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1 Introduction

In this paper, we aim to study the existence and uniqueness of asymptotically almost automorphic solution for the
following differential equation with piecewise constant argument (DEPCA):

y0.t/ D A.t/y.t/C B.t/y.Œt �/C f .t; y.t/; y.Œt �//; t 2 R; (1)

where y.t/ is a p-dimensional complex vector (p is a fixed positive integer), A.t/ and B.t/ are p � p complex
matrices, and the coefficients satisfy some conditions recalled in the sequel.

As noted in some earlier works (cf. [2, 3]), differential equations with piecewise constant argument (DEPCA)
are of considerable importance in applications to some biomedical dynamics, physical phenomena, discretization
problems, etc., and there is a large literature on qualitative properties of solutions to DEPCA, like uniqueness,
boundedness, periodicity, almost periodicity, pseudo almost periodicity, stability, etc. However, it seems that there
are only few results concerning almost automorphic type solutions for DEPCA (cf. [2–5, 7, 11]).

Recall that since Bochner [1] introduced the concept of almost automorphy, the automorphic functions have
been applied to many areas including ordinary as well as partial differential equations, abstract differential equations,
functional-differential equations, integral equations, dynamical systems, etc. We refer the reader to the monographs
of N’Guéréata [8, 9] for the basic theory of almost automorphic functions and their applications.

Stimulated by a recent work of Chávez, Castillo, and Pinto [3], in this paper we investigate the existence and
uniqueness of asymptotically almost automorphic solution to equation (1). In order to establish our main results,
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we recall some notions about asymptotically almost automorphic type functions. Also, we make a systematic study
on the properties of the introduced asymptotically almost automorphic type functions and the associated difference
system for equation (1). Compared with some earlier results (e.g., [2, 3]), we do not assume directly that the Green’s
function is a Bi -almost automorphic type function. In fact, under some assumptions, we prove that the Green’s
function is Bi -asymptotically almost automorphic (see Lemma 3.4).

Before closing this section, we recall what is understood by a solution of DEPCA (1).

Definition 1.1 ([2, 3]). A function y W R ! Cp is called a solution of DEPCA (1) if the following assertions are
satisfied:
(a) y is continuous on R;
(b) y is differentiable on RnZ and for every n 2 Z, y0

C
.n/ and y0�.n/ exsit;

(c) there hold y0
C
.n/ D A.n/y.n/C B.n/y.n/C f .t; y.n/; y.n// for every n 2 Z and

y0.t/ D A.t/y.t/C B.t/y.Œt �/C f .t; y.t/; y.Œt �//; t 2 .n; nC 1/; n 2 Z:

2 Almost automorphic type functions

In this paper, we denote by Z the set of all integers, by R the set of all real numbers, by C the set of all complex
numbers, by Cp the set of all p-dimensional complex vectors, by Mp�p.C/ the set of all p � p complex matrices,
and by BC.Y;X/ the Banach space of all bounded and continuous functions from Y to X with norm kf k D
sup
t2Y
kf .t/k for every two Banach spaces X and Y. Moreover, for convenience, for every c D fci g

p

iD1
2 Cp and

C D fcij g
p

i;jD1
2Mp�p.C/, we denote their norms by the followings:

jcj D max
1�i�p

jci j; jC j D max
1�i;j�p

jcij j:

Next, let us recall some basic definitions and results about almost automorphic functions and asymptotically almost
automorphic functions. For more details, we refer the reader to [8, 9].

Definition 2.1. A function f 2 BC.R;X/ is said to be almost automorphic if given any sequence fsng � R, there
exists a subsequence fsng � fsng such that ef .t/ WD lim

n!1
f .t C sn/

is well defined for every t 2 R, and
lim
n!1

ef .t � sn/ D f .t/
for every t 2 R. We denote the set of all such functions by AA.R;X/.

Remark 2.2. The following is a typical example of almost automorphic function:

f .t/ D sin
1

2C cos t C cos
p
2t
; t 2 R:

We refer the reader to the monographs of N’Guérékata [8, 9] for the basic theory of almost automorphic functions
and their applications.

Definition 2.3. A function f 2 BC.R;X/ is said to be asymptotically almost automorphic iff it admits a
decomposition

f D g C h;

where g 2 AA.R;X/ and h 2 C0.R;X/. Here,

C0.R;X/ WD fh W R! X W h is continuous on R and lim
t!1

h.t/ D 0g:

We denote the set of all such functions by AAA.R;X/.
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Lemma 2.4. The following assertions hold:
(i) fg.t/ W t 2 Rg � ff .t/ W t 2 Rg, where f D g C h, g 2 AA.R;X/ and h 2 C0.R;X/.
(ii) The decomposition of every asymptotically almost automorphic function is unique.
(iii) AA.R;X/ and AAA.R;X/ are both Banach spaces under the supremum norm kf k D sup

t2R
kf .t/k.

Definition 2.5. A function f 2 BC.R � Y;X/ is called almost automorphic if given any compact set K � Y and
any sequence fsng � R, there exists a subsequence fsng � fsng such thatef .t; x/ WD lim

n!1
f .t C sn; x/

is well defined for every t 2 R and x 2 K, and

lim
n!1

ef .t � sn; x/ D f .t; x/
for every t 2 R and x 2 K. We denote the set of all such functions by AA.R � Y;X/.

Definition 2.6. A function f 2 BC.R � Y;X/ is said to be asymptotically almost automorphic iff it admits a
decomposition

f D g C h;

where g 2 AA.R � Y;X/ and h 2 C0.R � Y;X/. Here, C0.R � Y;X/ denote the set of all continuous functions
from R � Y to X satisfying lim

t!1
h.t; y/ D 0 uniformly for y in any compact subset of Y. We denote the set of all

such functions by AAA.R � Y;X/.

