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Abstract: This expository paper focuses on the study of extreme surjective functions in RR. We present several
different types of extreme surjectivity by providing examples and crucial properties. These examples help us
to establish a hierarchy within the different classes of surjectivity we deal with. The classes presented here
are: everywhere surjective functions, strongly everywhere surjective functions, �-everywhere surjective functions,
perfectly everywhere surjective functions and Jones functions. The algebraic structure of the sets of surjective
functions we show here is studied using the concept of lineability. In the final sections of this work we also reveal
unexpected connections between the different degrees of extreme surjectivity given above and other interesting sets
of functions such as the space of additive mappings, the class of mappings with a dense graph, the class of Darboux
functions and the class of Sierpiński-Zygmund functions in RR.
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1 Introduction

At the beginning of the 20th century Lebesgue [1] proved the existence of a mapping f W Œ0; 1� ! Œ0; 1� such that
f .I / D Œ0; 1� for every non-degenerate subinterval I of Œ0; 1�. Lebesgue’s example can be adapted to construct a
mapping defined on the whole real line that transforms every non-degenerate interval into R. This exotic property
turns out to be shared by a surprisingly large class of functions that we call everywhere surjective.

We point out in Section 2 that everywhere surjective functions attain every real value at least @0 many times
in every non-degenerate interval. In fact, it is possible to define an everywhere surjective function that attains each
real number c many times in every non-degenerate interval, where c stands for the cardinality of R. An example
of a function enjoying this refined form of extreme surjectivity will also be given. This example, far from being an
isolated case, is just an instance of a very large class of functions called strongly everywhere surjective. The notion
of strongly everywhere surjectivity does not exhaust all possibilities in the search of extreme surjectivity. Indeed,
there are surjective functions satisfying even more restrictive conditions. We also construct a function that attains
every real number c many times in every perfect set, which is obviously a much stronger form of surjectivity. These
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functions are called perfectly everywhere surjective. We can take an even further step forward towards “supreme
surjectivity”. In 1942, F. B. Jones [2] constructed a function whose graph intersects every closed set in R2 with
uncountable projection on the abscissa axis. The functions that satisfy this latter property are called Jones functions.
It is easily seen that a Jones function is perfectly everywhere surjective. The class of Jones functions can be proved
to be large from an algebraic point of view too.

In order to formalize what is meant by an “algebraically large set” the notion of lineability is commonly used.
We say that a subsetM of a linear space E is �-lineable, ifM [f0g contains a linear subspace of E of dimension �.
IfM [f0g contains an infinite dimensional linear space we simply say thatM is lineable. In Section 3 we will show,
among other important results, that the four classes of surjective functions mentioned above are lineable, actually
2c-lineable. It is important to mention that the study of the lineability of sets of strange functions has become a
fruitful field since the term “lineability” was coined in 2005 (see [3]). A thorough description of the most relevant
lineability problems and other related topics can be found in the monograph [4] or in the expository paper [5]. The
interested reader may also consult the references [6–23].

In Section 4 we establish the connection existing between the classes of extremely surjective functions defined
in Section 2 with other classes of interesting functions. We consider the sets of additive (that is, Q-linear) mappings,
functions with a dense graph, Darboux functions and Sierpiński-Zygmund functions.

This survey paper is written in such a way that it is accessible to the largest possible audience. For this reason
we provide a good account of examples, which are presented in detailed for completeness. We also give full proofs
of most of the lineability problems introduced in Section 3. We have included the proofs of several well-known
topological results in order to make the paper as inclusive and self-contained as possible. However we have decided
to omit the proofs that either are too complex or require complicated techniques of set theory.

We will use the following standard definitions and notations: RR stands for the set of all mappings from R
to R. D denotes the subset of RR of the Darboux functions, i.e., functions that transform intervals into intervals. S, C
and I will denote, respectively, the sets of surjective, continuous and injective functions from R to R. If C � R2,
then dom.C / denotes the projection of C on the abscissa axis. If f 2 RR, we will often denote the graph of f ,
graph.f / WD f.x; f .x// W x 2 Rg, simply by f .

2 A few examples of extreme surjective functions

In this section we provide a few examples of surjective functions enjoying the property that they transform every
non-degenerate interval into the whole real line. We will see that there is a hierarchy among the functions satisfying
this property. Let us see first several examples of everywhere surjective functions.

2.1 Everywhere surjective functions

First recall that a mapping f W R ! R is everywhere surjective if it transforms non-degenerate intervals into the
whole real line, or equivalently, if f ..a; b// D R, for all a; b 2 R with a < b. The set of all everywhere surjective
mappings is represented by ES. The construction of one everywhere surjective function is not trivial. The first known
example of such a function dates back to Lebesgue and is more than a century old. Here we give several more modern
examples. The first of them appears in [24] and is presented below in detail for the sake of completeness.

Example 2.1. If we define f W R! R by

f .x/ D

8<: lim
n!1

tan.nŠ�x/ if the limit exists,

0 otherwise,

then f satisfies the following properties:
1. If x 2 R and q 2 Q then f .x C q/ D f .x/.
2. f is surjective.
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3. f is surjective on every non-degenerate interval.

