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1 Introduction

Order theory can formally be seen as a subject between lattice theory [23-25, 34, 48] and graph theory [6, 22, 36].
Indeed, one can say with good reason that lattices are special types of ordered sets, which are in turn special types
of directed graphs. Yet this would be much too simplistic an approach. In each theory the distinct strengths and
weaknesses of the given structure can be explored. This leads to general as well as discipline specific questions
and results. Of the three research areas mentioned, order theory undoubtedly is the youngest. In recent years, as
order and partial ordered set theory were widely applied in the combinatorics [1, 9, 13, 37, 43], fuzzy mathematics
[7, 32, 40, 42, 44], computer science [2, 39], and even in the social science [14, 15] etc.

A poset consists of a set together with a binary relation that indicates that, for certain pairs of elements in the set,
one of the elements precedes the other. Such a relation is called a partial order to reflect the fact that not every pair
of elements needs to be related: for some pairs, it may be that neither element precedes the other in the poset. Thus,
partial orders generalize the more familiar total orders, in which every pair is related. A finite poset can be visualized
through its Hasse diagram (discrete graphs), which depicts the ordering relation [35]. This area of order theory
was investigated in a series of papers by Erné [16, 18] and independently by Chajda, Hala§, Larmerova, Rachanek,
Niederle [8, 26-29, 31], and later by Joshi, Kharat, Mokbel, Mundlik, Waphare [33, 45, 46] and many others. In
[19], they are mainly interested in ideal-theoretic properties and various degrees of (finite or infinite) distributivity
in atomic posets. However, we are more interested in atoms of atomic posets. And it is conceivable that the role
of the atomic elements is very important (each element in the boolean lattice can be expressed by atomic elements
ie.a = \/{x € A(B)|x < a}) in the Boolean lattice [11]. Similarly, atoms in atomic posets also deserve a keen
attention.

In this paper, we stress the importance of the two kinds of operators (C -operator and D-operator) in the study
of the theoretical aspect of atomic posets. Specifically, we first define two relation operators (C -operator and D-
operator) between the non-atomic element and the atomic element, and get series of related properties. Almost
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immediately, two kinds of operators above are combined to construct complete (algebraic) lattices, and used to study
the relation between atomic posets and complete (algebraic) lattices.

The work of this paper is organized as follows. We shall first briefly introduce poset and related concepts. In
Section 3, two kinds of operators above are combined to construct complete lattices, and used to study the relation
between atomic posets and complete lattices. In Section 4, two kinds of operators above are combined to construct
algebraic lattices, and used to study the relation between atomic posets and algebraic lattices.

2 Preliminaries

By a partial order on set P we mean a binary relation < on P which is reflexive, antisymmetric and transitive, and
by a partially ordered set we mean a non-empty set P together with a partial < on P. Less familiar is the symbol ||
used to denote non-comparability: we write x|y if x £ y and y # x. We say P has a bottom element if there exist
0 € P (called bottom) with the property that 0 < x for all x € P. An element x € P is an upper bound of § if
s < x forall s € L. A lower bound is defined dually. The set of all upper bounds of L is denoted by S* (read as “L
upper") and the set of all lower bounds by L' (read as “L lower").

Throughout this article, O denotes the least element in a poset.

Definition 2.1 ([11]). Let P be an ordered set and x,y € P. We say x is covered by y (y covers x), and write
x <yory>xifx <yandx <z <y implies z = x. The latter condition is demanding that there is no element
zof Pwithx <z <y.

Observe that if P is finite, x < y if and only if there exist a finite sequence of covering relations x = xo < x1 <
... < X = y. Thus, in the finite case, the order relation determines, and is determined by the covering relation.

Definition 2.2 ([25]). A subset D of a poset P is directed provided it is nonempty and every finite subset of D has
an upper bound in D.

Definition 2.3 ([4, 11]). Let P be a non-empty ordered set.
(1) If x vV yandx Ay existforall x,y € P, then P is called a lattice;
(i) If\/ S and N\ S exist for all S C P, then P is called a complete lattice.