Next, let us recall an interesting notion of Z-almost automorphic functions, which is introduced recently by Chávez,
Castillo, and Pinto [2, 3].

Let BPC.R;X/ be the space of all bounded functions f W R! X satisfying that f is continuous in R nZ with
finite lateral limits in Z.

Definition 2.7. A function f 2 BPC.R;X/ is said to be Z-almost automorphic if given any sequence fsng � Z,
there exists a subsequence fsng � fsng such thatef .t/ WD lim

n!1
f .t C sn/

is well defined for every t 2 R, and
lim
n!1

ef .t � sn/ D f .t/
for every t 2 R. We denote the set of all such functions by ZAA.R;X/.

Example 2.8. It is not difficult to verify that

f .t/ D sin
1

2C cosŒt �C cos
�p

2Œt �
� ; t 2 R

is Z-almost automorphic.

Stimulated by the notion of Z-almost automorphic functions, in the following, we introduce the notion of Z-
asymptotically almost automorphic functions and study some basic properties of such functions.

Definition 2.9. A function f 2 BPC.R;X/ is said to be Z-asymptotically almost automorphic iff it admits a
decomposition

f D g C h;

where g 2 ZAA.R;X/ and h 2 ZC0.R;X/. Here,

ZC0.R;X/ D fh 2 BPC.R;X/ W lim
t!1

h.t/ D 0g:

We denote the set of all such functions by ZAAA.R;X/.
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Lemma 2.10. The following assertions hold:
(i) fg.t/ W t 2 Rg � ff .t/ W t 2 Rg, where f D g C h, g 2 ZAA.R;X/ and h 2 ZC0.R;X/.
(ii) The decomposition of every Z-asymptotically almost automorphic function is unique.
(iii) Let f D g C h, g 2 ZAA.R;X/ and h 2 ZC0.R;X/. If f is uniformly continuous on R, then g is also

uniformly continuous on R.
(iv) f 2 AAA.R;X/ implies f .Œ��/ 2 ZAAA.R;X/.
(v) Let f be uniformly continuous on R and f 2 ZAAA.R;X/. Then f 2 AAA.R;X/.

Proof. The assertion (i) follows from the pointwise limits in the definition of ZAA.R;X/ and h 2 ZC0.R;X/. Then,
(i) yields (ii) since 0 has a unique decomposition.

By the definition of ZAA.R;X/, there exists a sequence fsng � Z with lim
n!1

sn D1, such that

lim
n!1

g.t C sn/ Deg.t/; lim
n!1

eg.t � sn/ D g.t/; t 2 R:

For every t1; t2 2 R, there holds

jeg.t1/ �eg.t2/j � jeg.t1/ � g.t1 C sn/j C jg.t1 C sn/ � g.t2 C sn/j C jg.t2 C sn/ �eg.t2/j
� jeg.t1/ � g.t1 C sn/j C jf .t1 C sn/ � f .t2 C sn/j C jg.t2 C sn/ �eg.t2/j
Cjh.t1 C sn/j C jh.t2 C sn/j:

Combining the above observations and h 2 ZC0.R;X/, in view of the fact that f is uniformly continuous on R, we
conclude thateg is uniformly continuous on R, which yields that g is also uniformly continuous on R. This completes
the proof of (iii).

The assertion (iv) follows from the fact that f .Œt C k�/ D f .Œt �C k/ for every t 2 R and k 2 Z.
Now, let’s come to the proof of (v). Let f D g C h, g 2 ZAA.R;X/ and h 2 ZC0.R;X/. Then, by (iii), g and

h are both uniformly continuous on R. It is easy to see that h 2 C0.R;X/. By [2, Lemma 2.8], g 2 AA.R;X/. Thus,
f 2 AAA.R;X/.

Throughout the rest of this paper, we denote Lip.R�Cp�Cp;Cp/ be the set of all functions f W R�Cp�Cp ! Cp

satisfying the following property: there exists a constant Lf > 0 such that

jf .t; x; y/ � f .t; z; w/j � Lf .jx � zj C jy � wj/; t 2 R; .x; y/; .z; w/ 2 Cp � Cp:

Lemma 2.11. Let f 2 AAA.R � Cp � Cp;Cp/
T

Lip.R � Cp � Cp;Cp/ and  2 AAA.R;Cp/. Then,
f .�;  .�/;  .Œ��// 2 ZAAA.R;Cp/.

Proof. Let
f D f1 C f2  D  1 C  2;

where f1 2 AA.R �Cp �Cp;Cp/,  1 2 AA.R;Cp/ and f2 2 C0.R �Cp �Cp;Cp/,  2 2 C0.R;Cp/. Then,
we have

f .t;  .t/;  .Œt �// D f1.t;  1.t/;  1.Œt �//C f .t;  .t/;  .Œt �// � f1.t;  1.t/;  1.Œt �//

D f1.t;  1.t/;  1.Œt �//C f1.t;  .t/;  .Œt �// � f1.t;  1.t/;  1.Œt �//C f2.t;  .t/;  .Œt �//:

By a similar proof to that of (iii) in Lemma 2.10, one can show that f1 2 Lip.R � Cp � Cp;Cp/ with Lipschitz
constant Lf . Combining this with [2, Lemma 2,7], we get f1.�;  1.�/;  1.Œ��// 2 ZAA.R;Cp/. In addition, it
follows from

jf1.t;  .t/;  .Œt �// � f1.t;  1.t/;  1.Œt �//j � Lf .j 2.t/j C j 2.Œt �/j/; t 2 R;

that t ! f1.t;  .t/;  .Œt �// � f1.t;  1.t/;  1.Œt �// belongs to ZC0.R;Cp/. Moreover, it is easy to see that
f2.�;  .�/;  .Œ��// 2 ZC0.R;Cp/. This completes the proof.