In order to prove the assertions 1–3 the following remark can be useful:

Remark 2.2. If bxc WD maxfk 2 Z W k � xg then

lim
n!1

br.nC 1/c

nC 1
D r;

for each r 2 R. Indeed, x � 1 � bxc � x, 8x 2 R. If we set in the previous inequalities x D r.nC 1/ for arbitrary
r 2 R and n 2 N, then r.nC 1/ � 1 � br.nC 1/c � r.nC 1/. Dividing by nC 1 we arrive at

r �
1

nC 1
D
r.nC 1/ � 1

nC 1
�
br.nC 1/c

nC 1
�
r.nC 1/

.nC 1/
D r:

Finally, taking limits we conclude that

lim
n!1

br.nC 1/c

nC 1
D r:

Proof.
(1) Given x 2 R and q 2 Q , 9r; s 2 Z such that q D r

s
. If n � s, we have that nŠq D nŠ r

s
2 Z. Thus

nŠ�x � nŠ�.x C q/ is a multiple of � . Therefore tan.nŠ�.x C q// D tan.nŠ�x/, 8n � s. If the limit does not exist,
by definition we have 0 D f .x/ D f .xC q/. Otherwise lim

n!1
.tan.nŠ�.xC q/// D lim

n!1
.tan.nŠ�x//, from which

we conclude that f .x C q/ D f .x/.

(2) Given y 2 R we choose r 2 Œ0; 1/ such that tan.�r/ D y. Let x 2 R be given by

x D

1X
nD0

bnrc

nŠ
:

It remains to show that f .x/ D y. Let us consider the nth-partial sum of x

xn D

nX
kD0

brkc

kŠ

and the remaining terms in x by

�n D

1X
kDnC1

brkc

kŠ
:

Of course x D xn C �n. Notice that nŠxn 2 Z, 8n, and hence, by the previous step we have that tan.nŠ�x/ D
tan.nŠ��n/, 8n. Therefore

nŠ�n D nŠ

1X
kDnC1

brkc

kŠ
D
br.nC 1/c

nC 1
C nŠ

1X
kDnC2

brkc

kŠ
:

Since

lim
n!1

br.nC 1/c

nC 1
D r

and

lim
n!1

nŠ

1X
kDnC2

brkc

kŠ
D 0;

we conclude that limn!1 nŠ�n D r , from which

f .x/ D lim
n!1

tan.nŠ�x/ D lim
n!1

tan.nŠ��n/ D tan.�r/ D y:

(3) Assume that a; b; y 2 R with a < b. By (2) there exists u 2 R such that f .u/ D y, and by (1) we have that
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f .u/ D f .uC q/ D y; 8q 2 Q. Since Q is dense in R, there exists q 2 Q such that a < uC q < b. If x D uC q
then a < x < b and

f .x/ D lim
n!1

.tan.nŠ�.uC q///

D lim
n!1

tan.nŠ�u/C tan.nŠ�q/
1 � tan.nŠ�u/ tan.nŠ�q/

D lim
n!1

tan.nŠ�u/

D f .u/ D y:

Observe that tan.nŠ�q/! 0 as n!1. We conclude that ff .x/ W a < x < bg D R.

The second construction we present in this section is based on the fact that every interval contains a Cantor like set
and that Cantor sets are uncountable. The example is taken from [23] (see also [4], [5] and [15]).

Example 2.3. We construct a mapping f W R ! R as follows: Let
�
In
�
n2N be a sequence containing all the

intervals with rational endpoints. Then I1 contains a Cantor like set, which we denote by C1. On the other hand,
I2 nC1, contains another Cantor like set, which is denoted by C2. Now the set I3 n .C1[C2/ contains a new Cantor
like set, namely C3. Repeating this process, we construct by induction a sequence

�
Cn
�
n2N of pairwise disjoint

Cantor like sets, such that In n
�Sn�1

kD1 Ck
�
� Cn. Since Cn is uncountable, there exists a bijection 'n W Cn ! R,

for every n 2 N. It is now that we define f W R! R by

f .x/ D

(
'n.x/ if x 2 Cn;

0 otherwise.

Finally, if I � R is a non-degenerate interval, then there exists k 2 N with I � Ik . By construction of Cn we have
that Ik � Ck and hence, by definition of f , f .I / � f .Ik/ � f .Ck/ D 'k.Ck/ D R: Interestingly, the mapping f
is null almost everywhere in R.

The third example we provide is based on the fact that there is a partition of R into c many dense sets. This can be
achieved by considering the relationship in R given by

x � y , x � y 2 Q .x; y 2 R/:

The equivalence classes have the form Œ˛� D ˛ C Q and are obviously pairwise disjoint, dense sets in R. Since Œ˛�
is countable and R D

S
˛2RŒ˛�, it is obvious that R= � contains c elements.

Example 2.4. Let fD˛ W ˛ 2 Rg be a partition of R into c dense sets. If we define now f W R ! R as f .x/ D ˛,
8x 2 D˛ , then f is obviously everywhere surjective.

Remark 2.5. The construction of the mapping in Example 2.4 shows clearly that f attains every real number
infinitely countably many times in each non-degenerate interval. This property is shared by all functions in ES.
Indeed, let .a; b/ be an interval with a; b 2 R and a < b, y 2 R and f 2 ES. Suppose .In/ is a sequence of open,
non-empty, pairwise-disjoint intervals in I . For instance we can take

In D

�
aC

b � a

nC 1
; aC

b � a

n

�
;

for every n 2 N. Since f 2 ES, there exists xn 2 In � I such that f .xn/ D y. Since the In’s are pairwise-disjoint,
we have constructed a sequence .xn/ of distinct points in .a; b/ such that f .xn/ D y.