Definition 2.4 ([24]). Let P and Q be ordered sets. A map ¢ : P — Q is said to be

(1) order-preserving if if x < y in P implies p(x) < ¢(y) in Q;

(ii) order-embedding (and we write ¢ : P < Q) if x < y in P ifand only if p(x) < ¢(y) in Q;
(iii) order-isomorphism if ¢ is onto and x <y in P if and only if p(x) < ¢(y) in Q.

Definition 2.5 ([24]). Let L and K be lattices. A map f : L — K is said to be a lattice homomorphism if f is
Join-preserving and meet-preserving, that is, for all a,b € L,

flavb)= fla)v f(b)and f(a nb)= fla) A f(D).

A bijective lattice homomorphism is a lattice isomorphism.

Proposition 2.6 ([11]). Let L and K be lattices and f : L — K is a map. f is a lattice isomorphism if and only if
it is an order-isomorphism.

Lemma 2.7 ([11]). Let X be a set and L be a family of subsets of X, ordered by inclusion, such that
(1) [\ € L for every non-empty family {A;}ic; C L, and
iel
(i) X € L.
That is to say that L is a topped intersection structure on X. Then L is a complete lattice in which
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N Ai =) 4.

iel iel
\ 4i=(\Becl| 4 B}
iel iel

Lemma 2.8 ([11]). Let P and Q be ordered sets and ¢: P — Q be an order-isomorphism map. Then ¢ preserves
all existing joins and meets.

Definition 2.9 ([11]). Ler L be a complete lattice and let k € L.
(1) k is called finite (in L), for every directed set D in L,

k§|_|D=>k§dforsomedeD.

The set of finite elements of L is denoted F (L)
(ii) k is said to be compact if, for every subset S of L,

k < \/S =k< \/T for some finite subset T of S.
The set of compact elements of L is denoted K(L).
Lemma 2.10 ([11]). Let L be a complete lattice. Then F(L) = K(L)

Definition 2.11 ([11]). A complete lattice L is said to be algebraic if, for each a € L,
a=\/{k e KWL)k < a}.

Definition 2.12 ([20]). A poset is said to be directed complete if every directed subset has a sup. A directed complete
algebraic poset L is called an algebraic domain.

Definition 2.13 ([19]). Let P be a poset. If P has a least element 0, then x € P is called an atom if 0 < x. If P has
no least element, then x € P is called an atom when x is a minimal element in P.

All finite posets are atomic. The set of atoms of P is denoted by A(P) and let Ag(P) = A(P) U {0} and Py =
P\Ao(P). The poset P is called atomic if, given a(# 0) in P, there exists x € A(P) such that x < a.

In atomic posets, according to the relationship between the non-atomic element and the atomic element, We
define the relation operator naturally, called C -operator and D-operator.

Definition 2.14. Let P be an atomic poset.
(1) (C-operator)Va € Py, denote C, = {x € A(P)|x < a};
(2) (D-operator) Vb € A(P), denote Dp, = {x € Po|b < x}.

C-operator and D-operator can be viewed as operators between A(P) and Pg. Naturally, we can define C4 =

|J Cq4 forany A € Po,and Dp = |J Djp forany B C Pg. Then we can define two kinds of operators between
acA beB
A(P) and Pg via C,4 and Dy,.

Based on C-operators and D -operators, we generate several new relational operators as follows:

Definition 2.15. Let P be an atomic poset.

(1) (C°-operator) VA C Py, denote C§ = {x € A(P)|Dx C A},
(2) (D?-operator) ¥V B C A(P), denote D = {x € Po|Cx C B};
(3) (C-operator) YA C Py, denote C 4 = {x € A(P)|A C Dy};
(4) (D-operator) VB C A(P), denote Dp = {x € Po|B C Cx}.
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It is obvious that C 4 = N Ca, Dp = (\ Dp. In Definition 2.14 and 2.15, these operators are very reasonable.
acA beB
Then, we study some properties of several operators.