Next, we recall some notions about discrete almost automorphic type functions (cf. [2, 3]).
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Definition 2.12. A function f : Z ! X is said to be discrete almost automorphic if given any sequence fsng � Z,
there exists a subsequence fsng � fsng such thatef .k/ WD lim

n!1
f .k C sn/

is well defined for every k 2 Z, and
lim
n!1

ef .k � sn/ D f .k/
for every k 2 Z. We denote the set of all such functions by AA.Z;X/.

Definition 2.13. A function G: Z � Z ! X is said to be discrete Bi -almost automorphic if given any sequence
fsng � Z, there exists a subsequence fsng � fsng such thateG.k;m/ WD lim

n!1
G.k C sn; mC sn/

is well defined for every k;m 2 Z, and

lim
n!1

eG.k � sn; m � sn/ D G.k;m/
for every k;m 2 Z. We denote the set of all such functions by BAA.Z � Z;X/:

Definition 2.14. A function f : Z ! X is said to be discrete asymptotically almost automorphic iff it admits a
decomposition

f D g C h;

where g 2 AA.Z;X/ and h 2 C0.Z;X/ WD fh W Z! X W lim
k!1

h.k/ D 0g. Denote the set of all such functions by

AAA.Z;X/.

In order to establish our main results, we introduce the following notion of Bi -asymptotically almost automorphic
functions.

Definition 2.15. A functionG W Z�Z! X is said to be discrete Bi -asymptotically almost automorphic iff it admits
a decomposition

G D H C I;

where H 2 BAA.Z � Z;X/ and I 2 BC0.Z � Z;X/. Here,

BC0.Z � Z;X/ D fI W Z � Z! X W lim
n!1

I.nC k; nCm/ D 0 for every k;m 2 Zg:

We denote the set of all such functions by BAAA.Z � Z;X/.

Remark 2.16. Note that I 2 BC0.Z � Z;X/ does not imply that

lim
k;m!1

I.k;m/ D 0:

In fact, letting I.k;m/ D .k �m/ sin �
kCm

, for every k;m 2 Z, we have

I.nC k; nCm/ D .k �m/ sin
�

k CmC 2n
! 0; n!1:

However, I.2m;m/ D m sin �
3m
!

�
3

as m!1.

Lemma 2.17. The following assertions hold:
(i) Let G 2 BAAA.Z � Z;X/. Then, for every k;m 2 Z, G.k C �; mC �/ is bounded on Z.
(ii) Let X be a Banach algebra and G1; G2 2 BAAA.Z � Z;X/. Then, G1 �G2 2 BAAA.Z � Z;X/.
(iii) Let G D H C I; where H 2 BAA.Z � Z;X/ and I 2 BC0.Z � Z;X/. Then, for every .k;m/ 2 Z � Z, there

holds
fH.k C n;mC n/ W n 2 Zg � fG.k C n;mC n/ W n 2 Zg:
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Proof. Fix k;m 2 Z. Let G D H C I; where H 2 BAA.Z � Z;X/ and I 2 BC0.Z � Z;X/. We claim that
H.k C �; mC �/ is bounded on Z. In fact, if this is not true, there exists a sequence fsng � Z such that

lim
n!1

H.k C sn; mC sn/ D1:

This contradicts with H 2 BAA.Z � Z;X/. Moreover, it follows from the definition of BC0.Z � Z;X/ that I.k C
�; mC �/ is bounded on Z. Thus, G.k C �; mC �/ is bounded on Z.

The proof of (ii) follows from (i) and the definition of BAA.Z � Z;X/.
It remains to show (iii). Fix .k;m/ 2 Z � Z. By the definition of BAA.Z � Z;X/, there exists fslg � Z with

lim
l!1

sl D1 and a function eH such that

lim
l!1

H.k C nC sl ; mC nC sl / D eH.k C n;mC n/; n 2 Z; (2)

and
lim
l!1

eH.k C n � sl ; mC n � sl / D H.k C n;mC n/; n 2 Z: (3)

It is easy to see from (3) that

fH.k C n;mC n/ W n 2 Zg � feH.k C n;mC n/ W n 2 Zg:

On the other hand, we have

keH.k C n;mC n/ �G.k C nC sl ; mC nC sl /k
� keH.k C n;mC n/ �H.k C nC sl ; mC nC sl /k C kI.k C nC sl ; mC nC sl /k:

Combing this with (2) and I 2 BC0.Z � Z;X/, we get

lim
l!1

G.k C nC sl ; mC nC sl / D eH.k C n;mC n/; n 2 Z;

which means that
feH.k C n;mC n/ W n 2 Zg � fG.k C n;mC n/ W n 2 Zg:

Thus, fH.k C n;mC n/ W n 2 Zg � fG.k C n;mC n/ W n 2 Zg:

Before closing this section, we recall and introduce another two notions (the first one has been mentioned in [3]).

