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1 Introduction

Let A be the class of analytic functions f defined on the unit disc D = {z € C : |z| < 1}, and normalized by
f() =0 = f'(0) — 1. Let S,8T,CV and CCV denote the subclasses of A consisting of functions univalent,
starlike, convex and close-to-convex respectively. Recall that a function f € A is close-to-convex if there exists a
convex function g such that Re (f/(z)/g’(z)) > 0 for all z € . The class ST (B) of starlike functions of order
B,0 < B < 1, consists of f € A satisfying Re (zf'(z)/ f(z)) > B forall z € D and ST := ST(0). The class
CV(B) of convex functions of order B is defined by CV(B) = {f € A : zf'(z) € ST(B)} and CV := CV(0). The
class SL of lemniscate starlike functions, introduced by Sokét and Stankiewicz [1], consists of f € A satisfying
| (zf’(z)/f(z))2 — 1| < 1forall z € D, or, equivalently, if zf(z)/f(z) lies in the region bounded by the right-half
of the lemniscate of Bernoulli given by |w? — 1| < 1. For recent investigation on the class S£, see [1-5]. Another
class of our interest is the class Mg, B > 1, consisting of f € A satisfying Re (zf'(z)/ f(z)) < B forall z € D.
The class Mg was investigated by Uralegaddi et al. [6], while its subclass was investigated by Owa and Srivastava
[7]. Related radius problem for this class can be found in [8] and [9].

Properties of linear combination, in particular, convex combination of functions belonging to various classes
of functions were initially investigated by Rahmanov in 1952 and 1953 [10, 11]. The survey article of Campbell
[12] provides several results concerning various combination of univalent functions as well as of locally univalent
functions. Convex combination of univalent functions and the identity function were investigated by several authors
(see Merkes [13] and references therein as well as [14]); in particular, Merkes [13] proved some results related to
the present investigation. Obradovic and Nunokowa [15] investigated functions f € A satisfying the following

zf"(2)
/@) —a

for some @ € [—1, 1) and obtained the following result.

condition

Re(l+ )>o (z eD) (1)
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Theorem 1.1 ([15, Theorem 2]). If f € A satisfies the condition (1), then (i) f € ST for —% <a < § and (ii)
feccvfor—t <a<l.

If the function f is the convex combination f(z) = oz + (1 — @) F(z), then the condition (1) is equivalent to the
conditions that F € CV. If two subclasses G and F of A are given, the G-radius of F, denoted by Rg(F), is the
largest number R such that f(rz)/r € G for 0 < r < R, and for all f € F. Whenever G is characterized by
possesing a geometric property P, the number R is also referred to as the radius of property P for the class F. In
this paper, we investigate radius problem for functions f satisfying the condition (1) to belong to one of the classes
introduced above. We also prove the correct results corresponding to [15, Theorem 1(a) and Theorem 2(a), p. 100]
that f € CVif f € A satisfies the condition (1) for some 0 < o < (12+/2 — 15)/9. Their result is correct only
when o = 0. Unlike the radii problems associated with starlikeness and convexity, where a central feature is the
estimate for the real part of the expressions zf”/(z)/f(z) or 1 4+ zf”(z)/f'(z) respectively, the SL-radius problems
are tackled by first finding the disc that contains the values of zf/(z)/f(z) or 1 + zf”(z)/f’(z). The techniques
used in this paper are earlier used for the class of uniformly convex functions investigated in [16-26].

For two analytic functions f,g € A with f(z) = z + Y peranz" and g(z) = z + Y o, byz", their
convolution or Hadamard product, denoted by f * g, is defined by (f * g)(z) := z + > o5 dnbpz". We need the
following results.

Theorem 1.2 ([28, Theorem 2.1-2.2, p. 125]). The classes ST, CV and CCV are closed under convolution with
Sfunctions in CV.

Theorem 1.3. The classes ST (B), SL and M(B) (ST are closed under convolution with functions in CV.

Lemma 1.4 ([4, Lemma 2.2, p. 6559]). Let0 < a < V2. If ry is given by

(«/1—a —(1—a?) )1/2 0 <a <2v2/3)
V2—a (2V2/3 <a < V2),

rq =

then {w : |w—a| <rg} C{w:|w?—1] <1}

Theorem 1.3 is a special case of results of Shanmugam [27, Theorem 3.3, p. 336; Theorem 3.5, p. 337] (see also Ma
and Minda [18, Theorem 5, p. 167]).

