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1 Introduction

Order theory can formally be seen as a subject between lattice theory [23–25, 34, 48] and graph theory [6, 22, 36].
Indeed, one can say with good reason that lattices are special types of ordered sets, which are in turn special types
of directed graphs. Yet this would be much too simplistic an approach. In each theory the distinct strengths and
weaknesses of the given structure can be explored. This leads to general as well as discipline specific questions
and results. Of the three research areas mentioned, order theory undoubtedly is the youngest. In recent years, as
order and partial ordered set theory were widely applied in the combinatorics [1, 9, 13, 37, 43], fuzzy mathematics
[7, 32, 40, 42, 44], computer science [2, 39], and even in the social science [14, 15] etc.

A poset consists of a set together with a binary relation that indicates that, for certain pairs of elements in the set,
one of the elements precedes the other. Such a relation is called a partial order to reflect the fact that not every pair
of elements needs to be related: for some pairs, it may be that neither element precedes the other in the poset. Thus,
partial orders generalize the more familiar total orders, in which every pair is related. A finite poset can be visualized
through its Hasse diagram (discrete graphs), which depicts the ordering relation [35]. This area of order theory
was investigated in a series of papers by Erné [16, 18] and independently by Chajda, Halas̆, Larmerová, Rachånek,
Niederle [8, 26–29, 31], and later by Joshi, Kharat, Mokbel, Mundlik, Waphare [33, 45, 46] and many others. In
[19], they are mainly interested in ideal-theoretic properties and various degrees of (finite or infinite) distributivity
in atomic posets. However, we are more interested in atoms of atomic posets. And it is conceivable that the role
of the atomic elements is very important (each element in the boolean lattice can be expressed by atomic elements
i.e. a D

W
fx 2 A.B/jx � ag) in the Boolean lattice [11]. Similarly, atoms in atomic posets also deserve a keen

attention.
In this paper, we stress the importance of the two kinds of operators (C -operator and D-operator) in the study

of the theoretical aspect of atomic posets. Specifically, we first define two relation operators (C -operator and D-
operator) between the non-atomic element and the atomic element, and get series of related properties. Almost
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immediately, two kinds of operators above are combined to construct complete (algebraic) lattices, and used to study
the relation between atomic posets and complete (algebraic) lattices.

The work of this paper is organized as follows. We shall first briefly introduce poset and related concepts. In
Section 3, two kinds of operators above are combined to construct complete lattices, and used to study the relation
between atomic posets and complete lattices. In Section 4, two kinds of operators above are combined to construct
algebraic lattices, and used to study the relation between atomic posets and algebraic lattices.

2 Preliminaries

By a partial order on set P we mean a binary relation � on P which is reflexive, antisymmetric and transitive, and
by a partially ordered set we mean a non-empty set P together with a partial � on P . Less familiar is the symbol k
used to denote non-comparability: we write xky if x Š y and y ‹ x. We say P has a bottom element if there exist
0 2 P (called bottom) with the property that 0 � x for all x 2 P . An element x 2 P is an upper bound of S if
s � x for all s 2 L. A lower bound is defined dually. The set of all upper bounds of L is denoted by Su (read as “L
upper") and the set of all lower bounds by Ll (read as “L lower").

Throughout this article, 0 denotes the least element in a poset.

Definition 2.1 ([11]). Let P be an ordered set and x; y 2 P . We say x is covered by y (y covers x), and write
x � y or y � x, if x < y and x � z < y implies z D x. The latter condition is demanding that there is no element
z of P with x < z < y.

Observe that if P is finite, x < y if and only if there exist a finite sequence of covering relations x D x0 � x1 �

::: � xn D y. Thus, in the finite case, the order relation determines, and is determined by the covering relation.

Definition 2.2 ([25]). A subset D of a poset P is directed provided it is nonempty and every finite subset of D has
an upper bound in D.

Definition 2.3 ([4, 11]). Let P be a non-empty ordered set.
(i) If x _ y and x ^ y exist for all x; y 2 P , then P is called a lattice;

(ii) If
W
S and

V
S exist for all S � P , then P is called a complete lattice.

Definition 2.4 ([24]). Let P and Q be ordered sets. A map ' W P ! Q is said to be
(i) order-preserving if if x � y in P implies '.x/ � '.y/ in Q;

(ii) order-embedding (and we write ' W P ,! Q) if x � y in P if and only if '.x/ � '.y/ in Q;
(iii) order-isomorphism if ' is onto and x � y in P if and only if '.x/ � '.y/ in Q.

Definition 2.5 ([24]). Let L and K be lattices. A map f W L ! K is said to be a lattice homomorphism if f is
join-preserving and meet-preserving, that is, for all a; b 2 L,

f .a _ b/ D f .a/ _ f .b/ and f .a ^ b/ D f .a/ ^ f .b/:

A bijective lattice homomorphism is a lattice isomorphism.

Proposition 2.6 ([11]). Let L and K be lattices and f W L! K is a map. f is a lattice isomorphism if and only if
it is an order-isomorphism.