Proposition 2.16. Let P be an atomic poset. A, Aj € Po, B, B € A(P), fori € I, a,b € Py, c € A(P). Then
(1) a<b= CqCCp;

(2) A1 S A2 = Cyq, CCyq,,B1 € By = Dp, C Dp,;

() A1 S A= Cf SCY . B1 S B= Dy <Dy

4) A1 CA>=>Cyq, 2Cu,,B1 €SB, = Dp, 2 Dp,;

O) a Gﬁca,c GéDC,A gﬁfA,B géﬁB;

6) AC DE,.Cpy C B:

(7) Cyq = CB?A ,Dp = DgﬁB;

(8) D%D% = D%VCDCC'A = CA’

(9)CUAi=ﬂCA,"DUB,'=ﬂDBi;
iel iel iel iel

(10 ACDp < C42B.

Proof. We consider cases of (6), (7), (8), (10), and the other proofs are similar.

(6) (1) D¢, = {x € Po|Cx S Cya}.1f a € A, then there must be Cx C Cy4.Soa € D¢ and therefore
AcDg,.

(i) Dy = {x € Po|Cx S B}, Cpg = U Cx.Ifb € Cpg,, then there exists xo € D% such that

xeDy

b € Cx, € B.Sob € B and therefore CD% C B.

(7) Since A C 55/1, then C4 2 Eﬁ@n . Since B C 653, then C4 C 65@, . Therefore C 4 = EﬁEA .

(8) Since CD% C B, then DgD% C D%. Since D%A D A, then D%D% 2 D%. Therefore D%D% = D%.

(10) (=) Since A C Dp = {x € Py|B C Cyx},thenVa € A,B C Cyandso B C () C, = C4.

acA

(<) Since BC Cyq = {x € A(P)|JAC Dy}, then Vb€ B,AC Dpandso AC () Dp = Dp. O
beB

3 Constructing complete lattices and mutual decision

The construction of complete lattice [11, 12, 17, 30, 38, 49] is very essential branch in the research of various order
structures. In 3.1 and 3.2, several operators (Cg4, C4,Dpand Dlog) are worked on atomic posets, and then a complete
lattice is generated. Subsequently, we find that complete lattices and posets are mutually corresponding. Thus, in the
theoretical study of posets, we can see the crucial role of the content of this section.

3.1 Complete lattices via (C 4, D, =)

Let P be an atomic poset. A pair (4, B) satisfies A € Py, B € A(P),C4 = {x € A(P)|A € D} = B and
Dp ={a € Po|B € Cx} = A.This implies A = D¢, B = Cp,,. The set of all those pairs of P is denoted by
B(P).

For pairs (A1, B1) and (A3, B>) in B(P) we write (A1, B1) < (A2, B2) if A1 C A>. Also A1 C A, implies
6141 ) fAz, and the reverse implication is also valid, so A1 = 55 4 and A, = 55 4y We therefore have

(A1,B1) < (A2,B2) & A1 C A2 & B 2 B>.

We can then see easily that the relation < is an order on B(P). As we can see in Theorem 3.1, < B(P); <> is a
complete lattice.
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Theorem 3.1. Let P be an atomic poset. Then < B(P); <> is a complete lattice in which join and meet are given

by
\/(4i.B;) = (D § Ca,» () B:)
ierl iel iel
N\ B) = () 41.C 1 5,)-
iel iel iel

Proof. Define B(Pg) := {A C PplA = 55A}. The map u : (A, B) — A gives an order-isomorphism between
B(P) and B(Py).