2 Radii problems associated with convex combinations

For functions satisfying the condition (1), we determine, in the first part of the following theorem, the range of «
so that the function is starlike of order § while the other parts of the theorem provide the radius of starlikeness of
order B.

Theorem 2.1. Let —1 <a < 1,0 < B < 1and f € A satisfy the condition (1).
@ If0 < B <1/2and|a| < (1 —2B)/(3 —2p), then f € ST(P).
(b) If either

i 0<B<1/2,and(1-2B)/3-2B)<a <1, o0r

(i) 1/2<B <1, and (=B +2B%)/(6-78+2p%) <a <1,

then f(p1z)/(p1) € ST(B) where p1 = p1(w, B) is given by

a(3—2B)% — (1—-2p)>

4/ —a)a2(@(B—2)—B)(B—1) +a(l+48—4B2)
+ a2 (7— 128 + 4p?)

P1 (O{, /3) =
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(¢) If either
i) 0<B<1/2,and—1 <a < (1-28)/(—=3+2pB), or
(i) 1/2<B<1l,and -1 <a < (—B +2B2)/(6 -8 +28?),
then f(poz)/po € ST(B) where po = po(a, B) is given by
2(1-p)
a(f=2)+ B+ v—4a(l - B + (@(B ~2) + p)?

Proof. Define the function g : D — C by

po(a. B) =

2
z—oz
g(z) = ] : 2)
-z
For a fixed a € [—1, 1), define the function f; : D — C by
z)—az
fi(2) = LI) : 3)
-«

If f satisfies the condition (1), then it follows that the function f; € CV. With the function g defined by (2), the
equation (3) shows that

f@) =az+ (1 —-a)fi(z) = f1(2) * g(2).

If g is starlike in the disc D, then g(pz)/p is starlike and hence, by Theorem 1.2, f1(z) * (g(pz)/p) is starlike or
equivalently f1 * g is starlike in the disc D,. In view of this, it is enough to investigate the radius of starlikeness of
the function g given by (2).

For the function g given by (2), we have

zg'(z) 1 az

g(z) 1—z l—az
With z = re’? and x = cos?, a calculation shows that
zg'(2) 1 —rcost ra(ra —cost)
c =
g(2) 14+r2—2rcost 14 r2a2—2racost

1 +2r2a? + r*a? — r(1 4+ 3a)(1 + r2a)x + 4r2ax?
(1 +7r2 =2rx)(1 = 2rxa + r2a?) '

Therefore, g is starlike of order § in |z| < pj if, forall 0 < r < p; and for all x € [—1, 1], we have

1+ 2r2a® + r*a? — r(1 4+ 3a)(1 + r2a)x + 4rax?
— B +r% =2rx)(1 = 2rxa + r2a?) > 0.

This inequality is equivalent to

h(r,x) : = 4r2a(l — B)x% 4+ r(1 + r?a)(—1 — 3a + 28 + 2af)x
+14+2r20® +r4a? —B—r?B—r?a?f—rta?B >0

for 0 < r < pp and for all x € [—1, 1]. It follows that the derivative of function & (r, x) with respect to x vanishes for

(14 r%a)(1 -2 +a(3—28))
0= 8ra(l — B)

It should be noted for later use that, for § < 1/2 and @ > 0,

X =X

(@ #0).

h(r, 1) —h(r,—1) = 1 = r)(1 —ra)(1 + r?a(1 =) — B + r(a(B —2) + B))
—(+ 1) +ra)(l +r’a(l =) =B +r@2—p)—p))
=2r(1 + r2a)(—=1 — 3o + 2B + 2ap) 4)
<2r(1 4 r?a)(—2a) <0,
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and so we have h(r, 1) < h(r,—1).
(a) Case (i) Let0 < B <1/2and0 < a < (1 —28)/(3—2B).If B = 1/2,thena = 0, h(r,x) = (1 —r?)/2
and hence min|y|<j A(r,x) > 0for0 <r < 1.If0 < 8 < 1/2 and @ = 0, then

h(r,x) =1—B—r?f+ (2 — )rx
and so
|nllinl hir,x) =h(r,)=0—-r)(1=B8+pr)>0 for0<r<]l.
x|<
Ifo<pB <1/2and0 < o < (1 —28)/(3 —2B), then it can be verified that xo > 1. In view of this and from (4), it
follows that min|yj<1 2(r, x) = h(r, 1). Since h(r, 1) is a decreasing function of , we have, for0 <r < 1,

(I-r@3-28+ r2(—1 +28)) 5 5 )
. B o x(B-58+28%+r(-2+88—4p%) +r* (138 +28%))
) = D 2 G- 2p2

> 0.

