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1 Introduction

In this paper we are interested in the complete convergence for weighted sums of pairwise independent random
variables. First let us recall some definitions and known results.

1.1 Complete convergence

The following concept of complete convergence of a sequence of random variables, which plays an important role in
limit theory of probability, was introduced firstly by Hsu and Robbins [1]. A random sequence fXn; n � 1g is said
to converge completely to the constant C (write Xn ! C completely) if

1X
nD1

P.jXn � C j > "/ <1 for all " > 0:

In view of the Borel-Cantelli Lemma, this implies that Xn ! C almost surely (a.s.). For the case of i.i.d. random
variables, Hsu and Robbins [1] proved that the sequence of arithmetic means of the random variables converges
completely to the expected value if the variance of the summands is finite. Somewhat later, Erdös [2] proved the
converse. These results are summarized as follows.

Hsu-Robbins-Erdös strong law. Let fXn; n � 1g be a sequence of i.i.d. random variables with mean zero and
set Sn D

Pn
iD1Xi , then EX2

1
<1 is equivalent to the condition that

1X
nD1

P.jSnj > "n/ <1; for all " > 0:
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The result of Hsu-Robbins-Erdös strong law is a fundamental theorem in probability theory and was intensively
investigated in several directions by many authors in the past decades. One of the most important results is Baum
and Katz [3] strong law.

Baum and Katz strong law. Let ˛p � 1, p > 2 and let fXng be a sequence of i.i.d. random variables and
EjX1j

p <1. If 1
2
< ˛ � 1, assume that EX1 D 0. Then

1X
nD1

n˛p�2P

0@ max
1�j�n

ˇ̌̌̌
ˇ̌ jX
iD1

Xi

ˇ̌̌̌
ˇ̌ > "n˛

1A <1 for all " > 0:

Baum and Katz strong law bridges the integrability of summands and the rate of convergence in the Marcinkiewicz-
Zygmund strong law of large numbers.

In general, the main tools to prove the complete convergence of some random variables are based on the moment
inequality or the exponential inequality. However, for some dependent sequences (such as pairwise independent
sequence, pairwise negatively dependent sequence), whether these inequalities hold was not known. Recently, Bai
et al. [4] obtained the following excellent result for the maximum partial sums of pairwise independent random
variables.

Theorem 1.1 ([4]). Let 1 � p < 2 and let fXn; n � 1g be a sequence of pairwise i.i.d. random variables. Then
EX1 D 0 and EjX1jp <1 if and only if for all " > 0

1X
nD1

np�2P

0@ max
1�j�n

ˇ̌̌̌
ˇ̌ jX
iD1

Xi

ˇ̌̌̌
ˇ̌ > "n

1A <1:
It is well known that the analysis of weighted sums plays an important role in the statistics, such as jackknife
estimate, nonparametric regression function estimate and so on. Many authors considered the complete convergence
of the weight sums of random variables. Thrum [5] studied the almost sure convergence of weighted sums of i.i.d.
random variables; Li et al. [6] obtained complete convergence of weighted sums without identically distributed
assumption. Liang and Su [7] extended the the results of Thrum [5] and Li et al. [6], and showed the complete
convergence of weighted sums of negatively associated sequence. Beak [8] discussed the almost sure convergence
for weighted sums of pairwise independent random variables. Huang et al. [9], Shen et al. [10] studied the complete
convergence theorems for weighted sums of �-mixing random variables. Miao et al. [11] established some results
of complete convergence for martingales and under some uniform mixing conditions, the sufficient and necessary
condition of the convergence of the martingale series was established. For the negatively orthant dependent random
variables, Gan and Chen [12] discussed the complete convergence of weight sums, and for some special weighted
sums, Chen and Sung [13] gave necessary and sufficient conditions for the complete convergence. Deng et al. [14],
Zhao et al. [15] presented some results on complete convergence for weighted sums of random variables satisfying
the Rosenthal type inequality. Xue et al. [16], Wang et al. [17], Deng et al. [18] studied the complete convergence for
weighted sums of negatively superadditive-dependent random variables. Qiu and Chen [19] obtained the complete
convergence for the weighted sums of widely orthant dependent random variables. Wu [20], Jabbari [21], Zhang et al.
[22] gave the complete convergence for weighted sums of pairwise negative quadrant dependent random variables.
For linearly negative quadrant dependent random variables, Choi et al. [23] established the complete convergence of
weight sums. Baek and Park [24], Baek et al. [25] gave the complete convergence of arrays of rowwise negatively
dependent random variables, and Qiu et al. [26] derived a general result for the complete convergence.

