Open Mathematics

Open Access

Research Article

Olga Macedońska*

On non-Hopfian groups of fractions

DOI 10.1515/math-2017-0037

Received September 28, 2015; accepted January 11, 2016.

Abstract: The group of fractions of a semigroup S, if exists, can be written as $G = SS^{-1}$. If S is abelian, then G must be abelian. We say that a semigroup identity is transferable if being satisfied in S it must be satisfied in $G = SS^{-1}$. One of problems posed by G.Bergman in 1981 asks whether the group G must satisfy every semigroup identity which is satisfied in S, that is whether every semigroup identity is transferable. The first non-transferable identities were constructed in 2005 by S.V.Ivanov and A.M.Storozhev.

A group G is called Hopfian if each epimorphizm $G \to G$ is the automorphism. The residually finite groups are Hopfian, however there are many problems concerning the Hopfian property e.g. of infinite Burnside groups, of finitely generated relatively free groups [11, Problem 15]. We prove here that if $G = SS^{-1}$ is an n-generator group of fractions of a relatively free semigroup S, satisfying m-variable (m < n) non-transferable identity, then G is the non-Hopfian group.

Keywords: Positive law, Hopfian group

MSC: 20F99, 20F05

1 Useful facts and definitions [2, 10]

- A semigroup S is called *cancellative* if for all $a, b, c \in S$ either of equalities ca = cb, ac = bc implies a = b. All semigroups below are assumed to be cancellative.
- A semigroup S satisfies left (resp. right) Ore condition if for arbitrary $a, b \in S$ there are $a', b' \in S$ such that aa' = bb' (resp. a'a = b'b). The Ore conditions can be defined as $aS \cap bS \neq \emptyset$, (resp. $Sa \cap Sb \neq \emptyset$).
- If a semigroup S satisfies both Ore conditions it embeds in the group G of its fractions $G = SS^{-1} = S^{-1}S$.
- A subsemigroup S of a group G is called *generating* if elements of S generate G as a group. The group of fractions of S is unique in the sense that if a group G contains S as a generating semigroup then G is naturally isomorphic to $S^{-1}S = SS^{-1}$.
- A group G satisfies an *identity* $u(x_1, ..., x_m) \equiv v(x_1, ..., x_m)$ if for every elements $g_1, ..., g_m$ in G the equality $u(g_1, ..., g_m) = v(g_1, ..., g_m)$ holds.
- An identity in a semigroup has a form $u(x_1, ..., x_n) \equiv v(x_1, ..., x_n)$ where the words u and v are written without inverses of variables, $u, v \in \mathcal{F}$. Such an identity in a group is called a semigroup identity or a positive identity. By the word "identity" we mean a non-trivial identity.

^{*}Corresponding Author: Olga Macedońska: Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland, E-mail: Olga.Macedońska@polsl.pl

2 GB-Problem

Proposition 2.1. If a generating semigroup S of a group G = F/N satisfies an identity, then for every $s, t \in S$ there exist $s', t' \in S$ such that ss' = tt' (left Ore condition), $G = SS^{-1}$ and $F = \mathcal{F}\mathcal{F}^{-1}N$.

Proof. An *n*-variable identity $a(x_1, ..., x_n) \equiv b(x_1, ..., x_n)$ in *S* implies a 2-variable identity if we replace the *i*-th variable by xy^i . In view of the cancellation property, it can be written as xu(x, y) = yv(x, y). For x = s, y = t, s' := u(s, t), t' := v(s, t), we have ss' = tt'. Since each $g \in G$ is a product of elements in $S \cup S^{-1}$, and for every $s, t \in S$, $s^{-1}t = s't'^{-1}$, we obtain $G = SS^{-1}$. Since by assumption G = F/N, we have $F = \mathcal{F}\mathcal{F}^{-1}N$.

Remark. Note, that if we use the last letters on both sides of the identity, we get right Ore condition and the equality $G = S^{-1}S$.

In 1981 G. Bergman [3], [4] posed the following natural question mentioned later in a different form in [5, Question 11.1]. It asks whether the group of fractions $G = SS^{-1}$ of a semigroup S must satisfy every semigroup identity satisfied by S.

Note that the behavior of the identities may depend on additional properties of the group. A group G is called **semigroup respecting** (S-R group) if all of the identities holding in any generating semigroup S of G, hold in G. It is shown that extensions of soluble groups by locally finite groups of finite exponent are S-R groups [6, Theorem C]. For more results see [2].