Therefore, for 0 < r < 1, min|y|<1 k(r, x) > 0 and so g is starlike of order 8.

Case (ii) Let0 < B < 1/2and (1-28)/(=3+28) < a < 0. For fixed r, the second partial derivative of A (r, x)
with respect to x is negative and so the minimum of 4 (r, x) in [—1, 1] is attained at the end points x = £1. Using (4)
and the fact that /i(r, 1) is a decreasing function of «, min| <1 2(r,x) > 0for 0 < r < 1, and min| <1 h(r, x) > 0.
Therefore, g is starlike of order 8.

(b) Case (i) Let0 < B < 1/2and (1 —28)/(3—2B) < a < 1. It can be seen that —1 < xo < 1 if

Lo de1-p) = V(1 —a)a@3-2p)° - (1-2)>) _
- a(1—2p +a(3—2p)) =

So, for yo < r < p1, min|xj<1 A(r, x) = h(r, xo) > 0, where

h(r, x0) = ﬁ@a — 1448 — 1208 — 4B% + 4af? —2(1 + T + 48 — 120p

— 482 + 4ap)ar? + (9a — 1 + 4B — 120 — 4% + 4af?)a>r™).
Notice that the number p1 (o, B) is the root of i(r, xg) = 0. For 0 < r < yp, since
s@) =1+r%a(l =) =B +r@pB-2)+p)
is a decreasing function of «,

|nllinl h(r,x) =h(r,1) = (1 =r)(1 —ra)(1 + r?a(1 = B) = B+ r(@(B —2) + B))
x|< 5)
>1-rn*1-p)>o0.

Therefore, min| ;<1 2(r,x) > 0 for 0 < r < p; and hence g is starlike of order f in |z| < pj.
Case (ii) Let 1/2 < B < 1and (1 —28)/(=3 +2B) <« < 1.Letr < p;. It can be shown that

da(1-B) — V(I —a)a(@B—2B)2 —(1-2B)2)
a(l—2B +a(3—2B)) =n

This shows that for y1 < r < p1, minjx<1 A(r,x) = h(r, xg) > 0.

—1<xp<1forr>

On the other hand if 0 < r < yq, then xg > 1. Now proceeding as in case (i) we get minjyj<1 i(r, x) =
h(r,1) > 0. Thus g is starlike of order § in |z| < p1.

Case (iii) Let 1/2 < B < L and (—B+282)/(6—7B+2B%) < a < (1—2B)/(=3+2p). Let r2 be the root of the
equation xo = —1. Then > < py.Letr < p1.If r > rp then —1 < xo < 1. Thus min|y|<; h(r, x) = h(r, x0) > 0.
On the other hand if r < r2, then xg < —1. Also p1 < po. Thus min|x|<q ~(r,x) = h(r,—1) > O0in |z| < p1 and
hence g is starlike of order § in |z| < pj.

(c) Case (i) Let0 < B < 1/2and —1 < a < (1 —28)/(—3 + 2B). For fixed r, the second derivative
test shows that the minimum of A (r, x) in [—1, 1] is attained at the end points x = =1. It follows from (4) that
min| <1 h(r, x) = h(r,—1). Notice that

hr,—1)=0+r)A+ra)d—-B—r(B+a(=2+r(=1+8)+B)))
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and the number po(«, B) is the root of i(r,—1) = 0. Since h(r,—1) > 0 for r < po, minjx|<; A(r,x) > 0 in
|z| < po. Thus g is starlike of order 8 in |z| < po.

Case (i) Let 1/2 < B < land 0 < a < (—B + 2B%)/(6 — 7B + 2B?). Then r» > po. Let r < po. Since
xo0 < —1, we have min| x| <1 i(r,x) = h(r,—1) > Oin |z| < po. Thus g is starlike of order f in |z| < po.