The next lemma will be very useful throughout the paper. For instance, if we apply it to the family

f.a; b/ � fyg W a; b; y 2 R and a < bg;

we obtain again an example of a function in ES. We recall that if A � R2 then dom.A/ denotes the projection of A
over the abscissa axis.
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Lemma 2.6. Let fA˛g˛<c be a family of subsets in R2 such that card.dom.A˛// D c, for each ˛ < c. Then there
exists a function f 2 RR such that f \ A˛ ¤ ¿.

Proof. We proceed to construct the function by transfinite induction. Let ˇ < c. Assume we have already constructed
f .x�/ for � < ˇ. We choose xˇ 2 dom.Aˇ/ n fx� W � < ˇg. Observe that dom.Aˇ/ n fx� W � < ˇg ¤ ¿ since
card.dom.Aˇ// D c and ˇ < c. Now, as xˇ 2 dom.Aˇ/, there exists yˇ 2 R such that .xˇ; yˇ/ 2 Aˇ . Define
f .xˇ/ D yˇ . This construction defines f on a set of cardinality c of R, namely, on fx˛ W ˛ < cg. If we set f .x/ D 0
for x … fx˛ W ˛ < cg, then f \ A˛ ¤ ¿ for each ˛ < c.

Among the functions in ES there are some that are yet more surjective since they are able to attain every real number
uncountably many times in each non-degenerate interval of R. We introduce these functions in the next subsection.

2.2 Strongly everywhere surjective functions

Recall that f W R ! R is strongly everywhere surjective if f attains every real number c many times in each non-
degenerate interval of R. The set of all the strongly everywhere surjective functions is denoted by SES. Obviously,
we have that SES � ES. Let us check first that SES is non-empty.

Recall that the Cantor set is homeomorphic to f0; 1gN, which, in its turn is homeomorphic to

f0; 1gN � f0; 1gN D
[

˛2f0;1gN

�
f0; 1gN � f˛g

�
:

Since the f0; 1gN � f˛g’s are pairwise disjoint sets homeomrphic to the Cantor set, we have the following:

Lemma 2.7. Let C be a Cantor-like set (i.e., homeomorphic to the Cantor set) in Œa; b� and a; b 2 R with a < b.
Then there is a family fC� W � 2 Rg of Cantor-like subsets of C such that C D

S
�2R C� and C� \C� D ¿ for all

�;� 2 R with � ¤ �.

An example of a mapping in SES can be constructed using Lemma 2.7 by adapting Example 2.3. The example is
taken from [15] (see also [4] and [5]).

Example 2.8. In Example 2.3 we had a sequence
�
Cn
�
n2N of pairwise disjoint, Cantor like sets such that In n�Sn�1

kD1 Ck
�
� Cn for every n 2 N. Now, according to Lemma 2.7, for each n 2 N there is a partition fC in W i 2 Rg

of Cn consisting of Cantor-like sets. Since the C in’s are uncountable, for each n 2 R and i 2 R there exists a
bijection 'in W C

i
n ! R. Finally, define f W R! R by

f .x/ D

(
'in.x/ if x 2 C in;

0 otherwise:

It only remains to show that f is strongly everywhere surjective. Indeed, take I � R a non-degenerate interval.
Then there exists k 2 N with I � Ik . For this k we have f .I / � f .Ik/ � f .C ik/ D '

i
k
.C i
k
/ D R. Also, f attains

obviously every real number c times in I .

Remark 2.9. Notice that the function constructed in Example 2.4 attains every real number only countably many
times in every interval, and therefore it is ES but not SES. Hence

SES ¨ ES :

In the next section we will see that in the case where the Continuum Hypothesis is not assumed, there is a hierarchy
of degrees of surjectivity between the classes ES and SES.
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2.3 Everywhere �-surjective functions

If � is a cardinal number such that @0 � � � c, we say that a function f 2 RR is everywhere �-surjective if for
every y 2 R, f attains y at least � times in every non-degenerate interval. We denote by ES� the set consisting of
all the everywhere �-surjective functions in RR.

Observe that
– ES@0 D ES.
– ESc D SES.
– If @0 � � � � � c then ES� � ES�.

Given � such that @0 � � < c, we construct in the following example an everywhere �-surjective function that is
not everywhere �C-surjective. This shows that

ES� ¨ ES�;

for all �; � with @0 � � < � � c.

Example 2.10. Let � be a cardinal number with @0 � � � c and consider fD˛ W ˛ 2 Rg the partition of R
into c many dense, countable sets constructed in the comments preceding Example 2.4. Now consider a partition
f�ˇ W ˇ 2 Rg of R into c many sets �ˇ of cardinality � and set D0

ˇ
D
S
˛2�ˇ

D˛ for every ˇ 2 R. Since @0 � �,
the D0

ˇ
’s have cardinality �. Therefore fD0

ˇ
W ˇ 2 Rg is a partition of R into c many �-dense sets. If we define

f .x/ D ˇ for all x 2 D0
ˇ

for all ˇ 2 R, f is obviously everywhere �-surjective. Also, observe that f attains
every real number exactly � times in every non-degenerate interval, which shows, additionally, that f cannot be
everywhere �-surjective for every � > �.

The functions in SES might seem sufficiently special or pathological, however it is possible to construct even more
surprising functions in the class SES, as we will see in the next two sections.

