensional complex vectors, by M, x ,(C) the set of all p X p complex matrices,
and by BC(Y,X) the Banach space of all bounded and continuous functions from Y to X with norm | f| =

sup || f(t)]| for every two Banach spaces X and Y. Moreover, for convenience, for every ¢ = {ci}l{”:l € CP? and
tey

C ={cjj }ﬁj=1 € Mpx »(C), we denote their norms by the followings:

le] = max |¢;|, [C|= max |cj;l.
I<i<p 1<i.j=<p
Next, let us recall some basic definitions and results about almost automorphic functions and asymptotically almost
automorphic functions. For more details, we refer the reader to [8, 9].

Definition 2.1. A function f € BC(R,X) is said to be almost automorphic if given any sequence {5,} C R, there
exists a subsequence {sp} C {5, } such that

F@) = lim f(t + sn)
n—oo
is well defined for every t € R, and
im (= sa) = £()
for everyt € R. We denote the set of all such functions by AA(R, X).

Remark 2.2. The following is a typical example of almost automorphic function:

1
f(t) = sin , teR.
2 + cost + cos v/2t

We refer the reader to the monographs of N'Guérékata [8, 9] for the basic theory of almost automorphic functions

and their applications.

Definition 2.3. A function f € BC(R,X) is said to be asymptotically almost automorphic iff it admits a
decomposition

f=g+h,
where g € AAR, X) and h € Co(R, X). Here,

Co(R,X) :={h:R — X: his continuous on R and tlim h(t) = 0}.
— o0

We denote the set of all such functions by AAA(R, X).
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Lemma 2.4. The following assertions hold:

(1) {g@®):teR}C{f(@):t eR}, where f =g+ h, g AAR,X) and h € Co(R, X).

(i) The decomposition of every asymptotically almost automorphic function is unique.

(iii) AA(R, X) and AAA(R, X) are both Banach spaces under the supremum norm || f || = sup || f ()]
teR

Definition 2.5. A function f € BC(R x Y, X) is called almost automorphic if given any compact set K C Y and
any sequence {s,} C R, there exists a subsequence {s,} C {s,} such that

F(t.x):= Em f(t + sp,x)
n—oo
is well defined for every t € R and x € K, and
lim 7(1 —sn,x) = f(t,x)
n—oo

foreveryt € R and x € K. We denote the set of all such functions by AAR x Y, X).

Definition 2.6. A function f € BC(R x Y,X) is said to be asymptotically almost automorphic iff it admits a
decomposition

f=g+h,
where g € AAR X Y,X) and h € Co(R x Y, X). Here, Co(R x Y, X) denote the set of all continuous functions
from R x Y to X satisfying tl_l)rgo h(t,y) = 0 uniformly for y in any compact subset of Y. We denote the set of all
such functions by AAAR x Y, X).

Next, let us recall an interesting notion of Z-almost automorphic functions, which is introduced recently by Chévez,
Castillo, and Pinto [2, 3].

Let BP C(R, X) be the space of all bounded functions f : R — X satisfying that f is continuous in R \ Z with
finite lateral limits in Z.

Definition 2.7. A function f € BPC(R,X) is said to be Z-almost automorphic if given any sequence {s,} C Z,
there exists a subsequence {sp} C {s,} such that

F) = tim_ f(t +s)
is well defined for every t € R, and

nll>moof(t —sn) = f(t)
for every t € R. We denote the set of all such functions by ZAA(R, X).

Example 2.8. It is not difficult to verify that

£(t) = sin : ‘R

2 + cos[t] + cos (ﬁ[l]) ,

is Z-almost automorphic.

Stimulated by the notion of Z-almost automorphic functions, in the following, we introduce the notion of Z-
asymptotically almost automorphic functions and study some basic properties of such functions.

Definition 2.9. A function f € BPC(R,X) is said to be Z-asymptotically almost automorphic iff it admits a
decomposition

f=g+h
where g € ZAAR,X) and h € ZCo(R, X). Here,

ZCo(R.X) = {h € BPC(R.X) : lim_h(1) = O}.

We denote the set of all such functions by ZAAA(R, X).
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Lemma 2.10. The following assertions hold:

(1) {g@t):teRyC{f(t):t eR}, where f =g+ h, g€ ZAAR,X) and h € ZCo(R, X).

(1) The decomposition of every Z-asymptotically almost automorphic function is unique.

Gii) Let f = g+ h, g € ZAAR,X) and h € ZCo(R,X). If f is uniformly continuous on R, then g is also
uniformly continuous on R.