Lemma 2.7 ([11]). Let X be a set and L be a family of subsets of X , ordered by inclusion, such that
(i)

T
i2I

2 L for every non-empty family fAi gi2I � L, and

(ii) X 2 L.
That is to say that L is a topped intersection structure on X . Then L is a complete lattice in which
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^
i2I

Ai D

\
i2I

Ai ;

_
i2I

Ai D

\
fB 2 Lj

[
i2I

Ai � Bg:

Lemma 2.8 ([11]). Let P and Q be ordered sets and ': P ! Q be an order-isomorphism map. Then ' preserves
all existing joins and meets.

Definition 2.9 ([11]). Let L be a complete lattice and let k 2 L.
(i) k is called finite (in L), for every directed set D in L,

k �
G
D) k � d for some d 2 D:

The set of finite elements of L is denoted F.L/
(ii) k is said to be compact if, for every subset S of L,

k �
_
S ) k �

_
T for some f inite subset T of S:

The set of compact elements of L is denoted K.L/.

Lemma 2.10 ([11]). Let L be a complete lattice. Then F.L/ D K.L/

Definition 2.11 ([11]). A complete lattice L is said to be algebraic if, for each a 2 L,

a D
_
fk 2 K.L/jk � ag:

Definition 2.12 ([20]). A poset is said to be directed complete if every directed subset has a sup. A directed complete
algebraic poset L is called an algebraic domain.

Definition 2.13 ([19]). Let P be a poset. If P has a least element 0, then x 2 P is called an atom if 0 � x. If P has
no least element, then x 2 P is called an atom when x is a minimal element in P .

All finite posets are atomic. The set of atoms of P is denoted by A.P / and let A0.P / D A.P / [ f0g and P0 D

P nA0.P /. The poset P is called atomic if, given a.¤ 0/ in P , there exists x 2 A.P / such that x � a.
In atomic posets, according to the relationship between the non-atomic element and the atomic element, We

define the relation operator naturally, called C -operator and D-operator.

Definition 2.14. Let P be an atomic poset.
(1) (C -operator) 8a 2 P0, denote Ca D fx 2 A.P /jx � ag;
(2) (D-operator) 8b 2 A.P /, denote Db D fx 2 P0jb � xg.

C -operator and D-operator can be viewed as operators between A.P / and P0. Naturally, we can define CA DS
a2A

Ca for any A � P0, and DB D
S

b2B

Db for any B � P0. Then we can define two kinds of operators between

A.P / and P0 via Ca and Db .
Based on C -operators and D-operators, we generate several new relational operators as follows:

Definition 2.15. Let P be an atomic poset.
(1) (C o-operator) 8A � P0, denote C o

A
D fx 2 A.P /jDx � Ag;

(2) (Do-operator) 8B � A.P /, denote Do
B
D fx 2 P0jCx � Bg;

(3) (C -operator) 8A � P0, denote CA D fx 2 A.P /jA � Dxg;
(4) (D-operator) 8B � A.P /, denote DB D fx 2 P0jB � Cxg.
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It is obvious that CA D
T

a2A

Ca, DB D
T

b2B

Db . In Definition 2.14 and 2.15, these operators are very reasonable.

Then, we study some properties of several operators.

Proposition 2.16. Let P be an atomic poset. A;Ai � P0, B;Bi � A.P /, for i 2 I , a; b 2 P0, c 2 A.P /. Then
(1) a � b) Ca � Cb I

(2) A1 � A2 ) CA1
� CA2

; B1 � B2 ) DB1
� DB2

I

(3) A1 � A2 ) C o
A1
� C o

A2
; B1 � B2 ) Do

B1
� Do

B2
I

(4) A1 � A2 ) CA1
� CA2

; B1 � B2 ) DB1
� DB2

I

(5) a 2 DCa
; c 2 CDc

; A � DCA
; B � CDB

I

(6) A � Do
CA
; CDo

B
� BI

(7) CA D CDCA

, DB D DC DB

I

(8) Do
CDo

B

D Do
B
; CDo

CA

D CAI

(9) C S
i2I

Ai
D

T
i2I

CAi
, D S

i2I

Bi
D

T
i2I

DBi
I

(10) A � DB , CA � B:

Proof. We consider cases of .6/, .7/, .8/, .10/, and the other proofs are similar.
.6/ (i) Do

CA
D fx 2 P0jCx � CAg. If a 2 A, then there must be Cx � CA. So a 2 Do

CA
and therefore

A � Do
CA

.
(ii) Do

B
D fx 2 P0jCx � Bg, CDo

B
D

S
x2Do

B

Cx . If b 2 CDo
B

, then there exists x0 2 Do
B

such that

b 2 Cx0
� B . So b 2 B and therefore CDo

B
� B .

.7/ Since A � DCA
, then CA � CDCA

. Since B � CDB
, then CA � CDCA

. Therefore CA D CDCA

.