2.4 Perfectly everywhere surjective functions

Observe that in the definition of strong everywhere surjectivity we can restrict ourselves without loss of generality
to closed, non-degenerate intervals. In other words, a function f W R ! R is strongly everywhere surjective if and
only if f attains every real number c times in every non-degenerate, closed interval. Now, a non-degenerate, closed
interval is a simple example of perfect set. We recall that P � R is perfect if P 0 D P . The question that arises
now is whether a strongly everywhere surjective function attains each real number c times in every perfect set. The
answer to this question is no. Indeed, we just need to consider the function defined in Example 2.8, which is SES.
However f attains every real number only once in each Cantor set C in, which is perfect. From now on, we will say
that f W R ! R is perfectly everywhere surjective if f is surjective on every perfect set. The set of all perfectly
everywhere surjective mappings is denoted by PES. We will see later that f 2 PES if and only if f attains every
real number c times in every perfect set P � R. This shows that the elements of PES represent a stronger form
of surjectivity than the elements of SES. The example of a PES function we provide here is taken from [15]. In its
construction we will need the following well-known fact, whose proof is given for completeness.

Lemma 2.11. If P is perfect, then card.P / D c.

Proof. Without loss of generality, we can assume that P is bounded. Then, since P is closed, there exist ˛ D minP
and ˇ D maxP . Then P � Œ˛; ˇ�. If m is the middle point of Œ˛; ˇ�, we define

P.0/ WD

(
Œ˛;m� \ P if m 2 .Œ˛;m� \ P /0,

Œ˛;m/ \ P if m … .Œ˛;m� \ P /0,
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and

P.1/ WD

(
Œm; ˇ� \ P if m 2 .Œm; ˇ� \ P /0,

.m; ˇ� \ P if m … .Œm; ˇ� \ P /0,

Then P.0/ and P.1/ are perfect, infinite sets. If we repeat the same process in P.0/ and P.1/ we obtain perfect
subsets ofP ,P.0; 0/,P.0; 1/ on the one hand, andP.1; 0/,P.1; 1/ on the other. This process definesP.˛1; : : : ; ˛n/
for all n 2 N and for every choice of zeros and ones ˛1; : : : ; ˛n. Let us consider a sequence ˛ D .˛n/ 2 f0; 1g

N.
Using Cantor’s Theorem there exists x.˛/ 2 P such that

1\
kD1

P.˛1; ˛2; : : : ; ˛k/ D fx.˛/g:

Let us consider now two different sequences in f0; 1gN, ˛ D .˛n/ and ˇ D .ˇn/, and assume n0 is a natural number
such that ˛n0 ¤ ˇn0 . Then

P.˛1; : : : ; ˛n0/ \ P.ˇ1; : : : ; ˇn0/ D ¿;

from which x.˛/ ¤ x.ˇ/. Since card.f0; 1gN/ D c, the proof is finished.

Example 2.12. Consider the family

fP � fyg W P � R is perfect and y 2 Rg;

whose cardinality is c because perfect sets are closed and there are only c many closed sets. Notice also that
card.dom.P � fyg// D card.P / D c. Applying now Lemma 2.6 to this family we obtain a function f 2 PES.

Remark 2.13. Notice that PES ¨ SES. Actually the function constructed in Example 2.8 is in SES nPES, as pointed
out at the beginning of this section.

There is an even stronger form of surjectivity than perfectly everywhere surjective functions that will be studied in
the next section.

2.5 Jones functions

In 1942, F. B. Jones [2] found an example of a function in RR such that for any closed subset C � R2 with
uncountable projection over the abscissa axis, f \ C ¤ ¿. A function satisfying this property is called a Jones
function. The set of all Jones functions is denoted by J . (Notice that, since dom.C / is � -compact, then uncountable
is equivalent to cardinality c in the previous definition.)

Example 2.14. In order to obtain a function f 2 J, we just need to apply Lemma 2.6 to the family

fC � R2 W C is closed and card.dom.C // D cg:

Remark 2.15. Observe that if f 2 J, then f 2 PES since P � fyg is closed in R2 for all perfect set P � R.
Therefore J � PES.

Consider the function f constructed in the proof of Lemma 2.6 for the family

f.P n fyg/ � fyg W P � R is perfect and y 2 Rg :

Then f \ C D ¿ where C is the closed set f.x; x/ W x � 1g. Hence f 2 PES but f … J, and therefore

J ¨ PES :
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3 Algebraic size of sets of surjective functions

In this section we discuss the algebraic size of the sets ES, ES� , SES, PES and J from the lineability viewpoint.
In order to prove that ES, SES and PES are 2c-lineable, the following result will be crucial. We reproduce the

original proof for completeness:

Lemma 3.1 (Aron et al. [3]). There exists a vector subspace V0 of RR whose dimension is 2c such that every non-
null element of V0 is surjective. In other words, S is 2c-lineable.

Proof. Let ' W R ! RN be a bijection that transforms .0; 1/ into the set of sequences whose first element is 0. For
each A � R, we define

HA W RN
�! R

by

HA.y; x1; x2; x3; : : : / D y �

1Y
iD1

IA.xi /;

Where IA is the characteristic function of A. We have the following:

(a) The family fHA W A � R; A ¤ ¿g is linearly independent. In order to prove it, let us consider m different
subsets C1; C2; � � � ; Cm, of R and m non-null numbers �1; �2; : : : ; �m. Assume that

mX
jD1

�jHCj � 0:

Since the Cj ’s are different, there exists k 2 f1; 2; : : : ; mg and xj such that xj 2 Ck n Cj for each j ¤ k. In
order to see the latter, assume that for every k 2 f1; : : : ; mg, there exists j ¤ k such that Ck n Cj D ¿. This
would be equivalent to saying that for all k 2 f1; : : : ; mg there exists j ¤ k with Ck � Cj . Renaming the sets
if necessary, we would have:

C1 � C2 � : : : � Cm � C˛;

where ˛ 2 f1; :::; m � 1g. This would imply that at least two sets coincide, which is a contradiction.
Now, we can set, without loss of generality, that k D m. let

x D .1; x1; x2; : : : ; xm�2; xm�1; xm�1; xm�1; : : : /:

We have that

0 D

mX
jD1

�jHCj .x/ D 1 �

mX
jD1

"
�j �

1Y
iD1

ICj .xi /

#

D

"
�1 �

1Y
iD1

IC1.xi /

#
C

"
�2 �

1Y
iD1

IC2.xi /

#
C � � �

� � � C

"
�m�1 �

1Y
iD1

ICm�1.xi /

#
C

"
�m �

1Y
iD1

ICm.xi /

#
D 0C 0C � � � C 0C �m D �m:

(b) Since the �k’s were not null, we have reached a contradiction, and therefore the family fHA W A � R; A ¤ ¿g
is linearly independent.

(c) Observe that HA is surjective for every A � R since, for every s 2 R, we have that HA.s; a; a; a; : : : / D s,
where a 2 A.

(d) In order to see that h 2 � D spanfHA W A � R; A ¤ ¿g, h ¤ 0 is surjective, we can proceed as in part (a)
above.
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(e) It is clear that dim.�/ D 2c since card.fA W A � R; A ¤ ¿g/ D 2c.

The space we are looking for is
V0 D span fHA ı ' W A � Rg :

Remark 3.2. In connection with Lemma 3.1, the reader may find of interest the fact that S\ C is c-lineable. To
see this we just need to realize that the span of ferx � e�rx W r 2 .0;1/g is a c-dimensional space contained in
.S\ C/ [ f0g.

Theorem 3.3. The sets ES, SES and PES are 2c-lineable.

Proof. Let us choose f1 2 ES, f2 2 SES and f3 2 PES. Then the spaces

Ek WD ff ı fk W f 2 V0g;

for k D 1; 2; 3, where V0 is as in Lemma 3.1, satisfy E1 � ES[f0g, E2 � SES[f0g and E3 � PES[f0g, and
have cardinality 2c.

It turns out that J is 2c-lineable too. This is proved in Theorem 3.6 below. Since J is a subset of all the other classes
of surjective functions introduced in Section 2, Theorem 3.6 also proves that ES, SES and PES are 2c-lineable.
From this viewpoint Theorem 3.3 (and hence Lemma 3.1 too) would be unnecessary. We have decided to include
Theorem 3.3 because its proof is accessible to a much larger audience.

The proof of the 2c-lineability is based on a couple of topological results about Bernstein sets. We recall that
B � R is a Bernstein set if for every perfect set P � R, we have that B \ P ¤ ¿ and .R n B/ \ P ¤ ¿.

Lemma 3.4. There exists a family fB˛ W ˛ < cg of pairwise disjoint, Bernstein subsets of R such that

R D
[
˛<c

B˛:

Proof. It suffices to find in R c many pairwise disjoint sets in R, B˛ , ˛ < c, such that B˛ is perfectly dense, i.e.,
B˛ \P ¤ ¿ for every perfect set P � R. Indeed, if ˛ < ˇ < c we have also Bˇ \P ¤ ¿, so .R nB˛/\P ¤ ¿,
and hence B˛ is a Bernstein set.

In principle there is no need to assume that [
˛<c

B˛ D R:

In order to see the latter, suppose we have already constructed a family fB˛ W ˛ < cg of pairwise disjoint Bernstein
sets and enumerate

R n
[
˛<c

B˛ D fz˛ W ˛ < �g;

where � � c. If we set

B�˛ WD

(
B˛ [ fz˛g if ˛ < �,

B˛ if � � ˛ < c;

then these new sets are also pairwise disjoint, Bersntein sets and their union is R.
Let us enumerate the perfect sets of R as fPˇ W ˇ < cg. We just need to construct by transfinite induction a

double sequence .x˛ˇ/˛;ˇ<c of different elements in R in such a way that x˛ˇ 2 Pˇ for all ˛; ˇ < c because in
that case the sets B˛ D fx˛ˇ W ˇ < cg satisfy what we need.

Suppose that in the step 
 of the induction we have constructed the elements x˛ˇ , where ˛; ˇ < 
 . Since the
cardinality of the constructed elements is 
2 < c, we can choose 2
 C 1 additional elements, namely, x˛
 2 P

with ˛ < 
 and x�ˇ 2 Pˇ with ˇ � 
 . Therefore we have constructed fx˛ˇ W ˛; ˇ � 
g.
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Lemma 3.5. LetB be a Bernstein set. There exists a Jones function f such that for all g 2 RR such that f jB � gjB
then g is a Jones function.

Proof. It is enough to apply Lemma 2.6 to the family

f.B � R/ \ C W C � R2 is closed and card.dom.C // D cg:

To show that this family satisfies the hipothesis of Lemma 2.6 it suffices to prove that card.B\dom.C // D c because
dom..B �R/\C/ D B \ dom.C /. Indeed, dom.C / is a � -compact set of cardinality c and therefore at least one of
the compact sets that form the union must have cardinality c. Hence that compact is the union of a perfect set and a
countable set (see [25]) and so it must contain a perfect set. On the other hand, any perfect set contains a Cantor-like
set C�. Taking into account Lemma 2.7 it is straightforward that card.B \ C�/ D c.

The 2c-lineability of J is proved in [14]. We reproduce below the author’s proof for completeness.

Theorem 3.6 (Gámez-Merino, [14]). The set J is 2c-lineable.