We shall prove that B(Pop) is a topped intersection structure. Let A; € B(Pg) fori € I. Then 55 a = A; for
each i. By (5) in Proposition 2.16

m A; € D& N A
iel iel
Also () A; € A; foralli € I, which, by (4) in Proposition 2.16, implies that
iel
7@ A gigAi = A; foralli €,
iel
whence
Cn o4 = ﬂ Ai-
iel iel
Therefore D Na = (N A; and hence (| A4; € B(Pyp). Also, Py C 551,0. So that Py = 551,0, which shows

ier ! iel iel
that B(Pg) is topped.
By Theorem 2.7, B(Pp) is a complete lattice in which meet is given by intersection. A formula for the join is

given in Theorem 2.7 but we shall proceed more directly. We claim that

LetA =D N Ca,- Certainly A = 55A, by (7) in Proposition 2.16, and ~UI A; € A, by (2) in Proposition 2.16.
ie e

7
Hence A is an upper bound for {A; }; ey in B(Pp). Also, if X is an upper bound in B(Pg) for {A;};ier, then

Jaicx=4cDe, =X

iel
Therefore A is indeed the required join. We may now appeal to Theorem 2.8 to deduce that B(P) is a complete
lattice in which joins and meets are given by

\V“4i.B)=Dne, . [)B)

iel iel iel
N\ B) = () 41.C 1 5,)- O
iel iel iel

Theorem 3.2. Let P be an atomic poset and B(P) be the complete lattice by Theorem 3.1. Then ¢(Po) is join-dense
in B(P) and (A(P)) is meet-dense in B(P).

Proof. Let (A, B) € B(P). Then

Ve =\ o

g€eA

= \/ (BCg,Cg)

geA
=D ney ) Co)

g€A Cg geAd



DE GRUYTER OPEN A new view of relationship between atomic posets and complete (algebraic) lattices =—— 243

However, according to Definition 2.15

Since (A, B) and \/ ¢(A) are elements of B(P) with the same second coordinate, \/ ¢(4) = (A, B). Consequently
@ (Po) is join-dense in B(P) and ¢(A(P)) is meet-dense in B(P). O

Theorem 3.3. For every complete lattice L, there is an atomic poset P such that L is order-isomorphic to B(P).

Proof. Suppose (L, C) is a complete lattice. Define the atomic poset P = {0} | J . A(P)|J Po, where A(P) = L
and Po = L. Further, in P, let a||b for Ya,b € A(P);leta < b iffa C b for Va € A(P),b € Po;leta < b iff
allb for Ya,b € Pg. As L is a lattice, it is easy to see that P is an atomic poset. We want to show that (L, C) is
order-isomorphic to B(P).

First note that for any X € Po, we have

Cx ={b € A(P)|X C Dp}
={b € A(P)|Vx € X,b < x}
={be L|Vx e X,bC x}

() )}

xeX
=l (AX

Among them, | 5 (x) means the upper set of x in L. On the other hand, forany ¥ € Ap,

5Y ={a € Po|Y C Cu}
={a € Pp|lVyeY,y <a}
={ae L|VyeY,yCa}
= N LN

yey

=TL(\/ Y)

Therefore, X € B(Po) iff D, = X, or

LN/ (AX)) =X

Since 17, V(1. A X) = 1.(A X), hence, X C B(Po) iff X = 1, (/\ X). In other words, B(Po) are precisely the
up-closed subsets of L generated by a single element. Hence, a subset of Pg belongs to B(Pp) if and only if it is a
principal filter.

The mapping x — 1x provides an order-isomorphism between L and B(Pp). Since B(Pp) is isomorphic to
B(P), therefore (L, C) is order-isomorphic to B(P). O

Example 3.4. Let L = {a,b,c,d} be a complete lattice, the Hasse diagram of L is illustrated by Figure 1. We
can get an atomic poset P by Theorem 3.3, whose Hasse diagram is illustrated by Figure 1, and can also get a
complete lattice B(P) which is isomorphic to L by Theorem 3.1. In Figure 1, a1 and a in P is a in L, by and
boyinPisbinL,ciandcain Piscin L, dy anddy in P isd in L. In B(P), A = ({d2},{a1,b1,c1,d1}),
B = ({b2,da},{a1,b1}), C = ({c2.d2}, {a1,c1}), D = ({az, b2, c2,da}, {ar, by, c1,d1}).
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Fig. 1. The figure in Example 3.4

3.2 Complete lattices via (Cy4, D3, =)

Let P be an atomic poset. A set A satisfies 4 € Po, D%A = A. The set of all those sets of P is denoted by B°(P).
For set A; and A, in B°(P) we write A1 < A if A1 € A». We can then see easily that the relation < is an
order on B?(P). As we see in Theorem 3.5, < B?(P); <> is a complete lattice.