.8/ Since CDo
B
� B , then Do

CDo
B

� Do
B

. Since Do
CA
� A, then Do

CDo
B

� Do
B

. Therefore Do
CDo

B

D Do
B

.

.10/ .)/ Since A � DB D fx 2 P0jB � Cxg, then 8a 2 A;B � Ca and so B �
T

a2A

Ca D CA.

.(/ Since B � CA D fx 2 A.P /jA � Dxg, then 8b 2 B;A � Db and so A �
T

b2B

Db D DB .

3 Constructing complete lattices and mutual decision

The construction of complete lattice [11, 12, 17, 30, 38, 49] is very essential branch in the research of various order
structures. In 3.1 and 3.2, several operators (CA,CA,DB andDo

B
) are worked on atomic posets, and then a complete

lattice is generated. Subsequently, we find that complete lattices and posets are mutually corresponding. Thus, in the
theoretical study of posets, we can see the crucial role of the content of this section.

3.1 Complete lattices via .CA; DB;D/

Let P be an atomic poset. A pair .A;B/ satisfies A � P0; B � A.P /, CA D fx 2 A.P /jA � Dxg D B and
DB D fa 2 P0jB � Cxg D A. This implies A D DCA

; B D CDB
. The set of all those pairs of P is denoted by

B.P /.
For pairs .A1; B1/ and .A2; B2/ in B.P / we write .A1; B1/ � .A2; B2/ if A1 � A2. Also A1 � A2 implies

CA1
� CA2

, and the reverse implication is also valid, so A1 D DCA1
and A2 D DCA2

. We therefore have

.A1; B1/ � .A2; B2/, A1 � A2 , B1 � B2:

We can then see easily that the relation � is an order on B.P /. As we can see in Theorem 3.1, < B.P /I �> is a
complete lattice.
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Theorem 3.1. Let P be an atomic poset. Then < B.P /I �> is a complete lattice in which join and meet are given
by _

i2I

.Ai ; Bi / D .D T
i2I

CAi
;

\
i2I

Bi /^
i2I

.Ai ; Bi / D .
\
i2I

Ai ; C T
i2I

DBi
/:

Proof. Define B.P0/ WD fA � P0jA D DCA
g. The map � W .A;B/ ! A gives an order-isomorphism between

B.P / and B.P0/.
We shall prove that B.P0/ is a topped intersection structure. Let Ai 2 B.P0/ for i 2 I . Then DCAi

D Ai for
each i . By (5) in Proposition 2.16 \

i2I

Ai � DC T
i2I

Ai

Also
T

i2I

Ai � Ai for all i 2 I , which, by (4) in Proposition 2.16, implies that

DC T
i2I

Ai

� DC Ai
D Ai for al l i 2 I;

whence
DC T

i2I
Ai

�

\
i2I

Ai :

Therefore DC T
i2I

Ai

D
T

i2I

Ai and hence
T

i2I

Ai 2 B.P0/. Also, P0 � DCP0
. So that P0 D DCP0

, which shows

that B.P0/ is topped.
By Theorem 2.7, B.P0/ is a complete lattice in which meet is given by intersection. A formula for the join is

given in Theorem 2.7 but we shall proceed more directly. We claim that_
i2I

Ai D DC S
i2I

Ai

D D T
i2I

CAi
:

Let A D D T
i2I

CAi
. Certainly A D DCA

, by (7) in Proposition 2.16, and
S

i2I

Ai � A, by (2) in Proposition 2.16.

Hence A is an upper bound for fAi gi2I in B.P0/. Also, if X is an upper bound in B.P0/ for fAi gi2I , then[
i2I

Ai � X ) A � DCX
D X:

Therefore A is indeed the required join. We may now appeal to Theorem 2.8 to deduce that B.P / is a complete
lattice in which joins and meets are given by_

i2I

.Ai ; Bi / D .D T
i2I

CAi
;

\
i2I

Bi /

^
i2I

.Ai ; Bi / D .
\
i2I

Ai ; C T
i2I

DBi
/:

Theorem 3.2. Let P be an atomic poset and B.P / be the complete lattice by Theorem 3.1. Then '.P0/ is join-dense
in B.P / and '.A.P // is meet-dense in B.P /.

Proof. Let .A;B/ 2 B.P /. Then _
'.A/ D

_
g2A

'.g/

D

_
g2A

.DCg
; Cg/

D.D T
g2A

C D
C g

;
\

g2A

Cg/
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D.D T
g2A

Cg
;

\
g2A

Cg/

However, according to Definition 2.15 \
g2A

Cg D C
S

g2A

fgg D CA D B:

Since .A;B/ and
W
'.A/ are elements of B.P / with the same second coordinate,

W
'.A/ D .A;B/. Consequently

'.P0/ is join-dense in B.P / and '.A.P // is meet-dense in B.P /.

Theorem 3.3. For every complete lattice L, there is an atomic poset P such that L is order-isomorphic to B.P /.