Proof. Let fB˛ W ˛ < cg as in Lemma 3.4. For each ˛ < c let f˛ be a function in J such that every g 2 RR with
f˛jB˛ � gjB˛ satisfies that g 2 J (see Lemma 3.5). We can also assume that f˛jRnB˛ � 0. Now consider the set

V WD

�X
˛<c

'.˛/f˛ W ' 2 Rc

�
:

Observe that V is clearly a linear space and that every non-null element of V is in J by Lemma 3.5 because if
'.ˇ/ ¤ 0 for some ˇ < c then

P
˛<c '.˛/f˛ coincides with fˇ in Bˇ . Also, V is isomorphic to Rc, whose

cardinality is 2c, which concludes the proof.

Remark 3.7. As mentioned above it is interesting to observe that the space defined in Theorem 3.6 also proves that
the other classes of surjective functions introduced in Section 2, namely ES, ES� , SES and PES are also 2c-lineable
since J is a subset of them.

Another fact that reveals that the size of J (and hence the size of ES, ES� , SES and PES too) is enormous, is shown
by the following result, whose proof can be deduced from the fact that the additivity of J is bigger than 2 (see [16]
for details). However, we give below our own proof:

Theorem 3.8. For every f 2 RR there exist g; h 2 J such that f D g C h.

Proof. For f 2 RR, let us consider the family F D F1 [ F2 where

F1 W D fC � R2 W C is closed and card.dom.C // D cg;

F2 W D
˚
f.x; y C f .x// W .x; y/ 2 C g W C � R2 is closed and card.dom.C // D c

	
:

Let g 2 RR be the function constructed in Lemma 2.6 for the family F . Since g \ C ¤ ¿ for all closed C � R2

with card.dom.C // D c we have that g 2 J. We also have that .g � f / \ C ¤ ¿ for all closed C � R2 with
card.dom.C // D c, which implies that g � f 2 J, and hence h WD f � g 2 J.

In the rest of this section we present a series of results showing what is known nowadays about the algebraic size of
the sets S nES, ES� nES� with @0 � � < � � c, SES nPES and PES n J. Among the above problems we know the
optimal solution to only two of them:

Theorem 3.9 (Gámez-Merino et al. [15, Theorem 2.7]). The sets S nES and SES nPES are 2c-lineable, and this is
optimal.

For the rest of the cases we only have partial and probably not optimal answers.

Theorem 3.10 (Bartoszewicz et al. [8, Theorem 3.12]). If @0 � � < � � c then ES� nES� is 2�-lineable.
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Remark 3.11. Although it is not explicitly shown in [8], it can be deduced that ES� nES� is 2�-lineable for every
� < � since, in that case, ES� nES� � ES� nES� and, by Theorem 3.10 is 2�-lineable.

The case � D @0 and � D c is explicitly studied in [11, Theorem 2.14].
Also, it can be proved that the result given in Theorem 3.10 is not optimal in general. If we admit Martin’s

Axiom, 2� D c for all @0 � � < c. However we have the following result:

Theorem 3.12 (Ciesielski et al. [11, Corollary 2.15]). The set ES nSES is cC-lineable.

The estimate given in Theorem 3.12 implies that ES nSES is 2c-lineable under CH (Continuum Hypothesis).
Whether or not ES nSES is 2c-lineable in ZFC (Zermelo-Fraenkel Theory with Axiom of Choice) is still an open
question.

We do not know much about the size of the set PES n J. We do not even know whether this family is lineable or
not.

4 Relationship between extremely surjective functions and other
classes

In this section we will study the relationship between the class ES and other families of interesting functions like,
for instance, the class of additive mappings (or equivalently, Q-linear), the class of function in RR with dense graph
in R2, the class of Darboux functions and the set of Sierpińiski-Zygmund functions. We will deal in the first place
with additive mappings and functions with a dense graph.

4.1 Everywhere surjective functions, additive mappings and functions with a dense
graph

Recall that f 2 RR is addtive if f .x C y/ D f .x/ C f .y/ for all x; y 2 R. It is easy to prove that a function is
Q-linear if and only if it is additive. We denote the sets of additive mappings and the set of functions with a dense
graph, respectively by Add and DG.

The classes DG and Add are related to ES as follows:
(a) ES � DG, which is obvious, and
(b) ES\Add D Add\.S nI/. Recall that S and I denote, respectively, the surjective and injective elements of RR.

In order to see (b), we reproduce the argument used in [20]. Observe first that f W R ! R is in ES if and only
if f �1 .t/ is dense for all t 2 R. Also, any 1-dimensional Q-subspace of R is dense, and therefore any proper
Q-subspace of R is dense too. Since ES\Add � Add\.S nI/ is trivially true, assume that f 2 Add\.S nI/. Since
f is surjective, for every t 2 R there exists x 2 R with f .x/ D t . Notice that f �1 .t/ D x C ker.f /. Also ker.f /
is dense. Indeed, since f is not injective, ker .f / ¤ f0g, and hence the Q-subspace f �1.0/ D ker .f / is dense. We
conclude that f �1.t/ is dense for all t , or in other words, f 2 ES\Add.

It is easy to prove that ES\Add ¤ ¿. Indeed, if H D fhi W i < cg is a Hamel basis, we just need to define
f on H such that f is surjective and not injective. Extending f to R by linearity we obtain an additive mapping in
ES\Add. In fact we have a much stronger result whose original proof, for completeness, is given below:

Theorem 4.1 (García-Pacheco et al. [20]). The set ES\Add is 2c-lineable.