Definition 2.18. A function G W R�R! X is said to be Bi -almost automorphic if for every fsng � R, there exists
a subsequence fsng � fsng such that

eG.s; t/ WD lim
n!1

G.s C sn; t C sn/

is well defined for every .s; t/ 2 R2, and

lim
n!1

eG.s � sn; t � sn/ D G.s; t/
for every .s; t/ 2 R2. We denote the set of all such functions by BAA.R � R;X/:

Definition 2.19. A function G W R � R ! X is said to be Bi -asymptotically almost automorphic iff it admits a
decomposition

G D H C I;

where H 2 BAA.R � R;X/ and I 2 BC0.R � R;X/. Here,

BC0.R � R;X/ D fI W R � R! X W lim
r!1

I.s C r; t C r/ D 0; .s; t/ 2 R2g:

We denote the set of all such functions by BAAA.R � R;X/.
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3 Difference equations

To study equation (1), let us first consider the following linear nonhomogeneous DEPCA:

y0.t/ D A.t/y.t/C B.t/y.Œt �/C f .t/: (4)

Let y be an arbitrary solution of (4) on R. Then, by the variation of constants formula, there holds,

y.t/ D

24ˆ.t; n/C tZ
n

ˆ.t; u/B.u/du

35y.n/C tZ
n

ˆ.t; u/f .u/du; t 2 Œn; nC 1/; n 2 Z; (5)

where ˆ.t; s/ WD ˆ.t/ˆ�1.s/ and ˆ.t/ is a fundamental matrix solution of the system

x0.t/ D A.t/x.t/:

Since y is continuous on R, taking t ! .nC 1/� in the equation (5), we obtain the difference system

y.nC 1/ D C.n/y.n/C h.n/; n 2 Z; (6)

where h.n/ D
R nC1
n

ˆ.nC 1; u/f .u/du, and

C.n/ D ˆ.nC 1; n/C

nC1Z
n

ˆ.nC 1; u/B.u/du:

From the above observations, naturally, we need to consider the difference system (6). Firstly, we investigate if C.n/
and h.n/, n 2 Z, are discrete asymptotically almost automorphic when the coefficients A.t/, B.t/ and f .t/, t 2 R,
are asymptotically almost automorphic.

Lemma 3.1. Let A D A1CA2 2 AAA.R;Mp�p.C//, B 2 AAA.R;Mp�p.C//, and f 2 ZAAA.R;Cp/, where
A1 2 AA.R;Mp�p.C// and A2 2 C0.R;Mp�p.C//. Also, let ˆ and ˆ1 be the fundamental matrix solutions of
systems x0.t/ D A.t/x.t/ and x0.t/ D A1.t/x.t/, respectively. Moreover, let ˆ.t; s/ D ˆ.t/ˆ�1.s/, ˆ1.t; s/ D
ˆ1.t/ˆ

�1
1
.s/ and ˆ2 D ˆ �ˆ1. Then, the following assertions hold:

(i) For every positive real number `, there exists a constant k` > 0 such that

jˆ.t; s/j � k`; jˆ1.t; s/j � k`; .t; s/ 2 E` WD f.t; s/ 2 R2 W jt � sj � `g:

(ii) ˆ1 2 BAA.R � R;Mp�p.C//, ˆ2 2 BC0.R � R;Mp�p.C// and ˆ 2 BAAA.R � R;Mp�p.C//.
(iii) n 7! ˆ.nC 1; n/, n 7!

R nC1
n

ˆ.nC 1; u/B.u/du and n 7!
R nC1
n

ˆ.nC 1; u/f .u/du are all discrete asymp-
totically almost automorphic. Thus, the two functions C.n/ and h.n/ in equation (6) are both asymptotically
almost automorphic.

(iv) The functions

ˆ.t; Œt �/;

tZ
Œt�

ˆ.t; u/B.u/du;

tZ
Œt�

ˆ.t; u/f .u/du;

are all Z-asymptotically almost automorphic.

Proof. The proof of (i) has been essentially given in [3, Lemma 3.2]. Here, for the reader’s convenience, we give a
sketch of the proof. For 0 � t � s � `, by using Gronwall’s inequality and

ˆ.t; s/ D I C

tZ
s

A.u/ˆ.u; s/du;
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where I is the identity matrix in Mp�p.C/, one can show that jˆ.t; s/j � jI je`kAk. For �` � t � s � 0, similarly,
by using

ˆ.t; s/ D I C

tZ
s

ˆ.t; u/A.u/du;

one can also show that jˆ.t; s/j � jI je`kAk. Analogously, one can prove that jˆ1.t; s/j � jI je`kA1k for every
.t; s/ 2 E`. In addition, by (i) of Lemma 2.4, fA1.t/ W t 2 Rg � fA.t/ W t 2 Rg, which implies that kA1k � kAk,
and thus

jˆ1.t; s/j � jI je
`kAk; .t; s/ 2 E`:

Next, let us prove (ii). Since A1 2 AA.R;Mp�p.C//, for every fsng � R, there exist a subsequence fsng � fsng
and a function fA1, such that

lim
n!1

A1.t C sn/ D eA1.t/; lim
n!1

eA1.t � sn/ D A1.t/:
Fix s; t 2 R with t � s. Similar to (i), we have

ˆ1.t; s/ D I C

tZ
s

A1.u/ˆ1.u; s/du; ê
1.t; s/ D I C

tZ
s

eA1.u/ê1.u; s/du;
where ê1.t/ is the fundamental matrix solution of system x0.t/ D eA1.t/x.t/ and ê1.t; s/ D ê