Proof. Suppose .L;v/ is a complete lattice. Define the atomic poset P D f0g
S

A.P /
S
P0, where A.P / D L

and P0 D L. Further, in P , let akb for 8a; b 2 A.P /; let a � b iff a v b for 8a 2 A.P /; b 2 P0; let a � b iff
akb for 8a; b 2 P0. As L is a lattice, it is easy to see that P is an atomic poset. We want to show that .L;v/ is
order-isomorphic to B.P /.

First note that for any X � P0, we have

CX Dfb 2 A.P /jX � Dbg

Dfb 2 A.P /j8x 2 X; b � xg

Dfb 2 Lj8x 2 X; b v xg

D

\
x2X

f#L.x/g

D#L.
^
X/

Among them, #D.x/ means the upper set of x in L. On the other hand, for any Y � AP ,

DY Dfa 2 P0jY � Cag

Dfa 2 P0j8y 2 Y; y � ag

Dfa 2 Lj8y 2 Y; y v ag

D

\
y2Y

f"L.y/g

D"L.
_
Y /

Therefore, X 2 B.P0/ iff DCP
D X , or

"L.
_
.#L.

^
X/// D X

Since "L

W
.#L

V
X/ D "L.

V
X/, hence, X � B.P0/ iff X D "L.

V
X/. In other words, B.P0/ are precisely the

up-closed subsets of L generated by a single element. Hence, a subset of P0 belongs to B.P0/ if and only if it is a
principal filter.

The mapping x 7! "x provides an order-isomorphism between L and B.P0/. Since B.P0/ is isomorphic to
B.P /, therefore .L;v/ is order-isomorphic to B.P /.

Example 3.4. Let L D fa; b; c; dg be a complete lattice, the Hasse diagram of L is illustrated by Figure 1. We
can get an atomic poset P by Theorem 3.3, whose Hasse diagram is illustrated by Figure 1, and can also get a
complete lattice B.P / which is isomorphic to L by Theorem 3.1. In Figure 1, a1 and a2 in P is a in L, b1 and
b2 in P is b in L, c1 and c2 in P is c in L, d1 and d2 in P is d in L. In B.P /, A D .fd2g; fa1; b1; c1; d1g/,
B D .fb2; d2g; fa1; b1g/, C D .fc2; d2g; fa1; c1g/, D D .fa2; b2; c2; d2g; fa1; b1; c1; d1g/.
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Fig. 1. The figure in Example 3.4
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3.2 Complete lattices via .CA; Do
B

;D/

Let P be an atomic poset. A set A satisfies A � P0, Do
CA
D A. The set of all those sets of P is denoted by Bo.P /.

For set A1 and A2 in Bo.P / we write A1 � A2 if A1 � A2. We can then see easily that the relation � is an
order on Bo.P /. As we see in Theorem 3.5, < Bo.P /I �> is a complete lattice.

Theorem 3.5. Let P be an atomic poset. Then < Bo.P /I �> is a complete lattice in which join and meet are given
by _

i2I

Ai D D
oS
i2I

CAi

;
^
i2I

Ai D

\
i2I

Ai :

Proof. We shall prove that Bo.P / is a topped intersection structure. Let Ai 2 Bo.P / for i 2 I . Then Do
CAi

D Ai

for each i . By (6) in Proposition 2.16 \
i2I

Ai � D
o
C T

i2I
Ai

Also
T

i2I

Ai � Ai for all i 2 I , which, by (3) in Proposition 2.16, implies that

Do
C T

i2I
Ai
� Do

CAi
D Ai for al l i 2 I;

whence
Do

C T
i2I

Ai
�

\
i2I

Ai :

Therefore Do
C T

i2I
Ai

D
T

i2I

Ai and hence
T

i2I

Ai 2 Bo.P /. Also, P0 � D
o
CP0

. So that P0 D Do
CP0

, which shows

that Bo.P / is topped.
By Theorem 2.7, Bo.P / is a complete lattice in which meet is given by intersection. A formula for the join is

given in Theorem 2.7 but we shall proceed more directly. We claim that_
i2I

Ai D D
o
C S

i2I
Ai
D DoS

i2I

CAi

:

Let A D DoS
i2I

CAi

. Certainly A D Do
CA

, by (8) in Proposition 2.16, and
S

i2I

Ai � A, by (2) in Proposition 2.16.

Hence A is an upper bound for fAi gi2I in Bo.P /. Also, if X is an upper bound in Bo.P / for fAi gi2I , then[
i2I

Ai � X ) A � Do
CX
D X:
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Therefore A is indeed the required join. We may now appeal to Theorem 2.8 to deduce that Bo.P / is a complete
lattice in which joins and meets are given by_

i2I

Ai D D
oS
i2I

CAi

;
^
i2I

Ai D

\
i2I

Ai :

Theorem 3.6. For every complete lattice L, there is an atomic poset P such that L is order-isomorphic to Bo.P /.