Proof. Consider a Hamel basis I of R regarded as a Q-linear space and let ˆ W I ! R be bijective. Define

W D fg ıˆ W g 2 V0g;

where V0 is a 2c-dimensional space of surjective functions (except for the zero function). Clearly card.W / D 2c

and each non-null element f W I ! R of W is a surjective function that can be extended by linearity, uniquely, to
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a Q-linear mapping Nf W R ! R. A moment’s thought reveals that U D f Nf W f 2 W g is in fact a 2c-dimensional
space contained in .ES\Add/ [ f0g.

It is interesting to observe that the non-null elements of the space V0 introduced in Lemma 3.1 are not Q-linear.
Indeed, using the terminology of the proof of Lemma 3.1, for each f 2 V0 and x 2 .0; 1/, we have f .x/ D
.HA ı '/ .x/ D HA .0; x1; x2; :::/ D 0 �

Q1
iD1 IA.xi / D 0 from which f is neither injective nor lies in ES. Hence

f cannot be Q-linear. It is still possible to prove that ES nAdd is not only empty, but also algebraically large. We
give the proof for completeness.

Theorem 4.2 (García-Pacheco et al., [20]). The set ES nAdd is 2c-lineable.

Proof. Choose f 2 ES\Add and define W D fg ı f W g 2 V0g with V0 as in Lemma 3.1. It is easily seen that W
is a 2c-dimensional space (isomorphic to V0) whose non-null elements are in ES.

On the other hand, if g 2 V0 n f0g, since g is not additive, there exist x; y 2 R such that

g .x C y/ ¤ g .x/C g .y/ :

Let a; b 2 R be such that f .a/ D x and f .b/ D y. Then

.g ı f / .aC b/ D g .f .a/C f .b//

D g .x C y/

¤ g .x/C g .y/

D .g ı f / .a/C .g ı f / .b/ ;

which shows that g ı f is not additive. Hence W � .ES nAdd/ [ f0g and the proof is finished.

Next we study the lineability of the set DG\Add nES. We reproduce the original proof for completeness.

Theorem 4.3 (García-Pacheco et al., [20]). The set DG\Add nES is 2c-lineable.

Proof. Let I be a Hamel basis of R regarded as a Q-linear space. Fix i 2 I and consider a bijection � W I ! I nfig.
It is straightforward to prove that � can be extended by linearity to an injective Q-linear mapping ˆ W R! R.

Observe that i … ˆ.R/. If there existed ˛1; :::; ˛k 2 Q and i1; :::; ik 2 I such that ˆ.˛1i1 C :::C ˛kik/ D i ,
then ˛1�.i1/C:::C˛k�.ik/�i D 0. The latter contradicts the fact that fˆ.i1/; : : : ; ˆ.ik/; ig is linearly independent.

It can also be proved that ˆ.R/ D R. Indeed, choose � > 0 and p 2 R n ˆ.R/, and consider j 2 I n fig and
˛ 2 Q such that j j̨ � pj < �. Since there is s 2 I with �.s/ D j , we have that jˆ.˛s/ � pj D j˛�.s/ � pj D
j j̨ � pj < �.

Define now
U D fˆ ı g W g 2 W g;

where W is any 2c-dimensional linear space such that W � .ES\Add/ [ f0g (see Theorem 4.1). It is clear that U
is a 2c-dimensional linear space and that every non-null element of U is Q-linear and not surjective. Also, f maps
every non-degenerate interval to ˆ.R/, which completes the proof.

To finish this section we have included a result on the elements of Add nDG.

Proposition 4.4. A function f 2 Add is discontinuous if and only if f 2 DG.

Proof. Choose f 2 Add. If f 2 DG, then f is obviously discontinuous. If we assume now that f is not continuous,
then f cannot be homogeneous, and hence there does not exist c 2 R such that f .x/ D cx for all x 2 R. If we take
x1 ¤ 0, there is x2 ¤ 0 such that

f .x1/

x1
¤
f .x2/

x2
:
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The vectors v1 D .x1; f .x1// and v2 D .x2; f .x2// are clearly linearly independent and therefore they generate R.
If q1; q2 2 Q, we can approximate q1v1 C q2v2 to any vector v since Q is dense in R2. Therefore

q1v1 C q2v2 D q1.x1; f .x1//C q2.x2; f .x2//

D .q1x1 C q2x2; q1f .x1/C q2f .x2//

D .q1x1 C q2x2; f .q1x1 C q2x2//:

Then
graph.f / D f.x; y/ W x D q1x1 C q2x2; y D f .x/I q1; q2 2 Qg D R2:

In other words f 2 DG.

The next section is devoted to the study of the linear structure of the set of the Daboux functions in RR.

4.2 Darboux functions

We recall that f 2 RR is Darboux if it transforms intervals into intervals and that D represents the set of Darboux
functions. Obviously ES � D and therefore D is 2c-lineable. We also have the following interesting results:

Theorem 4.5. The set D nES is 2c-lineable.

Proof. Let V be a 2c-dimensional space in ES[f0g. For each f 2 V let us define

f ].x/ D

(
0 if x � 0,

f .log x/ if x > 0.

If we consider the 2c-dimensional linear space W D ff ] W f 2 V g, then it is plain that W � .D nES/ [ f0g.

Theorem 4.6. The set S nD is 2c-lineable.

Proof. Observe that the space V generated by the characteristic functions of subsets of .�1; 0� has cardinality 2c

and hence it is 2c-dimensional. Let B1 D fe˛ W ˛ < 2cg be a basis for V . Now let us consider a basis B2 D ff˛ W
˛ < 2cg of V0, where V0 is as in Lemma 3.1. If for each ˛ < 2c we define

g˛.x/ D

(
e˛.x/ if x � 0,

f˛.log x/ if x > 0;

then the span of fg˛ W ˛ < 2cg is a 2c-dimensional space contained in .S nD/ [ f0g.