Theorem 3.5. Let P be an atomic poset. Then < B°(P); <> is a complete lattice in which join and meet are given

by
\/Al‘ :DéU CAl«’/\Ai = ﬂAi.

iel iel iel iel

Proof. We shall prove that B°(P) is a topped intersection structure. Let A; € B°(P) fori € I. Then D?:A‘ = A;

i

for each i. By (6) in Proposition 2.16
X o
()4 cDE .

iel iel
Also () A; C A; foralli € I, which, by (3) in Proposition 2.16, implies that
iel
D%m A - D%A; = A; foralliel,
iel
whence
DZ . S ) A
iel iel
Therefore D¢. A= () A; and hence () A; € B°(P). Also, Py C D%Po' So that Py = D%Po’ which shows

iel iel iel
that B°(P) is topped.

By Theorem 2.7, B°(P) is a complete lattice in which meet is given by intersection. A formula for the join is
given in Theorem 2.7 but we shall proceed more directly. We claim that

\/Ai:DgUA,-= ?UCAi'

iel iel iel
Let A = D"U Ca- Certainly 4 = D%A, by (8) in Proposition 2.16, and | J 4; € A, by (2) in Proposition 2.16.
ier ! iel

Hence A is an upper bound for {4;};e; in B°(P). Also, if X is an upper bound in B°(P) for {A;};c, then
(Jaicx=4cDl, =x

iel
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Therefore A is indeed the required join. We may now appeal to Theorem 2.8 to deduce that B°(P) is a complete
lattice in which joins and meets are given by

Vai=0% e, N\ai=()4 m

iel i€l iel iel

Theorem 3.6. For every complete lattice L, there is an atomic poset P such that L is order-isomorphic to B°(P).

Proof. Suppose (L, <) is a complete lattice. Define the atomic poset P = A(P)|J Py, where A(P) = L and
Po = L. Further, in P,

(1) let a||b for Ya,b € A(P);

(2)leta < b for Ya € A(P),b € Py iff a = b in case that a is the least element in L, @ < b in case that b is
the largest element in L, in other cases a # b in L;

(3)leta < b forVa,b € Pyiffa <bin L.

Under the order relation defined in P, it is easy to see that P is an atomic poset. We want to show that (L, <) is
order-isomorphic to B(P).

First note that for any X C Pg which does not contain the least and largest elements, we have

Cx ={b € A(P)|3x € X,b < x}
={beLl3x € X,b # x}
=L\{b € L|Vx € X.b > x}
=L\ () 1.

xeX

=L\t (\/ X)
Among them, 1; (x) means the upper set of x in L. On the other hand,

D¢, ={a € Po|Cq € Cx}
={a € L|L\ta € L\, (\/ X)}
={a e LIta 2 1(\/ X)}
={a € Lla < \/ X}
=1/ X)

If X(C Pp) which contains the least or largest elements, we can easily check that DgX = }(V X). Therefore, we
have {D¢. |X € Po} = {lx|x € L}. Hence, X C B°(P)iff X = | (\/ X). In other words, B°(P) are precisely
the lower sets of L generated by a single element. It is obvious that B°(P) is isomorphic to L. O

Example 3.7. Let L = {a,b,c,d} be a complete lattice, the Hasse diagram of L is illustrated by Figure 2. We can
get an atomic poset P by Theorem 3.6, whose Hasse diagram is illustrated by Figure 2, and can also get a complete
lattice B° (P) which is isomorphic to L by Theorem 3.5. In Figure 2, ay and a in P isa in L, by and by in P is
binL,cyandcyin PiscinL,dyanddy in Pisd in L. In B°(P), A = {az}, B = {az,b2}, C = {az,c2},
D ={az,b>,c2,d>}.
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Fig. 2. The figure in Example 3.7