Proof. Suppose .L;�/ is a complete lattice. Define the atomic poset P D A.P /
S
P0, where A.P / D L and

P0 D L. Further, in P ,
.1/ let akb for 8a; b 2 A.P /;
.2/ let a � b for 8a 2 A.P /; b 2 P0 iff a D b in case that a is the least element in L, a � b in case that b is

the largest element in L, in other cases a ‹ b in L;
.3/ let a � b for 8a; b 2 P0 iff a � b in L.
Under the order relation defined in P , it is easy to see that P is an atomic poset. We want to show that .L;�/ is

order-isomorphic to B.P /.
First note that for any X � P0 which does not contain the least and largest elements, we have

CX Dfb 2 A.P /j9x 2 X; b � xg

Dfb 2 Lj9x 2 X; b � xg

DLnfb 2 Lj8x 2 X; b � xg

DLn
\

x2X

"L.x/

DLn"L.
_
X/

Among them, "L.x/ means the upper set of x in L. On the other hand,

Do
CX
Dfa 2 P0jCa � CX g

Dfa 2 LjLn"a � Ln"L.
_
X/g

Dfa 2 Lj"a � ".
_
X/g

Dfa 2 Lja �
_
Xg

D#L.
_
X/

If X.� P0/ which contains the least or largest elements, we can easily check that Do
CX
D #.

W
X/. Therefore, we

have fDo
CX
jX � P0g D f#xjx 2 Lg. Hence, X � Bo.P / iff X D #L .

W
X/. In other words, Bo.P / are precisely

the lower sets of L generated by a single element. It is obvious that Bo.P / is isomorphic to L.

Example 3.7. Let L D fa; b; c; dg be a complete lattice, the Hasse diagram of L is illustrated by Figure 2. We can
get an atomic poset P by Theorem 3.6, whose Hasse diagram is illustrated by Figure 2, and can also get a complete
lattice Bo.P / which is isomorphic to L by Theorem 3.5. In Figure 2, a1 and a2 in P is a in L, b1 and b2 in P is
b in L, c1 and c2 in P is c in L, d1 and d2 in P is d in L. In Bo.P /, A D fa2g, B D fa2; b2g, C D fa2; c2g,
D D fa2; b2; c2; d2g.
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Fig. 2. The figure in Example 3.7
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4 Constructing algebraic lattices and mutual decision

The construction of algebraic lattice [21, 41, 47] is very essential branch in the research of various order structures.
In 4.1 and 4.2, Several operators(CA, CA, DB and Do

B
) are worked on atomic posets, and then a algebraic lattice

is generated. Subsequently, we find that algebraic lattices and posets are mutually corresponding. Thus, in the
theoretical study of posets, we can see the crucial role of the content of this section.

4.1 Algebraic lattices via .CA; DB;�/

Let P be an atomic poset. A set A satisfies A � P0 and for every finite subset X � A, DCX
� A. The set of all

those sets of P is denoted by F.P /.
For A1; A2 in F.P / we write A1 � A2 iff A1 � A2. We can see easily that the relation � is an order on F.P /.

As we can see in Theorem 4.1, < F.P /I �> is an algebraic lattice.

Theorem 4.1. Let P be an atomic poset. Then < F.P /I �> forms an algebraic lattice.

Proof. We first show that < F.P /I �> is a complete lattice. To show that < F.P /I �> is a complete lattice it
suffices to show that < F.P /I �> is a topped intersection structure by Lemma 2.7. Given any subset T � F.P /,
it suffices to show that

T
T 2 F.P /. Suppose X is a finite subset of

T
T . Then X � t for each t 2 T . Since each

t 2 F.P / , we have DCX
� t for each t � T . This implies DCX

�
T
T and so

T
T 2 F.P /. It is easy to see

L0 2 F.P / and so < F.P /I �> is a topped intersection structure.
To show that< F.P /I �> is algebraic, note thatDCX

is a compact element for each finiteX inL0. To see this,
we first show DCX

2 F.P /. Let X1 be a finite subset of DCX
, then DCX1

� DC .D
CX

/
D DCX

by Proposition

2.16, which implies DCX
2 F.P /. Then let fAi ji 2 I g be a directed subset of F.P / such that

DCX
�

[
i2I

Ai :

By Proposition 2.16, X � DCX
. Therefore X �

S
i2I

Ai . Since X is finite and fAi ji 2 I g is directed, X � Ak

for some k 2 I . But Ak 2 F.P /, therefore DCX
� Ak . By Definition 2.9 and Lemma 2.10, DCX

is a compact
element for each finite X .
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Next we will show that for any T 2 F.P /, T D
S
fDCX

jX �f in T g. For any X �f in T , as T 2 F.P /,
we have DCX

� T . Then
S
fDCX

jX �f in T g � T . As X � DCX
, So T D

S
X �

S
fDCX

jX �f in T g.
Therefore T D

S
fDCX

jX �f in T g. Therefore < F.P /I �> forms an algebraic lattice by Definition 2.11.

Corollary 4.2. Let P be a finite atomic poset. Then F.P / D fDCX
jX � Lg.