@iv) f € AAAR,X) implies f([]) € ZAAAR, X).

(v) Let f be uniformly continuous on R and f € ZAAAR,X). Then f € AAAR, X).

Proof. The assertion (i) follows from the pointwise limits in the definition of ZAA(R, X) and & € ZCo (R, X). Then,
(1) yields (ii) since 0 has a unique decomposition.
By the definition of ZAA(R, X), there exists a sequence {s,} C Z with E}m S = 00, such that
n o0

Lim gt +sp) =8(),  lim gt —sp) =g(), teR
For every 11,12 € R, there holds

[g(11) —2(t2)| < [g(t1) — g(t1 + sp)| + |g(t1 + sn) — g(t2 + sp)| + |g(t2 + s0) — Z(12)]
< [gt1) —gt1 + s + | f(t1 + sn) — ft2 + sp)| + 182 + sn) —€(22)]
+|h(t1 4 sp)| + |h(t2 + sn)].

Combining the above observations and & € ZCyp (R, X), in view of the fact that f is uniformly continuous on R, we
conclude that g is uniformly continuous on R, which yields that g is also uniformly continuous on R. This completes
the proof of (iii).

The assertion (iv) follows from the fact that f([t + k]) = f([t] + k) foreveryt € R and k € Z.

Now, let’s come to the proof of (v). Let f = g+ h, g € ZAAR, X) and i € ZCp(R, X). Then, by (iii), g and
h are both uniformly continuous on R. It is easy to see that & € Co(R, X). By [2, Lemma 2.8], g € AA(R, X). Thus,
f e AAAR,X). O

Throughout the rest of this paper, we denote Lip(RxC? xC?, C”) be the set of all functions f : RxC? xC? — C?
satisfying the following property: there exists a constant L s > 0 such that

|f(t7x5y)_f(tvsz)| = Lf(|x_Z| + |y—lU|), t €R, (X,Y),(Z,w) e C? xCP.

Lemma2.11. Let f € AAAR x C? x C”,CP) Lip(R x C? x CP,C?) and y € AAAR,C?). Then,
SCYE, () € ZAAAR, CP).
Proof. Let
f=hA+ /2 ¥=v1+2,
where f1 € AAR x C? x CP,CP), ¢y € AAR,CP) and f> € Co(R x CP x CP,C?), y» € Co(R,C?). Then,

we have

ey @), v(t) = A v1@). vi(t)) + f&. @), ¥ (t]) = filt, v1(0). ¥1([£])
= fit, v1@®), Y1 ([1D) + 1@, ¥ (@), ¥ [e]) — [ Y1 @), Y1 ([e]) + L2, ¢ @), v ([2]).

By a similar proof to that of (iii) in Lemma 2.10, one can show that f; € Lip(R x C? x C?,C”) with Lipschitz
constant L . Combining this with [2, Lemma 2,7], we get f1(, ¥1(). ¥1([])) € ZAAR,C?). In addition, it
follows from

| Ay @. ¢ ([D) = 1. (). 1 ([t < Le(1V2(0)] + [2(tDD. 1 € R,

that t — f1(¢6, v (@), v([t]) — fit, ¥1(2), ¥1([t])) belongs to ZCo(R, C?). Moreover, it is easy to see that
HEvE, () € ZCo(R, CP). This completes the proof. 0

Next, we recall some notions about discrete almost automorphic type functions (cf. [2, 3]).
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Definition 2.12. A function f: 7 — X is said to be discrete almost automorphic if given any sequence {s,} C Z,
there exists a subsequence {s,} C {5} such that

T == tim_ f(k + sn)
is well defined for every k € Z, and
lim f(k—sn) = f(k)
n—oo
for every k € Z. We denote the set of all such functions by AA(Z, X).

Definition 2.13. A function G: Z x 7. — X is said to be discrete Bi-almost automorphic if given any sequence
{Sn} C Z, there exists a subsequence {s,, } C {s,} such that

E(k,m) = lim Gk + sp,m + sp)
n—oo
is well defined for every k,m € Z, and

lim G(k —sp,m —sp) = G(k,m)

n—oo

for every k,m € Z. We denote the set of all such functions by BAA(Z x 7., X).

Definition 2.14. A function f: 7 — X is said to be discrete asymptotically almost automorphic iff it admits a
decomposition
f=g+h
where g € AA(Z,X) and h € Co(Z,X) :=4{h:Z — X: klim h(k) = 0}. Denote the set of all such functions by
—00
AAA(Z, X).

In order to establish our main results, we introduce the following notion of Bi-asymptotically almost automorphic
functions.