Definition 2.2. We say that a semigroup identity $a \equiv b$ is **transferable** if being satisfied in S, it is necessary satisfied in $G = SS^{-1}$.

It is clear that the abelian identity is transferable. The nilpotent semigroup identities in S found by A. I. Mal'tsev [7] are transferable. The identities $x^n y^n = y^n x^n$ are transferable [8].

So the Problem is whether every semigroup identity is transferable. This question we address as the GB-Problem. A group $G = SS^{-1}$ where S satisfies a non-transferable identity we call GB-counterexample.

The first non-transferable identity and hence GB-counterexample (actually a family of them) was found in 2005 by S. Ivanov and A. Storozhev [9]. To speak of GB-counterexamples we suggest a new approach to the GB-Problem.

3 Another approach to the GB-Problem

Let $F := F_n$ be a free group and \mathcal{F} be a free semigroup with the unity, both freely generated by the set $X = \{x_1, x_2, x_3, x_n\}$.

By [10, Construction 12.3], if $S = \mathcal{F}/\rho$ is a semigroup and G = F/N is its group of fractions then there is a natural homomorphism $\varphi : F \to F/N$ such that $\mathcal{F}^{\varphi} = \mathcal{F}/\rho$, that is

$$F \longrightarrow F/N =: G$$

$$\mathcal{F} \longrightarrow \mathcal{F}/\rho =: S.$$

Each relation a = b in S is defined by the pair $(a, b) \in \rho$. We consider the set

$$A := N \cap \mathcal{F}\mathcal{F}^{-1} = \{ab^{-1}, (a, b) \in \rho\},\$$

which consists of words corresponding to relations a = b in S.

Proposition 3.1. Let S be a generating semigroup in a group G = F/N, $A = N \cap \mathcal{F}\mathcal{F}^{-1}$ and A^F be the normal closure of the set A in F. Then if S satisfies an identity, the following equality holds

$$F = \mathcal{F}\mathcal{F}^{-1}A^F.$$

Proof. There is the natural homomorphism $F \to F/A^F$, such that $\mathcal{F} \to \mathcal{F}/\mu$, where the congruence μ consists of pairs (a,b) for $ab^{-1} \in A^F \cap \mathcal{F}\mathcal{F}^{-1}$.

$$A^F \cap \mathcal{F}\mathcal{F}^{-1} = \{ab^{-1}, (a, b) \in \mu\}.$$

Since by [10, Corollary 12.8] $A^F \cap \mathcal{F}\mathcal{F}^{-1} = A$, we have $\mu = \rho$. So S is the generating semigroup in the group F/A^F . Then, if S satisfies an identity, we have by Proposition 2.1 $F/A^F = SS^{-1}$, which implies $F = \mathcal{F}\mathcal{F}^{-1}A^F$.

Lemma 3.2. Let S be a generating semigroup in a group G = F/N, and $A = N \cap \mathcal{FF}^{-1}$. If S satisfies an identity, then $N = A^F$.

Proof. Since $F = \mathcal{F}\mathcal{F}^{-1}A^F$ and $A^F \subseteq N$, we have by Dedekind's law

$$N = N \cap F = N \cap \mathcal{F}\mathcal{F}^{-1}A^F = (N \cap \mathcal{F}\mathcal{F}^{-1})A^F = AA^F = A^F.$$

4 Positive endomorphisms in F

The words in \mathcal{F} are called *positive words*. We say that an endomorphism in F is a positive endomorphism if it maps generators to positive words $X \to \mathcal{F}$. The set of positive endomorphisms in F we denote by End^+ , the set of all endomorphisms - by End. The positive endomorphisms act as endomorphisms of \mathcal{F} .

Lemma 4.1. Let $G = SS^{-1} = F/N$. The normal subgroup N is positively invariant if and only if S is a relatively free semigroup.

Proof. If N is positively invariant subgroup in F then the set $A=N \cap \mathcal{FF}^{-1}$ is also positively invariant. If a=b is a relation in S, then the word ab^{-1} is in A. Since A is positively invariant, the relation is the identity in S. So if N is positively invariant, then S is the relatively free semigroup.

Conversely, if S is a relatively free semigroup then each relation a = b in S is the identity, hence the set A is positively invariant and by Lemma 3.2, the normal subgroup $N = A^F$ is positively invariant.