In the present paper, we shall study the sufficient conditions which make the following complete convergence
of weighted sums of pairwise independent random variables hold

1X
nD1

ntP

 ˇ̌̌̌
ˇ 1X
iD1

aniXi

ˇ̌̌̌
ˇ > rn1=p

!
<1 for all r > 0; (1)

where fani ; i � 1; n � 1g is an array of constants and t is some parameter which will be defined in the main results.
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1.2 Stochastic domination

A sequence fXn; n � 1g of random variables is said to be stochastically dominated by a random variable X if there
exists a positive constant C such that

P.jXnj > x/ � CP.jX j > x/ (2)

for all x � 0 and n � 1. This dominated condition means weakly dominated, where weak refers to the fact that
domination is distributional. In [27], Gut introduced a weakly mean dominated condition. We say that the random
variables fXn; n � 1g are weakly mean dominated by the random variable X , where X is possibly defined on a
different space if for some C > 0,

1

n

nX
kD1

P.jXk j > x/ � CP.jX j > x/ (3)

for all x � 0 and n � 1. It is clear that if X dominates the sequence fXn; n � 1g in the weakly dominated sense,
then it also dominates the sequence in the weakly mean dominated sense. Furthermore, Gut [27] gave an example to
show that the condition (3) is weaker than the above condition (2).

Our main results are stated in Section 2 and the proofs are given in Section 3. Throughout this paper, let C
denote a positive constant, which may take different values whenever it appears in different expressions, and I.�/
stand for the indicator function.

2 Main results

In each situation studied, we assume that
P1
iD1 aniXi is finite a.s., which implies that

P1
iD1 aniXi converges a.s.

If t < �1, then (1) holds obviously and hence it is of interest only for t � �1.

Theorem 2.1. Let fXn; n � 1g be a sequence of random variables which are stochastically dominated by the
random variable X (i.e., the inequality (2) holds) satisfying

EjX jp.tCˇC1/ <1;

where p.t C ˇ C 1/ > 0 and p > 0. Let fani ; i � 1; n � 1g be a bounded array of real numbers satisfying

1X
iD1

jani j
q
D O.nˇ/ (4)

for some q < p.t C ˇ C 1/.

(1) If 0 < p.t C ˇ C 1/ < 1, then we have

1X
nD1

ntP

 ˇ̌̌̌
ˇ 1X
iD1

aniXi

ˇ̌̌̌
ˇ > rn1=p

!
<1 for all r > 0: (5)

(2) If 1 � p.t C ˇ C 1/ < 2, fXn; n � 1g is a sequence of pairwise independent random variables and EXn D 0,
then (5) holds.
(3) If p.t C ˇ C 1/ D 2, fXn; n � 1g is a sequence of pairwise independent random variables and EXn D 0 and
assume that the condition (4) is replaced by the following condition

1X
iD1

jani j
2
D O.nˇ log�˛ n/ (6)

for some ˛ > 1, then (5) holds.



470 L. Ge et al.

Remark 2.2. It is easy to see that the condition (4) implies

1X
iD1

jani j
qC


D O.nˇ/ for any 
 > 0:

Remark 2.3. Sung [28] considered the same problems for weighted sums of independent random variables. For the
case p.t C ˇ C 1/ � 2, Sung [28] gave the following result: if fXn; n � 1g are independent, EXn D 0 and

1X
iD1

jani j
2
D O.n˛/

for some ˛ < 2=p, then (5) holds. The method to prove the case p.t C ˇ C 1/ � 2 in [28] is to use the complete
convergence theorem for arrays of rowwise independent random variables from Sung et al. [29]. The key tool to
prove the complete convergence for arrays of rowwise independent random variables is the Hoffman-Jørgensen
inequality (see [30]). But we do not know whether the Hoffman-Jørgensen inequality for pairwise independent
random variables holds or not.