Case (iii) Let 1/2 < B < 1 and —1 < o < 0. For fixed r, the minimum of A(r, x) in [—1, 1] is attained at the
end points x = =£1. Also h(r,1) — h(r,—1) > 0. Thus min|x|<; £(r,x) = h(r,—1) > 0in |z| < po . Thus g is
starlike of order B in |z| < pg.

To prove the sharpness, consider the functions f and g given by

2
z—az
fE@) =g == ©)
-z
For the function f given in (6), we have
1/ 1
Re(1+ -2 ) _ge(1r2) .o,
fl(z)—« 11—z
The function f satisfies the condition (1) and since radius is sharp for the function g, the sharpness follows. O

Remark 2.2. If —1/3 <« < 1/3 and f € A satisfy the condition (1), then f € ST(B) where

_ 1=3|a|
ﬁ_2(1—|a|)— '

In particular, we have the following corollary.
Corollary 2.3 ([15, Theorem 2(b), p. 100]). If f satisfies the condition (1) for some o with |o| < % then f € ST.
For other ranges of «, we have the following corollary.

Corollary 2.4. The radius of starlikeness of the class of functions f € A satisfying the condition (1) for a €
(—1,—1/3]1U[1/3,1) is given by

2
9a—1 1o 1
r= (u+7a2+4\/§«/(1—a)a3) f3=e<l
1 .
Jala—1)—o
Theorem 2.5. For —1 < « < 1, the SL-radius of the class of functions f € A satisfying the condition (1) is given
by
242
1+o—+2a+ \/(1—05) (1—3a+2\f2a)

p2(a) =

Proof. First we observe that
(1—az)(1—2)| =0 —ar)(1—71), |z|=r<1. @)
For 0 < o < 1, (7) is trivial. For —1 < @ < 0, the inequality (7) holds as the function
h(r,x) = |(1 —az)(1 —2)]> = (1 = 2rax + r2a?)(1 — 2rx + r?),
where x = cos?, is a decreasing function. Since the function g given by (2) satisfies

Zg/(Z) 1 = (I—Cl)Z r(l_a)
g(z) ‘_‘(l—z)(l—az) T (1l=r)(1—ar)’

Equation 8 and Lemma 1.4 yield
(zg/(z) )2 .
g(2)

®)

<1 (z| <r)
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provided
l—ﬁ—{-«/i(l—\/ﬁa—l—a)rﬁ-a(l—ﬁ)rz50 or r < ps.

Thus g(p22)/p2 € SL. As the function f satisfies (1), the function f7 defined by (3) is convex. Hence, by Theorem

1.3, we have

f(p22) _ ) g(p2z) csr
P2 p2

(Zf’(Z))Z .
/@)

For z = p», the function g given by (2) satisfies

@O\ (1 e, V| pa(l — ) >
(%) lH(l—pz ) 1"'((1—p2><1—ap2)+1) 1

Thus, the result is sharp for the function

or, equivalently

<1 (z] < p2).

=1.

Z—O{Z2

fe) =g =

1—-z

Corollary 2.6. The SL-radius of the class CV of convex functions is 2 — V2.

Theorem 2.7. For —1/3 <o < 1/3 and B > 1, the Mg N ST radius of the class of functions f € A satisfying
the condition (1) is given by

2(6—-1)

p3(a.p) = :
B—2a+ap + \/(a—l)(4a—4aﬂ—,32+aﬂ2)

Proof. From the inequality (8) for the function g given by (2), we have

2¢/(2) ri-a)
@ T uoni-an =7?

R
provided
1-B+ (2a+B+af)r+a(l—p)r? <o.

The last inequality holds if 0 < r < p3(e, 8). Thus g(p3z)/p3 € Mpg. Since the function f satisfies (1), the
function f; defined by (3) is convex. Hence, by Theorem 1.3, we have

f(p3z) _ () * g(p32) € My
p3 p3
or ,
Re(zj:(g)) < (zl < p3).

Also, by Corollary 2.3,

zf’(2)
0< Re( © ) (Jz| < 1).

Thus f(p3z)/p3 € Mg\ ST. For z = p3, the function g given by (2) satisfies

R 280G _ p-0)
g(2) (I=p3)( —ap3)
Thus the result is sharp for the function
z—az?
£ =g) = . =
—z

Corollary 2.8. For B > 1, the Mg (\\ ST -radius of the class CV of convex functions is 1 — 1.
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The results [15, Theorem 1(a) and Theorem 2(a), p. 100] of Obradovic and Nunokawa are incorrect. The correct
version of these results are given in the following theorem.