Definition 2.15. A function G : Z x7Z — X is said to be discrete Bi-asymptotically almost automorphic iff it admits
a decomposition
G=H+1,

where H € BAA(Z x 7,X) and I € BCo(Z X Z,X). Here,
BCo(ZxZ,X)=4{1 :Zx7Z —X: nlim I(n + k,n+m) =0foreveryk,m € 7}.
— o0
We denote the set of all such functions by BAAA(Z x 7, X).

Remark 2.16. Note that I € BCo(Z x Z,X) does not imply that

lim I(k,m)=0.

k.m—oo

In fact, letting I(k, m) = (k —m) sin ,C_I_Lm,for every k,m € 7, we have

I(n +k,n+m) = (k—m)sin 0, n— oo.

bid
—
k+m+2n

However, I(2m, m) = msin 5~ — % asm — oo.

Lemma 2.17. The following assertions hold:

(i) Let G € BAAA(Z x Z,X). Then, for every k,m € Z, G(k + -,m + ) is bounded on Z.

(ii) Let X be a Banach algebra and G1, Gy € BAAA(Z x Z,X). Then, G - Go € BAAA(Z x Z,X).

(iii) Let G = H + I, where H € BAA(Z x 7.,X) and I € BCo(Z x 7Z,X). Then, for every (k,m) € 7Z X Z, there
holds

{Hk+n,m+n):neZ} C{Gk+n,m+n):neclZl.
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Proof. Fix k,m € Z.Let G = H + I, where H € BAA(Z x 7Z,X) and I € BCo(Z x Z,X). We claim that
H(k + -,m 4+ -) is bounded on Z. In fact, if this is not true, there exists a sequence {s,} C Z such that

lim H(k + sp,m+ s,) = o0.
n—oo

This contradicts with H € BAA(Z x 7Z, X). Moreover, it follows from the definition of BCo(Z x Z, X) that I(k +
-,m + -) is bounded on Z. Thus, G(k + -,m + -) is bounded on Z.
The proof of (ii) follows from (i) and the definition of BAA(Z x 7Z, X).
It remains to show (iii). Fix (k,m) € Z x Z. By the definition of BAA(Z x 7Z,X), there exists {s;} C Z with
lim s; = oo and a function H such that

[ —o0
lim H(k—i—n—l—sl,m—i—n+sl):I-I(k+n,m+n), neaz, 2)
[ —o0

and
lim Fl(k+n—sl,m+n—sl)=H(k+n,m+n), nez. 3)
—o00

It is easy to see from (3) that

{Hk +n,m+n):n eZ}C{ﬁ(k—i—n,m—i—n):n € Z}.
On the other hand, we have

||FI(k+n,m+n)—G(k+n +s;,m+n+sp)|
< IHK+n,m+n) = Hlk +n+si,m+n+s)ll + 11Kk +n +si,m+n+sp)].

Combing this with (2) and / € BCo(Z x Z,X), we get
lim Glk+n+s;,m+n+s;)= I-I(k+n,m+n), nez,
[—>00

which means that

(Hk +n.m+n):neZyc{Gk +n.m+n):n € 7.

Thus, {H(k +n,m+n) :neZ} C{Gk +n,m+n):neZj. O

Before closing this section, we recall and introduce another two notions (the first one has been mentioned in [3]).

Definition 2.18. A function G : R x R — X is said to be Bi-almost automorphic if for every {s,} C R, there exists
a subsequence {sy,} C {s,} such that

5(s,t) = lim G(s + spu,t + sp)
n—o0
is well defined for every (s, t) € R2, and

lim 5(s —Sn,t —sp) = G(s,1)

n—oo

for every (s,t) € R2. We denote the set of all such functions by BAAR x R, X).

Definition 2.19. A function G : R x R — X is said to be Bi-asymptotically almost automorphic iff it admits a
decomposition
G=H+1,

where H € BAAR xR, X) and I € BCy(R x R, X). Here,
BCoRxR,X)={I :RxR—X: lim I(s+rt+r)=0, (s.1) € R?}.
r—o00

We denote the set of all such functions by BAAA(R x R, X).
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3 Difference equations

To study equation (1), let us first consider the following linear nonhomogeneous DEPCA:

Y1) =A@y @) + B@)y([tD) + f@). )
Let y be an arbitrary solution of (4) on R. Then, by the variation of constants formula, there holds,

t t

y(@) = | ®(t,n) + / O(t,u)B(u)du | y(n) + / o(t,u) f(w)du, teln,n+1),neZ, 5)

n n

where ®(z, s) := ®(t)® ! (s) and ®(¢) is a fundamental matrix solution of the system
X' (t) = A@t)x(1).
Since y is continuous on R, taking ¢t — (n + 1)~ in the equation (5), we obtain the difference system
yin+1) =Cm)ymn) + h(n), nelZ, (6)
where h(n) = f:—H ®(n + 1,u) f(u)du, and

n+1
Cn)=dn+1,n) + / d(n+ 1, u)B(u)du.

n

From the above observations, naturally, we need to consider the difference system (6). Firstly, we investigate if C(n)
and h(n), n € Z, are discrete asymptotically almost automorphic when the coefficients A(¢), B(¢) and f(¢),t € R,
are asymptotically almost automorphic.

Lemma3.1. Let A = A1 + A2 € AAAR, Mpxp(C)), B € AAAR, Mpxp(C)), and [ € ZAAAR, CP), where
A1 € AAR, Mpxp(C)) and Az € Co(R, Mpx p(C)). Also, let ® and ®1 be the fundamental matrix solutions of
systems x'(t) = A(t)x(t) and x'(t) = A1(t)x(t), respectively. Moreover, let ®(t,s) = ®(t)®~ 1 (s), 1(t,5) =
D, (t)<I>l_1 (s) and & = ® — ®. Then, the following assertions hold:

(i) For every positive real number {, there exists a constant kg > 0 such that

|®(,5)| < ke, |P1(t.5)| <ke, (t,5) € Eg:={(t,s) e R?: |t —s| < £}.

(ii) @1 € BAAMR x R, My »(C)), 2 € BCo(R x R, Mps »(C)) and ® € BAAAR x R, Mpx »(C)).

(i) n > @ + 1,n), n > [T ®( + 1,u)B)du and n v [T S + 1,u) f(u)du are all discrete asymp-
totically almost automorphic. Thus, the two functions C(n) and h(n) in equation (6) are both asymptotically
almost automorphic.

(iv) The functions
t t

D, [t]), ®(t,u)B(u)du, O(t,u) f(u)du,
o ]

are all Z-asymptotically almost automorphic.

Proof. The proof of (i) has been essentially given in [3, Lemma 3.2]. Here, for the reader’s convenience, we give a
sketch of the proof. For 0 <t — s < £, by using Gronwall’s inequality and

t
d(t,s) =1 +/A(u)<1>(u,s)du,

s



602 —— H.-S. Ding, S.-M. Wan DE GRUYTER OPEN

where [ is the identity matrix in Mpx ,(C), one can show that |D(¢,s)| < |/ |e€”A”. For —¢ <t — s <0, similarly,

by using
t

O(t,s) =1 —|—/d>(t,u)A(u)du,

s

one can also show that |®(z,s)| < |I]e?!I4Il. Analogously, one can prove that |®(z,s)| < |I|e“1411 for every
(t,s) € Ep. In addition, by (i) of Lemma 2.4, {A(¢) : t € R} C {A(¢) : t € R}, which implies that | A1 ]| < || 4],
and thus

|@1(.9)] < [N (1.5) € Eq.

Next, let us prove (ii). Since A1 € AAR, Mpx p(C)), for every {5, } C R, there exist a subsequence {s,,} C {5,}
and a function A1, such that

lim Ay (t +5,) = A1),  lim A (t —sp) = A1(2).
n—oo n—oo

Fix s,t € R with ¢ > 5. Similar to (i), we have

t t
O (r,5) =1 +/A1(u)¢>1(u,s)du, Di(t,s) =1+ /Zl(u)al(u,s)du,

A N

where @; (¢) is the fundamental matrix solution of system x’(¢) = Ay (t)x(¢) and 3, (t,s) = @, (t)al_1 (s). Then,
by using [|41]| < [|41]] = [|A]], we get

|D1 (7 + Sn.5 + 5n) — P1(2,5)]
t ¢
[Al(u + 57)D1 (u +sn,s—i—sn)du—/zl(u)al(u,s)du

S A

IA

t t
[|A1(u+sn>—Zl(u)|-|<1>1<u+sn,s+sn>|du+||Zl||/|<1>1(u+sn,s+sn)—51(u,s>|du
S S

t t
< kz_s/|A1(u+sn>—Zl(u)|du+ ||A||/|<1>1(u+sn,s+sn)—?61<u,s)|du,
R}

s

which yields for n — oo
t
| D1 (1 + Sp. 5+ 5n) — P1(2,5)] < @Ok, / |A1(u + 55) — A1 (u)|du — 0.
S