Proof. First we will show F.P / � fDCX
jX � P g. 8A 2 F.P /, we have A � P0 and for every finite subset

X � A, DCX
� A. As P is finite, we have that A is finite and DCA

� A. Since A � DCA
by Proposition

2.16, therefore A D DCA
. So F.P / � fDCX

jX � P g. Then we will show fDCX
jX � P g � F.P /. Since we

show in Theorem 4.1, DCX
is a compact element in < F.P /I �> for each finite X in P0. Since P is finite, so

fDCX
jX � Lg � F.P /. Therefore F.P / D fDCX

jX � P g.

Theorem 4.3. For every algebraic lattice D, there is an atomic poset P such that D is order-isomorphic to F.P /.

Proof. Suppose .D;v/ is an algebraic lattice. Define a poset .P;�/ D f0g
S

A.P /
S
P0 with A.P / D D, P0 D

K.D/, whereK.D/ stands for the set of compact elements ofD. Further, in P , let akb for 8a; b 2 A.P /; let a � b
iff b v a for 8a 2 A.P /; b 2 P0; let a � b iff b v a for 8a; b 2 P0. As D is an algebraic lattice, it is easy to see
that P is an atomic poset. We want to show that .D;v/ is order-isomorphic to F.P /.

First note that for any X � P0, we have

CX Dfb 2 A.P /jX � Dbg

Dfb 2 A.P /j8x 2 X; x � bg

Dfb 2 Dj8x 2 X; x v bg

D

[
x2X

f"D.x/g

D"D.
_
X/

Among them, "D.
W
X/ means the upper set of

W
X in D. On the other hand,

DY Dfa 2 P0jY � Cag

Dfa 2 P0j8y 2 Y; y � ag

Dfa 2 K.D/j8y 2 Y; a v yg

Dfa 2 K.D/j8y 2 Y; a 2 #K.D/.y/g

D

\
y2Y

f#K.D/.y/g

D#K.D/.
^
Y /

Therefore, I 2 F.P / iff DCX
� I for any finite subset X �f in I , or

#K.D/.
^
."D.

_
X/// � I

for each X �f in I . Since
#K.D/.

^
."D.

_
X/// D #K.D/.

_
X/;

this is equivalent to say that I is a downward closed, directed subset of compact elements ofD. A downward closed,
directed subset is called an ideal. Hence, a subset of P0 belongs to F.P / if and only if it is an ideal.

At last, by the classical result about algebraic domains [3]: an algebraic domain is isomorphic to the ideal
completion of the poset of its compact elements through the isomorphism

d 7! fa 2 K.D/ja v dg

that is, F.P / is isomorphic to D.
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Fig. 3. The figure in Example 4.4
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Example 4.4. Let D D fa; b; c; d; eg be an alegraic lattice, the Hasse diagram of D is illustrated by Figure 3. We
can get an atomic poset P by Theorem 4.3, whose Hasse diagram is illustrated by Figure 3, and can also get an
alegraic lattice F.P / which is isomorphic toD by Theorem 4.1. In Figure 3, a1 and a2 in P is a inD, b1 and b2 in
P is b in D, c1 and c2 in P is c in D, d1 and d2 in P is d in D. In F.P /, A D fa2g, B D fa2; b2g, C D fa2; c2g,
D D fa2; d2g, E D fa2; b2; c2; d2; e2g.

4.2 Algebraic lattices via .CA; Do
B

;�)

Let P be an atomic poset. A set A satisfies A � P0 and for every finite subset X � A, Do
CX
� A. The set of all

those sets of P is denoted by Fo.P /.
For A1; A2 in Fo.P /. We write A1 � A2 if A1 � A2. We can see easily that the relation � is an order on

Fo.P /. As we can see in Theorem 4.5, < Fo.P /I �> is an algebraic lattice.

Theorem 4.5. Let P be an atomic poset. Then < Fo.P /I �> forms an algebraic lattice.

Proof. We first show that < Fo.P /I �> is a complete lattice. To show that < Fo.P /I �> is a complete lattice it
suffices to show that < Fo.P /I �> is a topped intersection structure by Lemma 2.7. Given any subset T � Fo.P /,
it suffices to show that

T
T 2 Fo.P /. Suppose X is a finite subset of

T
T . Then X � t for each t 2 T . Since each

t 2 Fo.P / , we have Do
CX
� t for each t � T . This implies Do

CX
�

T
T and so

T
T 2 Fo.P /. It is easy to see

P0 2 Fo.P / and so < Fo.P /I �> is a topped intersection structure.
To show that < Fo.P /I �> is algebraic, note that Do

CX
is a compact element for each finite X in P0. To

see this, we first show Do
CX
2 Fo.P /. Let X1 be a finite subset of Do

CX
. Then Do

CX1
� Do

C.Do
CX

/
D Do

CX
by

Proposition 2.16, which implies Do
CX
2 Fo.P /. Then let fAi ji 2 I g be a directed subset of Fo.P / such that

Do
CX
�

[
i2I

Ai :

By Proposition 2.16, X � Do
CX

. Therefore X �
S

i2I

Ai . Since X is finite and fAi ji 2 I g is directed, X � Ak

for some k 2 I . But Ak 2 Fo.P /, therefore Do
CX
� Ak . By Definition 2.9 and Lemma 2.10, Do

CX
is a compact

element for each finite X .
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Next we will show that for any T 2 Fo.P /, T D
S
fDo

CX
jX �f in T g. For any X �f in T , as T 2 Fo.P /,

we have Do
CX
� T . Then

S
fDo

CX
jX �f in T g � T . As X � Do

CX
, So T D

S
X �

S
fDo

CX
jX �f in T g.