4 Constructing algebraic lattices and mutual decision

The construction of algebraic lattice [21, 41, 47] is very essential branch in the research of various order structures.
In 4.1 and 4.2, Several operators(C4, C 4, D g and D%) are worked on atomic posets, and then a algebraic lattice
is generated. Subsequently, we find that algebraic lattices and posets are mutually corresponding. Thus, in the
theoretical study of posets, we can see the crucial role of the content of this section.

4.1 Algebraic lattices via (C 4, D g, S)

Let P be an atomic poset. A set A satisfies A € Pg and for every finite subset X C A, 55)( C A. The set of all
those sets of P is denoted by F(P).

For A1, A> in F(P) we write A1 < A5 iff A1 € A>. We can see easily that the relation < is an order on F(P).
As we can see in Theorem 4.1, < F(P); <> is an algebraic lattice.

Theorem 4.1. Let P be an atomic poset. Then < F(P); <> forms an algebraic lattice.

Proof. We first show that < F(P); <> is a complete lattice. To show that < F(P); <> is a complete lattice it
suffices to show that < F(P); <> is a topped intersection structure by Lemma 2.7. Given any subset T C F(P),
it suffices to show that (|7 € F(P). Suppose X is a finite subset of () 7. Then X C ¢ for each ¢t € T. Since each
t € F(P), wehave D, C 1 foreacht C T. This implies D, € (T and so (T € F(P). It is easy to see
Lo € F(P) and so < F(P); <> is a topped intersection structure.

To show that < F(P); <> is algebraic, note that ng is a compact element for each finite X in Lg. To see this,
we first show Dﬁx € F(P). Let X; be a finite subset of Dgx, then Dgxl cD

To. = 55)( by Proposition
Cx

2.16, which implies ng € F(P). Thenlet {A;]i € I} be a directed subset of F(P) such that
7?;( C U A;.
iel
By Proposition 2.16, X < 55)(. Therefore X C |J A4;. Since X is finite and {A;|i € I} is directed, X € Ag
iel
for some k € I.But Ax € F(P), therefore 55)( C Ay. By Definition 2.9 and Lemma 2.10, 55)( is a compact
element for each finite X.
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Next we will show that for any T € F(P), T = U{ﬁéx |X c/i" T}, Forany X /" T, as T € F(P),
we have D, € T. Then [ {Dg, |X /" T} S T.As X € Dg,.SoT = JX € U{Dg, |X /" T}
Therefore T = (J{D¢, | X c/in T3 Therefore < F(P); <> forms an algebraic lattice by Definition 2.11. O

Corollary 4.2. Let P be a finite atomic poset. Then F(P) = {5@}( |X € L}.

Proof. First we will show F(P) C {55)( |X € P}.VA € F(P), we have A C P and for every finite subset
X C A, D@X C A. As P is finite, we have that A is finite and DéA C A. Since A C DfA by Proposition
2.16, therefore A = D . So F(P) € {Dg, |X S P}. Then we will show {D& |X © P} C F(P). Since we
show in Theorem 4.1, Dfx is a compact element in < F(P); <> for each finite X in Pg. Since P is finite, so
{De, |X € L} © F(P). Therefore F(P) = {Dg, |X S P}. O

Theorem 4.3. For every algebraic lattice D, there is an atomic poset P such that D is order-isomorphic to F(P).

Proof. Suppose (D, C) is an algebraic lattice. Define a poset (P, <) = {0} | J A(P) | Po with A(P) = D, Py =
K (D), where K(D) stands for the set of compact elements of D. Further, in P, let a||b for Va,b € A(P);leta <b
iff b T a for Va € A(P),b € Po;leta < b iff b T a for Va,b € Py. As D is an algebraic lattice, it is easy to see
that P is an atomic poset. We want to show that (D, E) is order-isomorphic to F(P).