Analogously to the above proof, one can show that ngm 51 (t —sn,s —sp) = P1(¢, s) and similarly for the case
o0

of t < 5. This means that ®; € BAA(R x R, Mpx ,(C)). It remains to prove that &> € BCo(R x R, Mpx »(C)).
We only consider the case of s < t. By a direct calculation, we have

|®o(t +r1,s+1)| =Pt +r,s+7)—DP1(t +71,5+71)|

t4r t+r
= |l + / Aw)®(u,s + r)ydu — I — / A1 ()P (u,s + r)du
s+r s+r
t+r t+r
< f |[A2(u)P(u, s + r)|du + / |A1(u)DPa(u,s +r)|du
s+r s+r

t
<ki—s-(t—5)- sup |A2 ()| + ||A||f|<l>2(u+r,s—|—r)|du,
uels+r.t+rl 4
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which means that

|®o(t +r,s+71)| <ki—s-(t—5)- sup |As(u)| - M=) 50, r - .
uels+r.t+r)

Therefore, > € BCo(R x R, Mpx p(C)), and thus & € BAAAR x R, Mpx p(C)).
Now, let’s come to the proof of (iii). Firstly, by (ii), it is easy to see that

O(-+1,-) € AAA(Z, Mpx p(C)).
The proof for n + f:+1 ®(n + 1,u)B(u)du is similar to that of n f:+1 ®(n + 1,u) f(u)du. So, we only
prove n > f:—H ®(n + 1,u) f(u)du belongs to AAA(Z,C?). Observe that

n—+1
/ O(n+ 1,u) f(u)du

n+1 n+1 n+1
_ [ O (n + 1.u) f1 (o)du + / ®1(n + 1.u) fou)du + / ®2(n + 1.u) f(u)du,

where f = f1 + f2, fi € ZAAR,C?) and f» € ZCo(R,C”). By [3, Lemma 3.3], n — f"+1 Q1(n +

n
1,u) f1(u)du belongs to AA(Z,CP). By using Lebesgue dominated convergence theorem and (i), we have

n+1 1
lim ®1(n+ 1,u) fo(u)du = lim /Cbl(n—}—l,u—l—n)fz(u + n)du =0,
n—oo n—oo
n 0
and
n+1 1
lim / Or(n + 1,u) f(u)du = lim /¢2(n+l,n+u)f(u+n)du=0.
n—oo n—oo
n 0

Thus, we conclude thatn — |, : +1 ®(n + 1,u) f(u)du is discrete asymptotically almost automorphic.

It remains to prove (iv). It follows from ® € BAAA(R x R, Mpx ,(C)) that the functions (¢, [¢]) is Z-
asymptotically almost automorphic. As in the proof of (iii), let f = f1 + f2, /1 € ZAAR,C?) and f> €
Z.Co(R, C?). Then, there holds

t t t t

/@(l,u)f(u)du = /Cbl(t,u)fl(u)du +/d>1(t,u)f2(u)du +/¢2(l,u)f(u)du.
[z] [z] [z] [z]
Again by [3, Lemma 3.3], we get

t
t > / Dy (t,u) f1(u)du
[z]
is Z-almost automorphic. Moreover, by (i), f> € ZCo(R, C?), and ®» € BCo(R x R, M, ,(C)), we conclude

t
fobl(r,u)fz(u)du <ki- sup |G| = 0. 1 oo

[tl=su=<t
t]

and
t

[®z(t,u)f(u)du < sup |P2(t,w)|-||fl| >0, t— o0.

] [fl=u=t
Indeed, by a similar proof to that of ®> € BCo(R x R, M »(C)) in (ii), one can obtain

| Do (1, u)| < ki—y - sup |Ao()|- AN < f1 qup  |As(v)|- e, [ <u <1,
t

U=v= [tl=<v=<t
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which yields that

sup | DPa(t,u)| < kle”A” - sup |A2(v)] >0, ¢ — oo.
[tl=u=<t [t1=v=t

In conclusion, we know that the function

t
t— | o, u)f(u)du
(]

is Z-asymptotically almost automorphic. Analogously, one can also obtain that the function

!
t— | O, u)B(u)du
]

is Z-asymptotically almost automorphic. O

Let us recall the notions of exponential dichotomy and Green’s function for homogenous difference system
yin+1) =Cmym), nel, 0

where C(n) € Mpx,(C) is invertible and y(n) € CP, n € Z. We will also study asymptotically almost
automorphicity for the Green’s function of difference system (7).