Theorem 2.9. For —1 < « < 1, the radius of convexity of the class of functions f € A satisfying the condition (1)
is
ry, if 0<a<l,
pala) = g (€

2 if —1<a=<0,

where ry € (0, 1] is the root of the equation in r:
1=r2(1 + o) — rfa(l —20) — 2r3a,/(1 —a) (1 — r2a) = 0
and ra € (0, 1] is the root of the equation in r:
1 4 6ar — (1 — 8a — 8a2) r2 420 (14 9a) r? + 150%r* + 6a2r> + ?r® = 0.

Proof. If the function f satisfies (1) with @ = 0, then the function f is convex and so p4(0) = 1 as claimed. Now,
assume that « # 0. For the function g given by (2), a calculation shows that, with x = cos ¢,

Zg”(z)) 1—r2

1472 —2rcost
2ra(—(1 + 3r2a)cost + r((2 + r?)a + cos(2t)))
1+ r2(4 4+ r2)a? + 2ra(=2(1 + r2a) cost + r cos(21))

m(“%gc) =

_ )
h(r, x)
where
h(r,x) = (1 +r2 - 2rx) (1 +r? (4 + r2) a? —2ra (r +2x —2rx? + 2r2xa))
and
o(r,x)=1-— r? —4r?a + 8r2a® + 3r*a® + ra? — 6ra (1 —r2 4+ 37%0 + r4oz) X
(10
+ 12r%a (1 + rza) x2 —8r3ax3.
Then

0
a—d)(r, Xx) = —6ra (1 —r? 4+ 4r2x% 4+ 3r%a + r4ot> + 24r2%xa (1 + rzot) .
X
A calculation shows that

1+r2a—r/(1—-a)(l-r2a)
2r

2
aaxiz(ll’(”,xo):24r3a (1-a)(1-r2a)>0 for0<a<l.

d
—¢(r,x)=0 if x=x9=
ax

and

Sofor0 <o <1,

|rrllin1 o(r,x) =¢(r,xo0) = (1 —a) (1 — rzoc) (1 — r2(1 +a) — r4oz(1 —2a)

—2r3a/(1-a)(1 —rza)) > 0.

On the other hand, if —1 < o < 0, then, for r < rp, it can be verified that

min ¢(r,x) = ¢(r,—1) =1+ 6ar — (1 — 8a — 80{2) r? +2a (1 + 9a) r3

Ixl<1

+ 15a%r% + 6a2r° + a2r% > 0.



338 —— N.E.Choetal DE GRUYTER OPEN

Thus g(p4z)/pa € CV. Since the function f satisfies (1), the function f; defined by (3) is convex. Hence

f(paz) _ ) * 8(paz) _ oy
pa P4
> /@)
zf"(z
Re([1+ )>0 (z| < pa).
( (@)
The result is sharp for the function f given by (6). O

Theorem 2.10. For —1 < o < —1/3, the radius of close-to-convexity of the class of functions f € A satisfying the
condition (1) is given by

Proof. The function g1 : D — C by
g1z)=—In(l—2) (zeDb)

is clearly convex in . For the functions g given by (2) and g above, we have

g'(re't) 1 +ar?— Qo+ 14 ar?)rx + 2ar?x?

Re £V ) (11)
g (rett) 14+7r2—2rx

where x := cost. Let i : [—1, 1] — R be defined by

h(r,x) =14 ar?> = Qo + 1 4+ ar®)rx + 2ar’x?.

Then )
d 1+ 2
—h(r,x)=0 if x:xO:w
ox 4ro
and
32
ax—zh(r, x) = 4ra < 0.

Therefore, for a fixed r, the minimum of A (r, x) is attained at x = +1. Since
h(r,—1) = h(r,1) = 2r(1 4+ 2o + r2a) < 0,

it follows that

min1 h(r,x) =h(r,—1)=0+r) (1 + 2ro + rza) >0 for r <ps.

[xl=<

Thus g(psz)/ps5 € CCV. Since the function f; defined by (3) is convex as f satisfies (1), we have, by Theorem 1.2,

f(psz) _ £1(2) * g(psz) c ey
5 P5

o

or

Re(g:(z)) >0 (|z] < p5).
g](Z)

The result is sharp for the function

Z—O{Z2

fe) =g = O

1—z °
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