First note that for any X € Po, we have

Cx ={b € A(P)|X C Dy}
={bc A(P)[Vx € X,x < b}
={b e D|Vx € X,x C b}
= J tp)}

xXeX
=tp(\/ X)
Among them, 1 5 (\/ X) means the upper set of \/ X in D. On the other hand,
Dy ={a € PolY € Cq4}
={a € PolVy €Y.y <a}
={a € K(D)|Vy € Y,a C y}
={a € K(D)|Vy e Y.a € | xp)(»)}
= () Uxm}

yey

=lko(\Y)

Therefore, I € F(P) iff 55)( C [ for any finite subset X c/fin I or

ey (\Ap(\/ X)) c 1
foreach X </ [ Since

Lk (NG X)) =Lk (V/ X).

this is equivalent to say that / is a downward closed, directed subset of compact elements of D. A downward closed,
directed subset is called an ideal. Hence, a subset of Pg belongs to 7(P) if and only if it is an ideal.

At last, by the classical result about algebraic domains [3]: an algebraic domain is isomorphic to the ideal
completion of the poset of its compact elements through the isomorphism

dr{aecKD)aCd}

that is, F(P) is isomorphic to D. O
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Fig. 3. The figure in Example 4.4

Example 4.4. Let D = {a,b,c,d, e} be an alegraic lattice, the Hasse diagram of D is illustrated by Figure 3. We
can get an atomic poset P by Theorem 4.3, whose Hasse diagram is illustrated by Figure 3, and can also get an
alegraic lattice F (P) which is isomorphic to D by Theorem 4.1. In Figure 3, a; and a in P isa in D, by and by in
PisbinD,cirandcyin Piscin D,dy andd> in P isd in D. In F(P), A ={a>}, B = {a>,b>}, C ={as,ca},
D ={az,d2}, E = {az,b2,c2,d2, e2}.

4.2 Algebraic lattices via (C4, Dg, €)

Let P be an atomic poset. A set A satisfies A C Pg and for every finite subset X C A4, D%X C A. The set of all
those sets of P is denoted by F°(P).

For A1, A2 in F°(P). We write A1 < A, if A1 C A». We can see easily that the relation < is an order on
FO(P). As we can see in Theorem 4.5, < F°(P); <> is an algebraic lattice.

Theorem 4.5. Let P be an atomic poset. Then < F°(P); <> forms an algebraic lattice.

Proof. We first show that < F?(P); <> is a complete lattice. To show that < F°(P); <> is a complete lattice it
suffices to show that < F°(P); <> is a topped intersection structure by Lemma 2.7. Given any subset T C F°(P),
it suffices to show that (| T € F?(P). Suppose X is a finite subset of (| 7. Then X C ¢ for each ¢t € T. Since each
t € F°(P), wehave D¢. <t foreachs C T. This implies DZ < (7 andso (T € F?(P). Itis easy to see
Po € F°(P) and so < F°(P); <> is a topped intersection structure.

To show that < F°(P); <> is algebraic, note that D%X is a compact element for each finite X in Py. To
see this, we first show D¢~ € F?(P). Let X; be a finite subset of D¢ . Then D%Xl c Dg(D% = D¢, by

Proposition 2.16, which implies D¢, € F°(P). Then let {4;|i € I} be a directed subset of 7 (P) such that
D%X C U A;j.
iel
By Proposition 2.16, X C D%X. Therefore X € | J A;. Since X is finite and {A4;|i € I} is directed, X € Ay

iel
for some k € I.But Ax € F°(P), therefore D%X C Ag. By Definition 2.9 and Lemma 2.10, D%X is a compact
element for each finite X.
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Next we will show that for any 7 € F°(P), T = U{D"CX |X /" T}. Forany X /" T,as T € F°(P),
we have D& C T.Then (J{Dg, X /1" T} S T.As X € D2 ,SoT =X < UDZ, IX </ T},
Therefore 7' = (J{D¢, |X /" T}, Therefore < F°(P); <> forms an algebraic lattice by Definition 2.11. [

Corollary 4.6. Let P be a finite atomic poset. Then F°(P) = {Dg¢., |X C L}.