Theorem 2.4. Let fXn; n � 1g be a sequence of random variables which are stochastically dominated by the
random variable X (i.e., the inequality (2) holds) satisfying

EjX jp.tCˇC1/ log jX j <1;

where p.t C ˇ C 1/ > 0 and p > 0. Let fani ; i � 1; n � 1g be a bounded array of real numbers satisfying

1X
iD1

jani j
p.tCˇC1/

D O.nˇ/: (7)

(1) If 0 < p.t C ˇ C 1/ < 1, then we have

1X
nD1

ntP

 ˇ̌̌̌
ˇ 1X
iD1

aniXi

ˇ̌̌̌
ˇ > rn1=p

!
<1 for all r > 0: (8)

(2) If 1 � p.t C ˇ C 1/ < 2, fXn; n � 1g is a sequence of pairwise independent random variables and EXn D 0,
then (5) holds.

Proof. The proof is similar to that of Theorem 2.1, so we omit it.

Corollary 2.5. Let fXn; n � 1g be a sequence of random variables which are weakly mean dominated by the
random variable X (i.e., the inequality (3) holds) satisfying

EjX jp.tC2/ <1;

for some 0 < p < 2 and 1 < p.t C 2/ < 2.

(1) If 0 < p.t C 2/ < 1, then we have

1X
nD1

ntP

 ˇ̌̌̌
ˇ nX
iD1

Xi

ˇ̌̌̌
ˇ > rn1=p

!
<1 for all r > 0: (9)

(2) If 1 � p.t C 2/ < 2, fXn; n � 1g is a sequence of pairwise independent random variables and EXn D 0, then
(9) holds.

Corollary 2.6. Let fXn;�1 < n <1g be a sequence of zero mean pairwise independent random variables which
are stochastically dominated by the random variable X (i.e., the inequality (2) holds) satisfying

EjX jp.tC2/ <1;
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for some 0 < p < 2 and 1 < p.t C 2/ < 2. Let fan;�1 < n <1g be a sequence of real numbers such that

1X
nD�1

janj <1:

Set

ani D

iCnX
jDiC1

aj

for each i and n. Then for any r > 0,

1X
nD1

ntP

 ˇ̌̌̌
ˇ 1X
iD�1

aniXi

ˇ̌̌̌
ˇ > rn1=p

!
<1:

3 Proofs of main results

In order to prove our main results, we need some preliminary lemmas.

Lemma 3.1 ([31]). Let 1 � r � 2 and let fXn; n � 1g be a sequence of pairwise independent random variables
with EXn D 0 and EjXnjr <1 for all n � 1. Then there exists a positive Cr depending only on r , such that

E

ˇ̌̌̌
ˇ nX
kD1

Xk

ˇ̌̌̌
ˇ
r

� Cr

nX
kD1

E jXk j
r ; 8 n � 1:

The following lemma is well known and its proof is standard.

Lemma 3.2. Let fXn; n � 1g be a sequence of random variables satisfying a weak mean dominating condition with
mean dominating random variable X (i.e., the inequality (3) holds). Let p > 0 and for some ˛ > 0,

X
0

i D XiIfjXi j�˛g; X
00

i D XiIfjXi j>˛g

and
X
0

D XIfjXj�˛g; X
00

D XIfjXj>˛g:

Then if EjX jp <1, we have
(1) n�1

Pn
kD1EjXk j

p � CEjX jp ,

(2) n�1
Pn
kD1EjX

0

k
jp � C

�
EjX

0

jp C ˛pP.jX j > ˛/
�

,

(3) n�1
Pn
kD1EjX

00

k
jp � CEjX

00

jp .