We recall now the following facts similar to those in ([11] 12.21, 12.22).

Notation. Let $w := ab^{-1} \in \mathcal{FF}^{-1}$. By w^{End} we denote the End-invariant subgroup (fully invariant subgroup) corresponding to the word w in F which is generated by all images of w under endomorphisms in F.

By w^{End}^+ we denote the End^+ -invariant subgroup (positively invariant subgroup) corresponding to the word w in F which is generated by all images of w under positive endomorphisms in F. This subgroup need not be normal.

Corollary 4.2. *If* $G = SS^{-1} = F/N$, *then:*

- (i) S satisfies an identity $a \equiv b$ if $(ab^{-1})^{End^+} \subseteq N$.
- (ii) G satisfies an identity $a \equiv b$ if $(ab^{-1})^{End} \subseteq N$.
- (iii) G is an S-R group if for each identity ab^{-1} :

the inclusion
$$(ab^{-1})^{End^+} \subseteq N$$
 implies $(ab^{-1})^{End} \subseteq N$.

(iv) A semigroup identity $a \equiv b$ is transferable if for every $N \triangleleft F$:

the inclusion
$$(ab^{-1})^{End^+} \subseteq N$$
 implies $(ab^{-1})^{End} \subseteq N$.

In particular we obtain

Corollary 4.3. A semigroup identity $a \equiv b$ is **transferable** if

$$((ab^{-1})^{End^+})^F = (ab^{-1})^{End}.$$

If S is a relatively free semigroup satisfying only transferable identities, then its group of fractions is the relatively free group.

If S is a relatively free semigroup defined by one identity $a \equiv b$, then $A = (ab^{-1})^{End^+}$ and by Lemma 3.2 the group of fractions of S is $G_0 := F/N_0$, where

$$N_0 = A^F = ((ab^{-1})^{End^+})^F.$$

Corollary 4.4. For every semigroup S satisfying an identity $a \equiv b$ its group of fractions G = F/N is a quotient group of $G_0 = F/N_0$.

5 GB-counterexamples and non-Hopfian groups

Definition 5.1. A group $G = SS^{-1} = F/N$ is a GB-counterexample if S satisfies a non-transferable identity $a \equiv b$. By another words, if N contains $(ab^{-1})^{End^+}$, but does not contain $(ab^{-1})^{End}$.

The first and the only known family of the GB-counterexamples was found by S.V.Ivanov and A.M.Storozhev [9]. Their groups $G = SS^{-1}$ do not satisfy any identity, while S satisfies a 2-variable non-transferable identity with sufficiently large parameters, similar to that introduced by A. Yu. Ol'shanskii in [12].

Our aim is to show which GB-counterexamples are non-Hopfian groups.

Definition 5.2. A group G is called Hopfian if each epimorphizm $G \to G$ is the automorphism, or in other words, if G is not isomorphic to its proper quotient.

Remark. If G is a non-Hopfian group, there is $K \triangleleft G$ such that $G \cong G/K$. Then for every quotient G/M we have

$$G/M \cong G/KM \cong (G/M)/(KM/M),$$

which implies that G/M is the non-Hopfian group unless $K \subseteq M$.

It may help to see that the group of fractions G = F/N of a semigroup S is non-Hopfian since by Corollary 4.4, it is the quotient of $G_0 = F/N_0$, the group of fractions of a relatively free semigroup.

So we are interested in the question: when a relatively free semigroup satisfying at least one non-transferable identity, must have a non-Hopfian group of fractions?

It is not known whether each non-transferable identity implies a 2-variable non-transferable identity. So we assume that S satisfies a non-transferable identity of the form $a(x_1,...,x_m) \equiv b(x_1,...,x_m)$. We show that if S is the n-generator semigroup and n > m, then the group of fractions of S is the non-Hopfian group. For this purpose we start with the following "Common denominator Lemma".

Lemma 5.3. Let a generating semigroup S of a group G satisfy an identity. Then for all $g_1, g_2, ..., g_m$ in G there are $s_1, s_2, ..., s_m$, and r in S such that $g_i = s_i r^{-1}$, i = 1, 2, ..., m.