4.3 Sierpiński-Zygmund functions

The construction of a Sierpiński-Zygmund function is motivated by the following result:

Theorem 4.7 (Blumberg [26]). For every f 2 RR there exists a dense set Z � R such that f jZ is continuous.

The set Z provided in Blumberg’s proof turns out to be countable. Sierpiński and Zygmund asked whether or not
an uncountable set could be found satisfying Theorem 4.7. This led them in 1923 ([27]; see also [28, pp. 165,166])
to the construction of an instance of what nowadays it is known as a Sierpiński-Zygmund function. We recall that
f 2 RR is Sierpiński-Zygmund if for every Z � R with cardinality c, the restriction f jZ is not continuous. We
denote the set of Sierpiński-Zygmund functions by SZ.

If CH holds, the restriction of a Sierpiński-Zygmund function to any uncountable set cannot be continuous. The
Continuum Hypothesis is necessary in this setting. Shinoda proved in [29] that if Martin’s Axiom and the negation
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of CH hold, and @0 < � < c then for every f 2 RR there exists a set Z � R of cardinality � such that f jZ is
continuous.

It is interesting to observe that Sierpiński-Zygmund’s example satisfies a stronger condition, namely f jZ is
not Borel for all Z � R with card.Z/ D c, which is a stronger condition than that of the definition of Sierpiński-
Zygmund function. This motivates the following definition

SZ.Bor/ WD
˚
f 2 RR

W 8Z � R with cardinality c, the restriction f jZ is not Borel
	
:

Obviously SZ.Bor/ � SZ. The question is whether or not SZ.Bor/ D SZ is undecidable under the usual set theoretic
settings. However, if dec.Bor; C/ denotes the minimal cardinal � such that for every Borel function f W X ! R
there is a partition .X˛/˛<� of X with f jX˛ continuous for all ˛ < �, then it can be proved that:

Theorem 4.8 (Bartoszewicz et al., [8, Theorem 4.4]). For the sets SZ.Bor/ and SZ we have:
1. If c is a successor cardinal and dec.Bor; C/ D c, then SZ ¤ SZ.Bor/.
2. If c is a regular cardinal and dec.Bor; C/ < c, then SZ D SZ.Bor/.

Another interesting question to be considered is that the standard axioms of set theory (like ZFC) do not guarantee
the existence of Sierpiński-Zygmund functions that are surjective or Darboux. However, the following can be proved
assuming stronger hypothesis:

Theorem 4.9 (Ciesielski et al., [11]). If cov.M/ D c, i.e., the union of less than continuum many meager sets does
not cover R, then SZ\ES is cC-lineable.

Observe that Martin’s Axiom (see [30]) implies the condition cov.M/ D c. However, assuming different set of
theoretic hypotheses, it is possible to prove that SZ and ES are even disjoint:

Theorem 4.10 (Balcernak et al., [31]). Under the CPA, Covering Property Axiom (see [32] for details), we have
that SZ\.D [ S/ D ¿ (hence SZ\ES D ¿).

5 Conclusions and open questions

The diagram in Figure 1 shows how some of the classes introduced in this paper are related to each other.

Fig. 1. Relationship between some of the classes mentioned in the paper where A ! B means A ¨ B . Observe that here @0 <

� < c

J PES SES ES� ES

DG

S

DC



500 M. Fenoy-Muñoz et al.

Table 1 summarizes all the results presented in Sections 3 and 4. Observe that there are still three open questions:

1. We know that ES nSES is cC-lineable (see Theorem 3.12). However, we do not know whether cC is optimal or
not.

2. The optimal lineability of ES� nES� with @0 � � < � � c is not known.
3. Nothing is known about the lineability of the set PES n J.

Table 1. Summary of the most important lineability results related to surjective functions

Set Lineability Reference
J 2c [14]

PES 2c [15]
SES 2c [15]

ES� (@0 � � � c) 2c [15]
ES 2c [3]

PESnJ ? —
SESnPES 2c [15]
ESnSES � cC [15]

ES� nES� (@0 � � < � � c) � 2� (� < �) [8]
SnES 2c [15]
DnES 2c Theorem 4.5
SnD 2c Theorem 4.6

ES\Add 2c [20]
DG\AddnES 2c [20]

ESnAdd 2c [20]
D 2c [3]

DGn.ES[Add/ 2c [20]

Besides lineability, another important tool used to measure the algebraic size of a family of functions is the notion
of algebrability and strong algebrability.
(a) We say that a family F � KK (i.e., the algebra of all the functions f W K ! K) is �-algebrable if F [ f0g

contains a �-generated subalgebra A of KK, i.e., the minimal cardinality of the system of generators of A is �.
(b) We say that a family F � KK is strongly �-algebrable if F [ f0g contains a �-generated subalgebra A of KK

isomorphic to a free algebra.

Notice that it is not possible to construct an algebra of real surjective functions since f 2 is never surjective if
f 2 RR. However, there are a few nice results in the literature about algebras of surjective functions in CC. We refer
to [8] for a complete account of results on algebrability of complex surjective functions. For instance, in [8] it is
proved that the family of complex Jones functions is strongly 2c-algebrable. Here a complex Jones function stands
for a mapping f 2 CC such that for every closed set C � C2 with uncountable projection on the first coordinate,
we have that C meets the graph of f .
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