Remark 3.3. Under the assumptions in Lemma 3.2, if the dominating condition (3) is replaced by the condition (2),
then it is easy to see that for all k � 1,
(1) EjXk jp � CEjX jp ,
(2) EjX

0

k
jp � C

�
EjX

0

jp C ˛pP.jX j > ˛/
�

,

(3) EjX
00

k
jp � CEjX

00

jp .

Proof of Theorem 2.1. For i � 1; n � 1, let

X
0

ni D XiIfjXi j�n1=pg; X
00

ni D XiIfjXi j>n1=pg (10)

and
X
0

n D XIfjXj�n1=pg; X
00

n D XIfjXj>n1=pg: (11)
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(1) Since 0 < p.t C ˇ C 1/ < 1, we can take a positive constant " such that 0 < p.t C ˇ C 1/ C " � 1. Let
u D p.t C ˇ C 1/, then from Remark 3.3 we have

1X
nD1

ntP

 ˇ̌̌̌
ˇ 1X
iD1

aniX
0

ni

ˇ̌̌̌
ˇ > rn1=p

!
�C

1X
nD1

nt�
"Cu
p E

ˇ̌̌̌
ˇ 1X
iD1

aniX
0

ni

ˇ̌̌̌
ˇ
uC"

�C

1X
nD1

nt�
"Cu
p

1X
iD1

E
ˇ̌̌
aniX

0

ni

ˇ̌̌uC"
�C

1X
nD1

nt�
"Cu
p

1X
iD1

jani j
uC"

�
EjX

0

nj
uC"
C n

uC"
p P.jX j > n1=p/

�
:

From Remark 2.2, it is easy to see that

1X
nD1

nt�
"Cu
p

1X
iD1

jani j
uC"n

uC"
p P.jX j > n1=p/

�C

1X
nD1

ntCˇP.jX j > n1=p/

�C

1X
nD1

n
u
p�1

1X
kDn

P.ku=p < jX ju � .k C 1/u=p/

�C

1X
kD1

ku=pP
�
ku=p < jX ju � .k C 1/u=p

�
� CEjX ju <1

and

1X
nD1

nt�
"Cu
p

1X
iD1

jani j
uC"EjX

0

nj
uC"
�C

1X
nD1

n�1�
"
pEjX

0

nj
uC"

�C

1X
kD1

k�
"
pEjX juC"If.k�1/u=p<jXju�ku=pg

�C

1X
kD1

EjX juIf.k�1/u=p<jXju�ku=pg � CEjX j
u <1:

Hence we have
1X
nD1

ntP

 ˇ̌̌̌
ˇ 1X
iD1

aniX
0

ni

ˇ̌̌̌
ˇ > rn1=p

!
<1: (12)

Now we choose " > 0 such that p.t C ˇC 1/� " � q and p.t C ˇC 1/� " > 0. Let u D p.t C ˇC 1/, then from
Remark 2.2 and Remark 3.3, we have

1X
nD1

ntP

 ˇ̌̌̌
ˇ 1X
iD1

aniX
00

ni

ˇ̌̌̌
ˇ > rn1=p

!
�C

1X
nD1

nt�
u�"
p

1X
iD1

E
ˇ̌̌
aniX

00

ni

ˇ̌̌u�"
�C

1X
nD1

n�1C
"
pEjX

00

nj
u�"

�C

1X
kD1

k
"
pEjX ju�"Ifk1=p<jXj�.kC1/1=pg

�CEjX ju <1

which can yield the first result of Theorem 2.1 by combining with (12).