Definition 3.2 (cf. [3]). Let Y (n) be a fundamental matrix of difference system (7). The system (7) is said to have
an exponential dichotomy with parameters (o, K, P) if there exist a projection P, which commutes with Y (n), and
positive constants K, o« > 0 such that

|G(n,m)| < Ke=®"=m n.mez,
where
Y(n)PY_l(m), n>m,

G(n,m) :=
—Y(m)(I — P)Y " Y(m), n<m,

is called the Green’s function of (7).

Before discussing the asymptotically almost automorphicity of Green’s function, we first establish the following
lemma, which is an extension of [6, Lemma 2.9].

Lemma 3.3. Let C € AAA(Z, Mpx ,(C)) such that every C(n) is invertible and the set {C~'(n) : n € Z} is
bounded. Then, C~' € AAA(Z, Mpx »(C)).

Proof. Let
Cn) =Ci(n) + Ca2(n), nez,

where C1 € AA(Z, Mpx »(C)) and C2 € Co(Z, Mpx »(C)). By (iii) of Lemma 2.17, we have
{Ci(n):neZyC{Cn):nel).
Then, for every n € Z, there exists a sequence {sx } C Z such that
C(sg) > Ci1(n), k — oo.
Since C(sx) is invertible, the set {C ™1 (n) : n € Z} is bounded, and
Ci(n) = C(sx) + C1(n) = Clsi0) = Clsi) - (1 + € s)[Cr () = Csid)
we conclude that Cj (n) is invertible. Moreover, there holds

C(sk) — €7 () = CT )[Cr(n) — C(sx)1C ™ (sx),
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which means that C 1 (sx) — C!(n) as k — o0, and thus
(C7'(m):neZyc{C~—V(n):n e}

Then, it follows that {Cl_l (n) : n € Z} is also bounded, and thus, by [6, Lemma 2.9], n Cl_1 (n) belongs to
AA(Z, Mpx p(C)). In addition, by C> € Co(Z, Mpx p(C)), we have

C ') —citm) = m)[Ci(n) — C(m))C ) = —C7 () Ca(n)C 1 (n) — 0, n — oo.

Then, we conclude that n > C ~!(n) belongs to AAA(Z, Mx (C)). O

Lemma 3.4. Let C € AAA(Z, Mpx ,(C)) such that every C(n) is invertible and the set {C~'(n) : n € Z} is
bounded. Also, assume that system (7) has an exponential dichotomy with parameters (o, K, P). Then, the Green’s
Sfunction G € BAAA(Z X Z, Mpx »(C)).

Proof. Forevery n,m € Z, we denote Y (n,m) = Y(n)Y ~! (m). Then,

n—1
[T Con+n—-1-1), n=>m,
I=m
Y(n,m) = m—1
[T ¢ YD), n<m.
I=n
Noting that P commutes with Y (n), it suffices to prove that Y (n,m) is Bi-asymptotically almost automorphic.
Let C(n) = C1(n) + C2(n), n € Z, where C; € AA(Z, Mpx p(C)) and C3 € Co(Z, Mpx p(C)). By Lemma
3.3, C~(n) is also asymptotically almost automorphic and C - L(n) is just the almost automorphic component of

C~(n). Denote

n

—1
[T Citm+n—-1-1), n=>m,
Yi(n,m) = I=m

m—1
I Cl_l(l), n<m.
I=n
Taking an arbitrary sequence {sx } C R, there exist a subsequence {sx }, and two functions D, E such that
lim Ci(n+sx)=D(m), lim D(n—sx)=Ci(n), necZ,
k—o0 k— o0

and
lim C{'(n+sx) = E(n), lim E(n—s;)=Cy'(n), nel.
k—o00 k—o00
Denote
n—1
D(m-l—l’l—l—l), any
Yimy={"""

m—1
IT E(Z), n<m.
l=n

Fix n,m € Z with n > m. We have
n—+skg—1
Yi(n+sg,m+sg) = l_[ Ciim+n+2s —1-1)
I=m-+sk
n—1
l_[CI(m—i-n—l—l—l—sk)

I=m

n—1
— 1_[ Dm+n—1-=1) =5’T(n,m),

I=m

as k — oco. Analogously, one can show that

?f(n—sk,m—sk) — Yi(n,m), k — oo.
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The proof for the case of n < m is fully similar to the above proof and the proof for the case of m = n is trivial.
This shows that Y1 € BAA(Z X Z, Mpx »(C)).
Moreover, we claim that [Y — Y1] € BCo(Z x Z, Mpx »(C)). In fact, for n,m € Z with n > m, we have

Yn+km+k)—Y (n+k,m+k)

n+k—1 n+k—1

= [ ¢com+n+2k—1-01)— J] Cim+n+2k—1-1)
I=m+k I=m+k

n—1 n—I1

=[[con+n+k—1-D—J] Citm+n—-1-1+k) -0, k— oo,
l=m l=m

since C(n) and Cj (n) are both bounded, and as k — oo,
Cm+n+k—-1-0)—-Ciim+n—1-14+k)=Com+n—-1-14+k)—0, I=m,m+1,...,n—1.