1.t/ê�11 .s/. Then,
by using keA1k � kA1k � kAk, we get

jˆ1.t C sn; s C sn/ � ê1.t; s/j
D

ˇ̌̌̌
ˇ̌ tZ
s

A1.uC sn/ˆ1.uC sn; s C sn/du �

tZ
s

eA1.u/ê1.u; s/du
ˇ̌̌̌
ˇ̌

�

tZ
s

jA1.uC sn/ �eA1.u/j � jˆ1.uC sn; s C sn/jduC keA1k tZ
s

jˆ1.uC sn; s C sn/ � ê1.u; s/jdu
� kt�s

tZ
s

jA1.uC sn/ �eA1.u/jduC kAk tZ
s

jˆ1.uC sn; s C sn/ � ê1.u; s/jdu;
which yields for n!1

jˆ1.t C sn; s C sn/ � ê1.t; s/j � e.t�s/kAk � kt�s tZ
s

jA1.uC sn/ �eA1.u/jdu! 0:

Analogously to the above proof, one can show that lim
n!1

ê
1.t � sn; s � sn/ D ˆ1.t; s/ and similarly for the case

of t < s. This means that ˆ1 2 BAA.R � R;Mp�p.C//. It remains to prove that ˆ2 2 BC0.R � R;Mp�p.C//.
We only consider the case of s � t . By a direct calculation, we have

jˆ2.t C r; s C r/j D jˆ.t C r; s C r/ �ˆ1.t C r; s C r/j

D

ˇ̌̌̌
ˇ̌̌I C tCrZ

sCr

A.u/ˆ.u; s C r/du � I �

tCrZ
sCr

A1.u/ˆ1.u; s C r/du

ˇ̌̌̌
ˇ̌̌

�

tCrZ
sCr

jA2.u/ˆ.u; s C r/jduC

tCrZ
sCr

jA1.u/ˆ2.u; s C r/jdu

� kt�s � .t � s/ � sup
u2ŒsCr;tCr�

jA2.u/j C kAk

tZ
s

jˆ2.uC r; s C r/jdu;
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which means that

jˆ2.t C r; s C r/j � kt�s � .t � s/ � sup
u2ŒsCr;tCr�

jA2.u/j � e
kAk.t�s/

! 0; r !1:

Therefore, ˆ2 2 BC0.R � R;Mp�p.C//, and thus ˆ 2 BAAA.R � R;Mp�p.C//.
Now, let’s come to the proof of (iii). Firstly, by (ii), it is easy to see that

ˆ.� C 1; �/ 2 AAA.Z;Mp�p.C//:

The proof for n 7!
R nC1
n

ˆ.n C 1; u/B.u/du is similar to that of n 7!
R nC1
n

ˆ.n C 1; u/f .u/du. So, we only
prove n 7!

R nC1
n

ˆ.nC 1; u/f .u/du belongs to AAA.Z;Cp/. Observe that

nC1Z
n

ˆ.nC 1; u/f .u/du

D

nC1Z
n

ˆ1.nC 1; u/f1.u/duC

nC1Z
n

ˆ1.nC 1; u/f2.u/duC

nC1Z
n

ˆ2.nC 1; u/f .u/du;

where f D f1 C f2, f1 2 ZAA.R;Cp/ and f2 2 ZC0.R;Cp/. By [3, Lemma 3.3], n 7!
R nC1
n

ˆ1.n C

1; u/f1.u/du belongs to AA.Z;Cp/. By using Lebesgue dominated convergence theorem and (i), we have

lim
n!1

nC1Z
n

ˆ1.nC 1; u/f2.u/du D lim
n!1

1Z
0

ˆ1.nC 1; uC n/f2.uC n/du D 0;

and

lim
n!1

nC1Z
n

ˆ2.nC 1; u/f .u/du D lim
n!1

1Z
0

ˆ2.nC 1; nC u/f .uC n/du D 0:

Thus, we conclude that n 7!
R nC1
n

ˆ.nC 1; u/f .u/du is discrete asymptotically almost automorphic.
It remains to prove (iv). It follows from ˆ 2 BAAA.R � R;Mp�p.C// that the functions ˆ.t; Œt �/ is Z-

asymptotically almost automorphic. As in the proof of (iii), let f D f1 C f2, f1 2 ZAA.R;Cp/ and f2 2
ZC0.R;Cp/. Then, there holds

tZ
Œt�

ˆ.t; u/f .u/du D

tZ
Œt�

ˆ1.t; u/f1.u/duC

tZ
Œt�

ˆ1.t; u/f2.u/duC

tZ
Œt�

ˆ2.t; u/f .u/du:

Again by [3, Lemma 3.3], we get

t 7!

tZ
Œt�

ˆ1.t; u/f1.u/du

is Z-almost automorphic. Moreover, by (i), f2 2 ZC0.R;Cp/, and ˆ2 2 BC0.R � R;Mp�p.C//, we concludeˇ̌̌̌
ˇ̌̌ tZ
Œt�

ˆ1.t; u/f2.u/du

ˇ̌̌̌
ˇ̌̌ � k1 � sup

Œt��u�t

jf2.u/j ! 0; t !1;

and ˇ̌̌̌
ˇ̌̌ tZ
Œt�

ˆ2.t; u/f .u/du

ˇ̌̌̌
ˇ̌̌ � sup

Œt��u�t

jˆ2.t; u/j � kf k ! 0; t !1:

Indeed, by a similar proof to that of ˆ2 2 BC0.R � R;Mp�p.C// in (ii), one can obtain

jˆ2.t; u/j � kt�u � sup
u�v�t

jA2.v/j � e
kAk.t�u/

� k1 sup
Œt��v�t

jA2.v/j � e
kAk; Œt � � u � t;
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which yields that
sup

Œt��u�t

jˆ2.t; u/j � k1e
kAk
� sup
Œt��v�t

jA2.v/j ! 0; t !1:

In conclusion, we know that the function

t 7!

tZ
Œt�

ˆ.t; u/f .u/du

is Z-asymptotically almost automorphic. Analogously, one can also obtain that the function

t 7!

tZ
Œt�

ˆ.t; u/B.u/du

is Z-asymptotically almost automorphic.