Proof. In view of Proposition 2.1, $G = SS^{-1}$. So for m = 1 the statement is clear. Let $g_i = t_i q^{-1}$ for $i \le m - 1$ and $g_m = ab^{-1}$. By left Ore condition there exist q', $b' \in S$ such that qq' = bb'. We denote r := qq' = bb', $s_i := t_i q'$ and $s_m := ab'$. Then

$$g_i = t_i q^{-1} = t_i (q' q'^{-1}) q^{-1} = (t_i q') (q'^{-1} q^{-1}) = s_i r^{-1},$$

 $g_m = ab^{-1} = a(b'b'^{-1})b^{-1} = (ab')(b'^{-1}b^{-1}) = s_m r^{-1},$

as required.

Theorem 5.4. Let $G = F/N = SS^{-1}$ be an n-generator group of fractions of a relatively free semigroup S, satisfying a non-transferable identity $a(x_1, ..., x_m) \equiv b(x_1, ..., x_m)$, n > m. Then G is the non-Hopfian group.

402 — O. Macedońska DE GRUYTER OPEN

Proof. In view of Lemma 4.1 we can assume that N is the normal, positively invariant subgroup in F, such that by Corollary 4.2,

$$(ab^{-1})^{End^+} \subset N, \quad (ab^{-1})^{End} \nsubseteq N.$$
 (1)

where $a := a(x_1, ..., x_m)$, and $b := b(x_1, ..., x_m)$ are the words in \mathcal{F} .

Let α be an automorphism in the free group F, which maps $x_1 \to x_1$ and $x_i \to x_i x_1^{-1}$ for i > 1. Then

$$F/N \cong F/N^{\alpha}$$
.

Note that α^{-1} maps $x_i \to x_i x_1$, i > 1, hence α^{-1} is the positive endomorphism. Since N is the positively invariant subgroup in F, we have $N^{\alpha^{-1}} \subseteq N$, and hence

$$N \subseteq N^{\alpha}$$
. (2)

To show that the inclusion (2) is proper, assume the contrary, that $N = N^{\alpha}$. By assumption the word $w := ab^{-1}$, where $w := w(x_1, x_2, ..., x_m) \in N$ defines the identity $a \equiv b$ in S but not in G, so the condition (1) holds. It means that for some words $g_2, g_3, ..., g_{m+1}$ in F, the value of w is not in N:

$$w(g_2, g_3, \dots g_{m+1}) \notin N. \tag{3}$$

Together with the word $w(x_1, x_2, ..., x_m)$, N must contain the word $w(x_2, x_3, ..., x_{m+1})$. Since we assumed that (2) is: $N^{\alpha} = N$, we have

$$w(x_2x_1^{-1}, x_3x_1^{-1}, \dots, x_{m+1}x_1^{-1}) \in N.$$

By Lemma 5.3 for every $g_2, g_3, ..., g_{m+1}$ in G there are $s_2, s_3, ..., s_{m+1}$, and r in S such that $g_i = s_i r^{-1}$. The map $x_1 \to r$ and $x_i \to s_i$ is positive. So since N is positively invariant, we get $w(g_2, g_3, ..., g_{m+1}) \in N$, which contradicts (3).

So the inclusion (2) is proper $N \subseteq N^{\alpha}$. Then

$$(F/N)/(N^{\alpha}/N) \cong F/N^{\alpha} \cong F/N$$
,

that is F/N is isomorphic to its quotient, which proves that G = F/N is the non-Hopfian group.

Corollary 5.5.

- 1. The n-generator (n > 2) GB-counterexamples constructed in [9] by S.V.Ivanov and A.M.Storozhev are the non-Hopfian groups.
- 2. An infinitely generated GB-counterexample must be the non-Hopfian group.

6 Remark: When $A^F = \langle A \rangle$

In the book [10], just after Theorem 12.10 there is a wrong statement saying that it is shown in [13] that the right Ore condition implies that $\langle A \rangle = A^F$. Our next Theorem describes the condition for this equality to hold.

Theorem 6.1. Let G = F/N where N is positively invariant, $A = N \cap \mathcal{F}\mathcal{F}^{-1}$. The equality $\langle A \rangle = A^F$ holds if and only if G is a relatively free group of finite exponent.