This shows that Y € BAAA(Z x Z, Mpx p(C)). O

4 AAA solutions

In this section, we discuss the existence of asymptotically almost automorphic solutions for difference system (6)
and DEPCA (1).

Theorem 4.1. Let C € AAA(Z, My ,(C)) such that every C(n) is invertible and the set {C ' (n) : n € 7}
is bounded. Also, assume that h € AAA(Z,CP?) and system (7) has an exponential dichotomy with parameters
(o, K, P). Then, system (6) has a unique asymptotically almost automorphic solution given by

y(n) =Y G(n.k+Dh(k). neZ
KeZ

Moreover |y(n)| < K(1 + e~ ®)(1 —e™ @)~ L||h| foralln € Z.
Proof. By [10, Theorem 5.7], system (6) has a unique bounded solution y(n) given by

y(n)=Y_Gn.k+Dh(k). nel.
keZ

It follows from Lemma 3.4 that G € BAAA(Z X Z, Mpx »(C)). Thus, we have the following decomposition:

yn) =Y G(n.k+ Dh(k)

kez
=Y Gi(nk+Dhi(k)+ Y Gi(n,k + Dha(k) + Y Ga(n,k + Dh(k),
kez k€7 kez

where G = G1+ G2, h = h1+h2, Gy € BAA(ZXZ, Mpxp(C)),h1 € AA(Z,C?), G2 € BCo(ZXZ, Mpx p(C)),
h2 S C()(Z,Cp).
It follows from [2, Theorem 3.4] (see also [6, Theorem 3.1]) that

3" Gi(k + Dhy(k) € AAZ.CP).
kezZ
There holds

n—1 +oo

Y Gk + Dhatk)y = Y Gi(n.k+ Dha(k) + > Gi(n.k + Dho(k)
kez k=—o0 k=n
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0 +o0
= > Gin.k+mhak+n—1)+ Y Gi(n.k+nhatk +n—1).
k=—o0 k=1

By using the Lebesgue dominated convergence theorem, h> € Co(Z, C?), and
|G1(n.k +n)| < Ke Xl knez,

which is deduced from

{Gi(n,k+n):neZ} C{Gn,k+n):neZ} (see(iii) of Lemma 2.17),

we conclude

0 +oo
lim " Gi(n.k+mhak +n—1)= lim Y Gi(n.k+nha(k +n—1)=0,
n—oo n—oo
k=—o0 k=1
which yields that > Gi(-,k + 1)ha(k) € Co(Z,CP).
kezZ
It remains to show that Y Ga(-,k + 1)h(k) € Co(Z, CP). Noting that
kez

> Ga(n.k + Dh(k) = Y Ga(n.k +n)h(k +n—1),
kel keZ

for every k € Z, E}m Ga(n,k +n) = 0since G2 € BCo(Z x Z, Mpx p(C)), and
n o0

|Go(n, k +n)| = |G,k +n)—Gi(n.k +n)| <2Ke ! Kk nez,
again by the Lebesgue dominated convergence theorem, we get
lim " Ga(n.k + Dh(k) = 0.
n—)oOkeZ

This completes the proof. O

Theorem 4.2. Let A, B € AAAR, Mpxp(C)), f € AAAR x CP x CP,CP)( Lip(R x CP x CP,CP), and

n+1

{(I—i— / <I>(n,u)B(u)du)_l}nEZ

n

be bounded, where ®(t,s) = ®(t)®~'(s) and O(t) is a fundamental matrix solution of x'(t) = A(t)x(z). Also,
assume that the system y(n + 1) = C(n)y(n) has an exponential dichotomy with parameters («, K, P), where
Cn)y=®n+1,n) + f:+1 ®(n + 1,u)B(u)du. Then, there exists a constant L™ > 0, such that equation (1) has
a unique asymptotically almost automorphic solution provided Ly < L*.