Complete convergence for weighted sums of pairwise independent random variables 473

(2) Case 1: 1 < p.t C ˇ C 1/ < 2. We can choose a positive constant " > 0 such that p.t C ˇ C 1/C " � 2. Let
u D p.t C ˇ C 1/, then from Lemma 3.1, Remark 2.2 and Remark 3.3, we have

1X
nD1

ntP

 ˇ̌̌̌
ˇ 1X
iD1

ani .X
0

ni �EX
0

ni /

ˇ̌̌̌
ˇ > rn1=p

!
�C

1X
nD1

nt�
uC"
p E

ˇ̌̌̌
ˇ 1X
iD1

ani .X
0

ni �EX
0

ni /

ˇ̌̌̌
ˇ
uC"

�C

1X
nD1

nt�
uC"
p

1X
iD1

E
ˇ̌̌
ani .X

0

ni �EX
0

ni /
ˇ̌̌uC"

�C

1X
nD1

nt�
uC"
p

1X
iD1

jani j
uC"EjX

0

ni j
uC"

�C

1X
nD1

ntCˇ�
uC"
p

�
EjX

0

nj
uC"
C n

uC"
p P.jX j > n1=p/

�
:

Since
1X
nD1

ntCˇ�
uC"
p EjX

0

nj
uC"
�C

1X
kD1

k�
"
pEjX juC"If.k�1/1=p<jXj�k1=pg � CEjX j

u <1

and
1X
nD1

ntCˇP.jX j > n1=p/ �C

1X
kD1

ku=pP
�
ku=p < jX ju � .k C 1/u=p

�
� CEjX ju <1

we can get
1X
nD1

ntP

 ˇ̌̌̌
ˇ 1X
iD1

ani .X
0

ni �EX
0

ni /

ˇ̌̌̌
ˇ > rn1=p

!
<1: (13)

Now we choose " > 0 such that p.t C ˇ C 1/ � " � q and p.t C ˇ C 1/ � " � 1, then from Lemma 3.1, Remark
2.2 and Remark 3.3, we have

1X
nD1

ntP

 ˇ̌̌̌
ˇ 1X
iD1

ani .X
00

ni �EX
00

ni /

ˇ̌̌̌
ˇ > rn1=p

!
�C

1X
nD1

nt�
u�"
p E

ˇ̌̌̌
ˇ 1X
iD1

ani .X
00

ni �EX
00

ni /

ˇ̌̌̌
ˇ
u�"

�C

1X
nD1

nt�
u�"
p

1X
iD1

E
ˇ̌̌
ani .X

00

ni �EX
00

ni /
ˇ̌̌u�"

�C

1X
nD1

nt�
u�"
p

1X
iD1

jani j
u�"EjX

00

ni j
u�"

�C

1X
nD1

ntCˇ�
u�"
p EjX

00

nj
u�"

�C

1X
kD1

k
"
pEjX ju�"Ifk1=p<jXj�.kC1/1=pg

�CEjX ju <1:

(14)

From (13) and (14), we have proved the desired result for the case 1 < p.t C ˇ C 1/ < 2.

Case 2: p.t C ˇ C 1/ D 1. Without loss of generality, we assume that t � �1 (which implies ˇ � 1=p). From
Remark 2.2 and Remark 3.3, we have

n�1=p

ˇ̌̌̌
ˇ 1X
iD1

aniEXiIfjXi j>n1=pg

ˇ̌̌̌
ˇ

�Cn�1=pEjX jIfjXj>n1=pg

1X
iD1

jani j

�Cnˇ�1=pEjX jIfjXj>n1=pg ! 0 as n!1:

(15)
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Hence there exists some positive constant N0 such that

1X
nDN0

ntP

 ˇ̌̌̌
ˇ 1X
iD1

ani .X
00

ni �EX
00

ni /

ˇ̌̌̌
ˇ > rn1=p

!
�

1X
nDN0

ntP

 ˇ̌̌̌
ˇ 1X
iD1

aniX
00

ni

ˇ̌̌̌
ˇ > rn1=p=2

!
(16)

Now we choose " > 0 such that 1 � " � q and 1 � " > 0, then we have

1X
nDN0

ntP

 ˇ̌̌̌
ˇ 1X
iD1

aniX
00

ni

ˇ̌̌̌
ˇ > rn1=p=2

!
�C

1X
nDN0

nt�
1�"
p

1X
iD1

jani j
1�"EjX

00

ni j
1�"

�C

1X
nDN0

ntCˇ�
1�"
p EjX

00

nj
1�"

�C

1X
kDN0

k�
"
pEjX j1�"If.k�1/1=p<jXj�k1=pg

�CEjX j <1:

(17)

Furthermore by the similar proof (13), we can obtain

1X
nD1

ntP

 ˇ̌̌̌
ˇ 1X
iD1

ani .X
0

ni �EX
0

ni /

ˇ̌̌̌
ˇ > rn1=p

!
<1:

Based on the above discussions, the second result of the theorem can be proved.