Proof. If $\langle A \rangle = A^F$ then by Lemma 3.2, $N = \langle A \rangle$ is generated as a subgroup by elements from the set A. Since N is normal, together with ab^{-1} where $a, b \in \mathcal{F}$, it must contain the word $(ab^{-1})^b = b^{-1}a$ as a product of words $st^{-1} \in A$. That is $b^{-1}a = s_1t_1^{-1}s_2t_2^{-1}...s_nt_n^{-1}$, $s, t \in \mathcal{F}$, and hence

$$a = bs_1t_1^{-1}s_2t_2^{-1}...s_nt_n^{-1} \in \langle A \rangle.$$

We can write $a = x_{i_1}^{k_1} \cdots x_{i_r}^{k_r}, k_i > 0$. Since by assumption N is positively invariant, N contains $x^n, n = \sum_i k_i, x \in X$. Then N contains x^{-n} . Now, since $x^{-1} = x^{n-1}x^{-n} \in \mathcal{F}N$, we have $\mathcal{F}^{-1} \subseteq \mathcal{F}N$. Then by Proposition 3.1

and Lemma 3.2, $F = \mathcal{F}N$. Hence each endomorphism $\phi \in End$ coincides modulo N with a positive endomorphism $\varphi \in End^+$. If $w \in N$, then $w^{\phi} \in w^{\varphi}N = N$. So N is fully invariant and must contain F^n , which implies that G is a relatively free group of finite exponent.

Conversely, let x^n belong to N. To show that $A^F = \langle A \rangle$ it suffices to check that for every $ab^{-1} \in A$ and each generator x, the word $x^{-1}(ab^{-1})x$ is a product of elements in A. So let $ab^{-1} \in A$, then for each $c \in \mathcal{F}$, $(ca)(cb)^{-1} \in A$, hence $(x^{n-1}a)(x^{n-1}b)^{-1} \in A$. Now, since $x^{\pm n} \in N \cap \mathcal{F}\mathcal{F}^{-1} =: A$, we get $x^{-1}(ab^{-1})x = x^{-n}(x^{n-1}a)(x^{n-1}b)^{-1}x^n \in \langle A \rangle$. This implies that the subgroup $\langle A \rangle$ is normal, which finishes the proof.

Let G = F/N be a group constructed by S.V.Ivanov and A.M.Storozhev in [9]. Since $G = SS^{-1}$ where S satisfies a positive identity, N is positively invariant and S satisfies the left Ore condition. However the equality $\langle A \rangle = A^F$ does not hold because otherwise G would have a finite exponent, which is not so.

Acknowledgement: The author is grateful to Referee for suggestions on the text improvement.

References

- [1] Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups, 1964, (Vol. I), Math. Surveys, Amer. Math. Soc. Providence,
- Macedońska O., Słanina P., GB-problem in the class of locally graded groups, Comm. Algebra, 2008, 36(3), 842-850.
- Bergman G., Hyperidentities of groups and semigroups, 1981, Aeguat. Math., 23, 55-65.
- [4] Bergman G., Questions in algebra, Preprint, Berkeley, U.D. 1986.
- Shevrin L. N., Sukhanov E. V., Structural aspects of the theory of varieties of semigroups, Izv. Vyssh. Uchebn. Zaved. Mat., 1989, 6, 3-39 (Russian). English translation: Soviet Math., 1989, Iz. VUZ 6., 33, 1-34.
- Burns R. G., Macedońska O., Medvedev Y., Groups Satisfying Semigroup Laws, and Nilpotent-by-Burnside Varieties, 1997, J.of Algebra, 195, 510-525.
- [7] Mal'tsey A. L. Nilpotent semigroups, Ivanov, Gos. Ped. Inst. Uc. Zap., 1953, 4, 107–111, (Russian).
- [8] Krempa J., Macedońska O., On identities of cancellative semigroups, Contemporary Mathematics, 1992, 131, 125–133.
- [9] Ivanov S. V., Storozhev A. M., On Identities in groups of fractions of cancellative semigroups, Proc. Amer. Math. Soc., 2005, 133, 1873-1879.
- [10] Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups, 1967, (Vol. II), Math. Surveys, Amer. Math. Soc. Providence,
- [11] Neumann H., Varieties of groups, 1967, Springer-Verlag, Berlin, Heidelberg, New York.
- [12] Ol'shanskii A. Yu., Storozhev A., A group variety defined by a semigroup law, 1996, J. Austral. Math. Soc. Series A, 60, 255–259.
- [13] V. Ptak., Immersibility of Semigroups, 1949, Acta Fac. Nat. Univ. Carol. Prague, 192.