Therefore T D
S
fDo

CX
jX �f in T g. Therefore < Fo.P /I �> forms an algebraic lattice by Definition 2.11.

Corollary 4.6. Let P be a finite atomic poset. Then Fo.P / D fDo
CX
jX � Lg.

Proof. First we will show Fo.P / � fDo
CX
jX � P g. 8A 2 Fo.P /, we have A � P0 and for every finite subset

X � A, Do
CX
� A. As P is finite, we have that A is finite and Do

CA
� A. As A � Do

CA
by Proposition 2.16.

Therefore A D Do
CA

. So Fo.P / � fDo
CX
jX � P g. Then we will show fDo

CX
jX � P g � Fo.P /. As we

show in Theorem 4.5, Do
CX

is a compact element in < Fo.P /I �> for each finite X in P0. As P is finite, so
fDo

CX
jX � Lg � Fo.P /. Therefore Fo.P / D fDo

CX
jX � P g.

Theorem 4.7. For every algebraic latticeD, there is an atomic poset P such thatD is order-isomorphic to Fo.P /.

Proof. Suppose .D;�/ is an algebraic lattice. Define a poset .P;�/ D A.P /
S
P0 with A.P / D D, P0 D K.D/,

where K.D/ stands for the set of compact elements of D. Further, in P ,
.1/ let akb for 8a; b 2 A.P /;
.2/ let a � b for 8a 2 A.P /; b 2 P0 iff a D b in the case that a is the least in D, a � b in the case that b is

the largest element in L, in other cases a ‹ b in L;
.3/ let a � b for 8a; b 2 P0 iff a � b in D.
As D is an algebraic lattice, it is easy to see that P is an atomic poset. We want to show that .D;�/ is order-

isomorphic to Fo.P /.
First note that for any X.� P0/ which does not contain the least and largest elements, we have

CX Dfb 2 A.P /j9x 2 X; b � xg

Dfb 2 Dj9x 2 X; b � xg

DDnfb 2 Dj8x 2 X; b � xg

DDn
\

x2X

"D.x/

DDn"D.
_
X/

Among them, "D.x/ means the upper set of x in D. On the other hand,

Do
CX
Dfa 2 P0jCa � CX g

Dfa 2 K.D/jDn"a � Dn".
_
X/g

Dfa 2 K.D/j"a � ".
_
X/g

Dfa 2 K.D/ja �
_
Xg

D#K.D/.
_
X/

If X.� P0/ which contains the least or largest element, we can easily check that Do
CX
D #.

W
X/. Therefore,

I 2 Fo.P / iff Do
CX
� I for any finite subset X �f in I , or

#K.D/.
_
X/ � I

this is equivalent to say that I is a downward closed, directed subset of compact elements ofD. A downward closed,
directed subset is called an ideal. Hence, a subset of P0 belongs to Fo.P / if and only if it is an ideal.

At last, by the classical result about algebraic domains [3]: an algebraic domain is isomorphic to the ideal
completion of the poset of its compact elements through the isomorphism

d 7! fa 2 K.D/ja � dg

that is, Fo.P / is isomorphic to D.
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Fig. 4. The figure in Example 4.8

D

e

a

b d

E

A

B D

F (P)

2

2

2

2

db ac

b

e

a

c

11 11

P

y

C

c

e1

2d

Example 4.8. Let D D fa; b; c; d; eg be an alegraic lattice, the Hasse diagram of D is illustrated by Figure 4. We
can get an atomic poset P by Theorem 4.7, whose Hasse diagram is illustrated by Figure 4, and can also get an
alegraic lattice Fo.P / which is isomorphic to L by Theorem 4.5. In Figure 4, a1 and a2 in P is a in D, b1 and
b2 in P is b in D, c1 and c2 in P is c in D, d1 and d2 in P is d in D. In Fo.P /, A D fa2g, B D fa2; b2g,
C D fa2; c2g, D D fa2; d2g, E D fa2; b2; c2; d2; e2g.

5 Conclusions

In this paper, to promote the research and development of completion of poset, we thoroughly study C -operators
and D-operators. It is aiming at illustrating fresh methodological achievement in lattice which will also be of
soaring importance in the future. We have defined C -operators and D-operators. Next, we investigate some related
properties. A distinctive completion of lattice via C -operators and D-operators is followed. Our future work on this
topic will focus on studying of completion and algebraization using C -operators and D-operators in poset.