(3) For the case p.t C ˇ C 1/ D 2, from Lemma 3.1 and Remark 3.3, we have

1X
nD1

ntP

 ˇ̌̌̌
ˇ 1X
iD1

aniXi

ˇ̌̌̌
ˇ > rn1=p

!
�C

1X
nD1

nt�
2
pE

ˇ̌̌̌
ˇ 1X
iD1

aniXi

ˇ̌̌̌
ˇ
2

�C

1X
nD1

nt�
2
p

1X
iD1

jani j
2EjXi j

2

�C

1X
nD1

nt�
2
pCˇ log�˛ nEjX j2

�C

1X
nD1

n�1 log�˛ nEjX j2 <1:

Proof of Corollary 2.5. The proof is similar to Theorem 2.1, we give only the proof of the first result. For i � 1; n �
1, let the random variables X

0

ni
; X
00

ni
; X
0

n; X
00

n be defined as (10) and (11). Since 0 < p.t C 2/ < 1, we can take a
positive constant " such that 0 < p.t C 2/C " � 1. Let u D p.t C 2/, then from Lemma 3.2 we have

1X
nD1

ntP

 ˇ̌̌̌
ˇ nX
iD1

X
0

ni

ˇ̌̌̌
ˇ > rn1=p

!
�C

1X
nD1

nt�
"Cu
p E

ˇ̌̌̌
ˇ nX
iD1

X
0

ni

ˇ̌̌̌
ˇ
uC"

�C

1X
nD1

nt�
"Cu
p

nX
iD1

E
ˇ̌̌
X
0

ni

ˇ̌̌uC"
�C

1X
nD1

ntC1�
"Cu
p

�
EjX

0

nj
uC"
C n

uC"
p P.jX j > n1=p/

�
:

It is easy to see that

1X
nD1

ntC1P.jX j > n1=p/ �C

1X
nD1

n
u
p�1

1X
kDn

P.ku=p < jX ju � .k C 1/u=p/

�C

1X
kD1

ku=pP
�
ku=p < jX ju � .k C 1/u=p

�
� CEjX ju <1
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and
1X
nD1

ntC1�
"Cu
p EjX

0

nj
uC"
D

1X
nD1

n�1�
"
pEjX

0

nj
uC"

�C

1X
kD1

k�
"
pEjX juC"If.k�1/u=p<jXju�ku=pg

�C

1X
kD1

EjX juIf.k�1/u=p<jXju�ku=pg

�CEjX ju <1:

Hence we have
1X
nD1

ntP

 ˇ̌̌̌
ˇ nX
iD1

X
0

ni

ˇ̌̌̌
ˇ > rn1=p

!
<1: (18)

Now we choose " > 0 such that p.t C 2/ � " � q and p.t C 2/ � " > 0. Let u D p.t C 2/, then from Lemma 3.2,
we have

1X
nD1

ntP

 ˇ̌̌̌
ˇ nX
iD1

X
00

ni

ˇ̌̌̌
ˇ > rn1=p

!
�C

1X
nD1

nt�
u�"
p

nX
iD1

E
ˇ̌̌
X
00

ni

ˇ̌̌u�"
�C

1X
nD1

ntC1�
u�"
p EjX

00

nj
u�"

�C

1X
kD1

k
"
pEjX ju�"Ifk1=p<jXj�.kC1/1=pg

�CEjX ju <1

which can yield the first result of Corollary 2.5 by combining with (18).

Proof of Corollary 2.6. It is easy to check that

1X
iD�1

jani j D O.n/ and
1X

iD�1

a2ni D O.n/:

Taking ˇ D 1, q D 1, then from (2) of Theorem 2.1, the desired results can be obtained.
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