Let us recall the notions of exponential dichotomy and Green’s function for homogenous difference system

y.nC 1/ D C.n/y.n/; n 2 Z; (7)

where C.n/ 2 Mp�p.C/ is invertible and y.n/ 2 Cp , n 2 Z. We will also study asymptotically almost
automorphicity for the Green’s function of difference system (7).

Definition 3.2 (cf. [3]). Let Y.n/ be a fundamental matrix of difference system (7). The system (7) is said to have
an exponential dichotomy with parameters .˛;K;P / if there exist a projection P , which commutes with Y.n/, and
positive constants K; ˛ > 0 such that

jG.n;m/j � Ke�˛jn�mj; n;m 2 Z;

where

G.n;m/ WD

8<: Y.n/PY �1.m/; n � m;

�Y.n/.I � P /Y �1.m/; n < m;

is called the Green’s function of (7).

Before discussing the asymptotically almost automorphicity of Green’s function, we first establish the following
lemma, which is an extension of [6, Lemma 2.9].

Lemma 3.3. Let C 2 AAA.Z;Mp�p.C// such that every C.n/ is invertible and the set fC�1.n/ W n 2 Zg is
bounded. Then, C�1 2 AAA.Z;Mp�p.C//.

Proof. Let
C.n/ D C1.n/C C2.n/; n 2 Z;

where C1 2 AA.Z;Mp�p.C// and C2 2 C0.Z;Mp�p.C//. By (iii) of Lemma 2.17, we have

fC1.n/ W n 2 Zg � fC.n/ W n 2 Zg:

Then, for every n 2 Z, there exists a sequence fskg � Z such that

C.sk/! C1.n/; k !1:

Since C.sk/ is invertible, the set fC�1.n/ W n 2 Zg is bounded, and

C1.n/ D C.sk/C C1.n/ � C.sk/ D C.sk/ �
�
I C C�1.sk/ŒC1.n/ � C.sk �

�
;

we conclude that C1.n/ is invertible. Moreover, there holds

C�1.sk/ � C
�1
1 .n/ D C�11 .n/ŒC1.n/ � C.sk/�C

�1.sk/;
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which means that C�1.sk/! C�1
1
.n/ as k !1, and thus

fC�11 .n/ W n 2 Zg � fC�1.n/ W n 2 Zg:

Then, it follows that fC�1
1
.n/ W n 2 Zg is also bounded, and thus, by [6, Lemma 2.9], n 7! C�1

1
.n/ belongs to

AA.Z;Mp�p.C//. In addition, by C2 2 C0.Z;Mp�p.C//, we have

C�1.n/ � C�11 .n/ D C�11 .n/ŒC1.n/ � C.n/�C
�1.n/ D �C�11 .n/C2.n/C

�1.n/! 0; n!1:

Then, we conclude that n 7! C�1.n/ belongs to AAA.Z;Mp�p.C//.

Lemma 3.4. Let C 2 AAA.Z;Mp�p.C// such that every C.n/ is invertible and the set fC�1.n/ W n 2 Zg is
bounded. Also, assume that system (7) has an exponential dichotomy with parameters .˛;K;P /. Then, the Green’s
function G 2 BAAA.Z � Z;Mp�p.C//.

Proof. For every n;m 2 Z, we denote Y.n;m/ D Y.n/Y �1.m/. Then,

Y.n;m/ D

8̂̂̂<̂
ˆ̂:
n�1Q
lDm

C.mC n � 1 � l/; n � m;

m�1Q
lDn

C�1.l/; n < m:

Noting that P commutes with Y.n/, it suffices to prove that Y.n;m/ is Bi -asymptotically almost automorphic.
Let C.n/ D C1.n/C C2.n/; n 2 Z; where C1 2 AA.Z;Mp�p.C// and C2 2 C0.Z;Mp�p.C//. By Lemma

3.3, C�1.n/ is also asymptotically almost automorphic and C�1
1
.n/ is just the almost automorphic component of

C�1.n/. Denote

Y1.n;m/ D

8̂̂̂<̂
ˆ̂:
n�1Q
lDm

C1.mC n � 1 � l/; n � m;

m�1Q
lDn

C�1
1
.l/; n < m:

Taking an arbitrary sequence fskg � R, there exist a subsequence fskg, and two functions D;E such that

lim
k!1

C1.nC sk/ D D.n/; lim
k!1

D.n � sk/ D C1.n/; n 2 Z;

and
lim
k!1

C�11 .nC sk/ D E.n/; lim
k!1

E.n � sk/ D C
�1
1 .n/; n 2 Z:

Denote

fY1.n;m/ D
8̂̂̂<̂
ˆ̂:
n�1Q
lDm

D.mC n � 1 � l/; n � m;

m�1Q
lDn

E.l/; n < m:

Fix n;m 2 Z with n > m. We have

Y1.nC sk ; mC sk/ D

nCsk�1Y
lDmCsk

C1.mC nC 2sk � 1 � l/

D

n�1Y
lDm

C1.mC n � 1 � l C sk/

!

n�1Y
lDm

D.mC n � 1 � l/ DfY1.n;m/;
as k !1. Analogously, one can show thatfY1.n � sk ; m � sk/! Y1.n;m/; k !1:
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The proof for the case of n < m is fully similar to the above proof and the proof for the case of m D n is trivial.
This shows that Y1 2 BAA.Z � Z;Mp�p.C//.