Proof. First we will show F°(P) C {D%X |X € P}. VA € F°(P), we have A C Pg and for every finite subset
X C A, Dgx C A. As P is finite, we have that A is finite and DgA C A.As A C D%A by Proposition 2.16.
Therefore A = D¢ . So F°(P) < {D¢,|X < P}. Then we will show {D¢. [X C P} € F°(P). As we
show in Theorem 4.5, DOCX is a compact element in < F°(P); <> for each finite X in Pg. As P is finite, so
{D¢, |X € L} € FO(P). Therefore 7°(P) = {D¢ |X € P}. O

Theorem 4.7. For every algebraic lattice D, there is an atomic poset P such that D is order-isomorphic to F°(P).

Proof. Suppose (D, <) is an algebraic lattice. Define a poset (P, <) = A(P)|J Po with A(P) = D, Py = K(D),
where K(D) stands for the set of compact elements of D. Further, in P,
(1) let a||b for Ya,b € A(P);
(2) leta < b for Va € A(P),b € Pg iff a = b in the case that a is the least in D, @ < b in the case that b is
the largest element in L, in other cases a # b in L;
(3)leta < b forVa,b € Pyiffa <bin D.
As D is an algebraic lattice, it is easy to see that P is an atomic poset. We want to show that (D, <) is order-
isomorphic to F°(P).
First note that for any X(C Pg) which does not contain the least and largest elements, we have
Cx ={b € A(P)|TIx € X,b < x}
={beD|Fx € X,b # x}
=D\{b e D|Vx € X,b > x}
=D\ () tpx)

xeX
=D\1p(\/ X)
Among them, 1 1, (x) means the upper set of x in D. On the other hand,
D¢, =f{a € Po|Cq C Cx}
={a € K(D)|D\ta < D\1(\/ X)}
={a € K(D)|ta 2 1(\/ X)}
={a € K(D)|a < \/ X}
=k (\/ X)

If X(C Po) which contains the least or largest element, we can easily check that D%X = J(V X). Therefore,
I € FO(P)iff D < I for any finite subset X </ I, or
i«K(D)(\/ X)yci

this is equivalent to say that / is a downward closed, directed subset of compact elements of D. A downward closed,
directed subset is called an ideal. Hence, a subset of Pg belongs to 7 (P) if and only if it is an ideal.

At last, by the classical result about algebraic domains [3]: an algebraic domain is isomorphic to the ideal
completion of the poset of its compact elements through the isomorphism

d+{a e K(D)a<d}

that is, F°(P) is isomorphic to D. O
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Fig. 4. The figure in Example 4.8

Example 4.8. Ler D = {a,b,c,d, e} be an alegraic lattice, the Hasse diagram of D is illustrated by Figure 4. We
can get an atomic poset P by Theorem 4.7, whose Hasse diagram is illustrated by Figure 4, and can also get an
alegraic lattice F°(P) which is isomorphic to L by Theorem 4.5. In Figure 4, a; and a3 in P is a in D, by and
byin Pisbin D, cyandcyin Piscin D, dy and ds in P isd in D. In F°(P), A = {az}, B = {az,b2},
C ={az,c2}, D ={az,dz}, E = {az,b2,c2,d>, €2}.

5 Conclusions

In this paper, to promote the research and development of completion of poset, we thoroughly study C-operators
and D-operators. It is aiming at illustrating fresh methodological achievement in lattice which will also be of
soaring importance in the future. We have defined C-operators and D-operators. Next, we investigate some related
properties. A distinctive completion of lattice via C-operators and D-operators is followed. Our future work on this
topic will focus on studying of completion and algebraization using C-operators and D-operators in poset.
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