Proof. Taking arbitrary v € AAA(R, C?), consider the following equation

Y0y =A@y @) + BOy[tD) + [ v @), v (D). ®)
By the arguments in the beginning of Section 3, we know that y.; is a solution of equation (8) if and only if for every
ne€Zandt €[n,n+1),

t t

yo () = | ®@n) + / (. 1) Bo)du | yy(n) + / (1) f (e Y (), ¥ (), ©)

n n

and
yy(n+ 1) = C(n)yy (n) + hy (n), (10
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where hy, (n) = f,:l—H O+ Lu) f(u,y@),¥(u])du, n € Z.

Since f € AAAR x C? x CP,CP)( Lip(R x C? x CP,CP), by Lemma 2.11, f(-, v (), ¥([]) €
ZAAAR, CP). Then, by (iii) of Lemma 3.1, hy, € AAA(Z,C?) and C € AAA(Z, Mpx »(C)). Note that for
everyn € Z, I + f"+1 ®(n, u) B(u)du being invertible implies that

n+1
Cin)=®n+1,n) + / ®(n + 1,u)Bu)du

n
n+1

=®n+1,n) |1+ / ®(n,u)B(u)du
n
is also invertible. Moreover, we have

n+1 -1

cC'my=|1+ / ®(n,u)Bu)du d(n,n + 1),

n

which means that {C -1 (n)}nez is also bounded. Then, it follows from Theorem 4.1 that equation (10) has a unique
asymptotically almost automorphic solution given by

yu@) =" Gk +Dhy (k). neL.
kezZ

Then, defining y,, by (9), we get a solution y,, (¢) of equation (8). Also, it is easy to see that y,, (¢) is the unique
solution of equation (8).

Next, let us show that for every € AAA(R,C?), y, € AAA(R, C?). Observe that y, ([']) € ZAAAR, C?),
JCEY O ¥ (D) € ZAAAR, CP), and

1 1

Yo () = | ®@. 1) + / (. u)Ba)du | yy (1)) + / Ow) Sy (). y ()du, 1R, (11)
[£] []

It follows from (iv) of Lemma 3.1 that every term on the right-hand side of (11) belongs to ZAAA(R, C?), and thus
Yy € ZAAA(R, CP). On the other hand, since y,, is continuous on R and

Yy @) = AO)yy @) + BOyy (D) + fE. v @). v ({1]), te@mn+1) nel,

where every term on the right-hand side of the above equality is bounded on R, we conclude (cf. [2, Lemma 4.1])
that y.; (¢) is uniformly continuous on R. Then, by (v) of Lemma 2.10, y,, € AAA(R, C?).

Now, let us show that equation (1) has a unique asymptotically almost automorphic solution. Define a mapping
M : AAAR,C?) > AAAR,C?) by

(MY)(@) = yy (1), teR, ¥ € AAAR,CP).

From the above proof, M is well-defined. For every ¥1, ¥» € AAA(R,C”) and n € Z, there holds

Y0 () = yy, ] = | Y Gk + Dhyy (k) = D Gk + Dy, (k)

kez kez
K(1+e™%)
= ﬁ”th =y, ||
w n+1
< K(1+4+e™9)

I—e™@ nez

* sup / [P + L) - | fQu, 1), Y1 (n) — fu, Y2(u), Y2 (n))|du

2kiLrK(1+e7%)
l—e ¢

Al = vl
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which yields that for every n € Z and t € [n,n + 1), there holds
t
[((MY1) (@) — (My2) ()| < | (1, n) + f O, u) Bu)du| - |yy, (n) — yy, (n)|

n
t

+/ [P )] - [f . Y1), Y1 (u]) = f (. Y2 (u). Ya(u]))|du

n

< ki(LA1BID - [yu () = yuo (W] + 2k1 Ly - |Y1 — ¥
- [k%LfK(l + e )1+ |1Bl)

l—e™@

+lef:| Ny =2l

Thus, we have

Lyllyi — ol
IMY1 = Myl = = .
* 1—e @ . . * .
where L™ = K e FIBDF 2k (=) This means that in the case of L < L™, M has a unique fixed
pointin AAA(R, C?), i.e., equation (1) has a unique asymptotically almost automorphic solution. O

Remark 4.3. It is not difficult to give some sufficient conditions to ensure that the assumptions of Theorem 4.2 hold.
In fact, if || B|| is sufficiently small, then

n+l1 oo n+l1 "
(1+ n/ @(n,u)B(u)du) :r;) - n/ ®(n, u) Bu)du

is well-defined and bounded for n € Z. If, in addition sup |®(n + 1,n)| < 1, then

nez
n—+1
sup |C(n)| < sup |®(n + 1,n)|-sup |I + / ®(n,u)B(u)du| < 1,
nez nez nez
n

which means that the system (7) is exponentially stable (i.e., exponential dichotomy with P = 1 ).
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