Moreover, we claim that ŒY � Y1� 2 BC0.Z � Z;Mp�p.C//. In fact, for n;m 2 Z with n > m, we have

Y.nC k;mC k/ � Y1.nC k;mC k/

D

nCk�1Y
lDmCk

C.mC nC 2k � 1 � l/ �

nCk�1Y
lDmCk

C1.mC nC 2k � 1 � l/

D

n�1Y
lDm

C.mC nC k � 1 � l/ �

n�1Y
lDm

C1.mC n � 1 � l C k/! 0; k !1;

since C.n/ and C1.n/ are both bounded, and as k !1,

C.mC nC k � 1 � l/ � C1.mC n � 1 � l C k/ D C2.mC n � 1 � l C k/! 0; l D m;mC 1; : : : ; n � 1:

This shows that Y 2 BAAA.Z � Z;Mp�p.C//.

4 AAA solutions

In this section, we discuss the existence of asymptotically almost automorphic solutions for difference system (6)
and DEPCA (1).

Theorem 4.1. Let C 2 AAA.Z;Mp�p.C// such that every C.n/ is invertible and the set fC�1.n/ W n 2 Zg
is bounded. Also, assume that h 2 AAA.Z;Cp/ and system (7) has an exponential dichotomy with parameters
.˛;K;P /. Then, system (6) has a unique asymptotically almost automorphic solution given by

y.n/ D
X
k2Z

G.n; k C 1/h.k/; n 2 Z:

Moreover jy.n/j � K.1C e�˛/.1 � e�˛/�1khk for all n 2 Z.

Proof. By [10, Theorem 5.7], system (6) has a unique bounded solution y.n/ given by

y.n/ D
X
k2Z

G.n; k C 1/h.k/; n 2 Z:

It follows from Lemma 3.4 that G 2 BAAA.Z � Z;Mp�p.C//. Thus, we have the following decomposition:

y.n/ D
X
k2Z

G.n; k C 1/h.k/

D

X
k2Z

G1.n; k C 1/h1.k/C
X
k2Z

G1.n; k C 1/h2.k/C
X
k2Z

G2.n; k C 1/h.k/;

whereG D G1CG2, h D h1Ch2,G1 2 BAA.Z�Z;Mp�p.C//, h1 2 AA.Z;Cp/,G2 2 BC0.Z�Z;Mp�p.C//,
h2 2 C0.Z;Cp/.

It follows from [2, Theorem 3.4] (see also [6, Theorem 3.1]) thatX
k2Z

G1.�; k C 1/h1.k/ 2 AA.Z;Cp/:

There holds

X
k2Z

G1.n; k C 1/h2.k/ D

n�1X
kD�1

G1.n; k C 1/h2.k/C

C1X
kDn

G1.n; k C 1/h2.k/
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D

0X
kD�1

G1.n; k C n/h2.k C n � 1/C

C1X
kD1

G1.n; k C n/h2.k C n � 1/:

By using the Lebesgue dominated convergence theorem, h2 2 C0.Z;Cp/, and

jG1.n; k C n/j � Ke
�˛jkj; k; n 2 Z;

which is deduced from

fG1.n; k C n/ W n 2 Zg � fG.n; k C n/ W n 2 Zg (see (iii) of Lemma 2.17) ;

we conclude

lim
n!1

0X
kD�1

G1.n; k C n/h2.k C n � 1/ D lim
n!1

C1X
kD1

G1.n; k C n/h2.k C n � 1/ D 0;

which yields that
P
k2Z

G1.�; k C 1/h2.k/ 2 C0.Z;Cp/.

It remains to show that
P
k2Z

G2.�; k C 1/h.k/ 2 C0.Z;Cp/. Noting that

X
k2Z

G2.n; k C 1/h.k/ D
X
k2Z

G2.n; k C n/h.k C n � 1/;

for every k 2 Z, lim
n!1

G2.n; k C n/ D 0 since G2 2 BC0.Z � Z;Mp�p.C//, and

jG2.n; k C n/j D jG.n; k C n/ �G1.n; k C n/j � 2Ke
�˛jkj; k; n 2 Z;

again by the Lebesgue dominated convergence theorem, we get

lim
n!1

X
k2Z

G2.n; k C 1/h.k/ D 0:

This completes the proof.

Theorem 4.2. Let A;B 2 AAA.R;Mp�p.C//, f 2 AAA.R � Cp � Cp;Cp/
T

Lip.R � Cp � Cp;Cp/, and

n�
I C

nC1Z
n

ˆ.n; u/B.u/du
��1o

n2Z

be bounded, where ˆ.t; s/ WD ˆ.t/ˆ�1.s/ and ˆ.t/ is a fundamental matrix solution of x0.t/ D A.t/x.t/. Also,
assume that the system y.n C 1/ D C.n/y.n/ has an exponential dichotomy with parameters .˛;K;P /, where
C.n/ D ˆ.nC 1; n/C

R nC1
n

ˆ.nC 1; u/B.u/du. Then, there exists a constant L� > 0, such that equation (1) has
a unique asymptotically almost automorphic solution provided Lf < L�.