References

[1] Aigner M., Combinatorial theory, Springer Science and Business Media, 2012.
[2] Aliev I., De Loera J.A., Louveaux Q., Integer programs with prescribed number of solutions and a weighted version of Doignon-

Bell-Scarf’s theorem, Springer International Publishing, 2014.
[3] Amadio R.M., Curien P.L., Domains and lambda-calculi, Cambridge University Press, 1998.
[4] Birkhoff G., Lattice theory, American Mathematical Society, 1948.
[5] Boole G., An investigation of the laws of thought:on which are founded the mathematical theories of logic and probabilities, Dover

Publications, 1854.
[6] Bollobas B., Graph theory: an introductory course, Springer Science and Business Media, 2012.
[7] Borgwardt S., Pen̋aloza R., Consistency reasoning in lattice-based fuzzy description logics, Internat. J. Approx. Reason., 2014,

55, 1917-1938.
[8] Chajda I., Complemented ordered sets, Arch. Math., 1992, 28, 25-34.
[9] Crapo H.H., Rota G.C., On the foundations of combinatorial theory:combinatorial geometries, The MIT Press, 1970.
[10] Czédli G., Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices, Algebra

universalis, 2012, 67, 313-345.
[11] Davey B.A., Priestley H.A., Introduction to lattices and order, Cambridge university press, 2002.



A new view of relationship between atomic posets and complete (algebraic) lattices 251

[12] David E., Erné M., Ideal completion and Stone representation of ideal-distributive ordered sets, Topology Appl., 1992, 44(1), 95-
113.

[13] Deraux M., Parker J.R., Paupert J., New non-arithmetic complex hyperbolic lattices, Invent. Math., 2014, 1-91.
[14] Epstein J.M., Generative social science:Studies in agent-based computational modeling, Princeton University Press, 2006.
[15] Epstein J.M., Remarks on the foundations of agent-based generative social science, Handbook of Computational Economics,

2006, 2, 1585-1604.
[16] Erné M., Wilke G., Standard completions for quasiordered sets, Semigroup Forum, 1983, 27(1), 351-376.
[17] Erné M., The Dedekind-MacNeille completion as a reflector, Order, 1991, 8(2), 159-173.
[18] Erné M., Prime and maximal ideals of partially ordered sets, Math. Slovaca, 2006, 56(1), 1-22.
[19] Erné M., Joshi V., Ideals in atomic posets, Discrete Math., 2015, 338(6), 954-971.
[20] Gierz G., Continuous lattices and domains, Cambridge University Press, 2003.
[21] Gierz G., Hofmann K.H., Keimel K., A compendium of continuous lattices, Springer Science and Business Media, 2012.
[22] Godsil C., Royle G.F., Algebraic graph theory, Springer Science and Business Media, 2013.
[23] Grätzer G., Lattice theory:First concepts and distributive lattices, Courier Corporation, 2009.
[24] Grätzer G., Lattice theory:foundation, Springer Science and Business Media, 2011.
[25] Grätzer G., Wehrung F., Lattice theory:special topics and applications, Springer, 2014.
[26] Halas̆ R., Pseudocomplemented ordered sets, Arch. Math., 1993, 29(2), 153-160.
[27] Halas̆ R., Rachånek J., Polars and prime ideals in ordered sets, Discuss. Math., 1995, 15, 43-59.
[28] Halas̆ R., Ideals and annihilators in ordered sets, Czech. Math. J., 1995, 45, 127-134.
[29] Halas̆ R., Relative polars in ordered sets, Czechoslovak Math. J., 2000, 50(2), 415-429.
[30] Jenc̆a G., The block structure of complete lattice ordered effect algebras, J. Aust. Math. Soc., 2007, 83, 181-216.
[31] Niederle J., Boolean and distributive ordered sets: characterization and representation by sets, Order, 1995, 12(2), 189-210.
[32] Kaburlasos V.G., Athanasiadis I.N., Mitkas P.A., Fuzzy lattice reasoning classifier and its application for ambient ozone estimation,

Internat. J. Approx. Reason., 2007, 45(1), 152-188.
[33] Kharat V.S., Mokbel K.A., Semiprime ideals and separation theorems for posets, Order, 2008, 25(3), 195-210.
[34] Ma X., Zhan J., Jun Y.B., Some kinds of falling fuzzy filters of lattice implication algebras, Appl. Math. J. Chinese Univ. Ser. A.,

2015, 30(3), 299-316.
[35] Merrifield R.E., Simmons H.E., Topological methods in chemistry, New York etc., 1989.
[36] Moon J.W., Topics on Tournaments in Graph Theory, Courier Dover Publications, 2015.
[37] Narayana T.V., Lattice path combinatorics, with statistical applications, Univ of Toronto Pr., 1979.
[38] Rasouli H., Completion of S-posets, Semigroup Forum, 2012, 1-6.
[39] Rine D.C., Computer science and multiple-valued logic:theory and applications, Elsevier, 2014.
[40] Satya Saibaba G.S.V., Fuzzy lattice ordered groups, Southeast Asian Bull. Math., 2008, 32(4), 58-60.
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