Proof. Taking arbitrary  2 AAA.R;Cp/, consider the following equation

y0.t/ D A.t/y.t/C B.t/y.Œt �/C f .t;  .t/;  .Œt �//: (8)

By the arguments in the beginning of Section 3, we know that y is a solution of equation (8) if and only if for every
n 2 Z and t 2 Œn; nC 1/,

y .t/ D

24ˆ.t; n/C tZ
n

ˆ.t; u/B.u/du

35y .n/C tZ
n

ˆ.t; u/f .u;  .u/;  .Œu�//du; (9)

and
y .nC 1/ D C.n/y .n/C h .n/; (10)



608 H.-S. Ding, S.-M. Wan

where h .n/ D
R nC1
n

ˆ.nC 1; u/f .u;  .u/;  .Œu�//du; n 2 Z.
Since f 2 AAA.R � Cp � Cp;Cp/

T
Lip.R � Cp � Cp;Cp/, by Lemma 2.11, f .�;  .�/;  .Œ��// 2

ZAAA.R;Cp/. Then, by (iii) of Lemma 3.1, h 2 AAA.Z;Cp/ and C 2 AAA.Z;Mp�p.C//. Note that for
every n 2 Z, I C

R nC1
n

ˆ.n; u/B.u/du being invertible implies that

C.n/ D ˆ.nC 1; n/C

nC1Z
n

ˆ.nC 1; u/B.u/du

D ˆ.nC 1; n/

24I C nC1Z
n

ˆ.n; u/B.u/du

35
is also invertible. Moreover, we have

C�1.n/ D

24I C nC1Z
n

ˆ.n; u/B.u/du

35�1ˆ.n; nC 1/;
which means that fC�1.n/gn2Z is also bounded. Then, it follows from Theorem 4.1 that equation (10) has a unique
asymptotically almost automorphic solution given by

y .n/ D
X
k2Z

G.n; k C 1/h .k/; n 2 Z:

Then, defining y by (9), we get a solution y .t/ of equation (8). Also, it is easy to see that y .t/ is the unique
solution of equation (8).

Next, let us show that for every 2 AAA.R;Cp/, y 2 AAA.R;Cp/. Observe that y .Œ��/ 2 ZAAA.R;Cp/,
f .�;  .�/;  .Œ��// 2 ZAAA.R;Cp/, and

y .t/ D

264ˆ.t; Œt �/C tZ
Œt�

ˆ.t; u/B.u/du

375y .Œt �/C tZ
Œt�

ˆ.t; u/f .u;  .u/;  .Œu�//du; t 2 R: (11)

It follows from (iv) of Lemma 3.1 that every term on the right-hand side of (11) belongs to ZAAA.R;Cp/, and thus
y 2 ZAAA.R;Cp/. On the other hand, since y is continuous on R and

y0 .t/ D A.t/y .t/C B.t/y .Œt �/C f .t;  .t/;  .Œt �//; t 2 .n; nC 1/; n 2 Z;

where every term on the right-hand side of the above equality is bounded on R, we conclude (cf. [2, Lemma 4.1])
that y .t/ is uniformly continuous on R. Then, by (v) of Lemma 2.10, y 2 AAA.R;Cp/.

Now, let us show that equation (1) has a unique asymptotically almost automorphic solution. Define a mapping
M W AAA.R;Cp/! AAA.R;Cp/ by

.M /.t/ D y .t/; t 2 R;  2 AAA.R;Cp/:

From the above proof, M is well-defined. For every  1,  2 2 AAA.R;Cp/ and n 2 Z, there holds

jy 1.n/ � y 2.n/j D

ˇ̌̌̌
ˇX
k2Z

G.n; k C 1/h 1.k/ �
X
k2Z

G.n; k C 1/h 2.k/

ˇ̌̌̌
ˇ

�
K.1C e�˛/

1 � e�˛
kh 1 � h 2k

�
K.1C e�˛/

1 � e�˛
� sup
n2Z

nC1Z
n

jˆ.nC 1; u/j � jf .u;  1.u/;  1.n// � f .u;  2.u/;  2.n//jdu

�
2k1LfK.1C e

�˛/

1 � e�˛
� k 1 �  2k;
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which yields that for every n 2 Z and t 2 Œn; nC 1/, there holds

j.M 1/.t/ � .M 2/.t/j �

ˇ̌̌̌
ˇ̌ˆ.t; n/C tZ

n

ˆ.t; u/B.u/du

ˇ̌̌̌
ˇ̌ � jy 1.n/ � y 2.n/j

C

tZ
n

jˆ.t; u/j � jf .u;  1.u/;  1.Œu�// � f .u;  2.u/;  2.Œu�//jdu

� k1.1C kBk/ � jy 1.n/ � y 2.n/j C 2k1Lf � k 1 �  2k

� 2

"
k2
1
LfK.1C e

�˛/.1C kBk/

1 � e�˛
C k1Lf

#
� k 1 �  2k:

Thus, we have

kM 1 �M 2k �
Lf k 1 �  2k

L�
;

where L� D 1�e�˛

2k21K.1Ce
�˛/.1CkBk/C2k1.1�e�˛/

. This means that in the case of Lf < L�, M has a unique fixed

point in AAA.R;Cp/, i.e., equation (1) has a unique asymptotically almost automorphic solution.

Remark 4.3. It is not difficult to give some sufficient conditions to ensure that the assumptions of Theorem 4.2 hold.
In fact, if kBk is sufficiently small, then

�
I C

nC1Z
n

ˆ.n; u/B.u/du
��1
D

C1X
nD0

0@� nC1Z
n

ˆ.n; u/B.u/du

1An

is well-defined and bounded for n 2 Z. If, in addition sup
n2Z
jˆ.nC 1; n/j < 1, then

sup
n2Z
jC.n/j � sup

n2Z
jˆ.nC 1; n/j � sup

n2Z

ˇ̌̌̌
ˇ̌I C nC1Z

n

ˆ.n; u/B.u/du

ˇ̌̌̌
ˇ̌ < 1;

which means that the system (7) is exponentially stable (i.e., exponential dichotomy with P D I ).
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