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1 Introduction

Let A be the class of analytic functions f defined on the unit disc D D fz 2 C W jzj < 1g, and normalized by
f .0/ D 0 D f 0.0/ � 1. Let S;ST ; CV and CCV denote the subclasses of A consisting of functions univalent,
starlike, convex and close-to-convex respectively. Recall that a function f 2 A is close-to-convex if there exists a
convex function g such that Re .f 0.z/=g0.z// > 0 for all z 2 D. The class ST .ˇ/ of starlike functions of order
ˇ, 0 � ˇ < 1, consists of f 2 A satisfying Re .zf 0.z/=f .z// > ˇ for all z 2 D and ST WD ST .0/. The class
CV.ˇ/ of convex functions of order ˇ is defined by CV.ˇ/ D ff 2 A W zf 0.z/ 2 ST .ˇ/g and CV WD CV.0/. The
class SL of lemniscate starlike functions, introduced by Sokół and Stankiewicz [1], consists of f 2 A satisfying
j .zf 0.z/=f .z//

2
� 1j < 1 for all z 2 D, or, equivalently, if zf 0.z/=f .z/ lies in the region bounded by the right-half

of the lemniscate of Bernoulli given by jw2 � 1j < 1. For recent investigation on the class SL, see [1–5]. Another
class of our interest is the class Mˇ , ˇ > 1, consisting of f 2 A satisfying Re .zf 0.z/=f .z// < ˇ for all z 2 D.
The class Mˇ was investigated by Uralegaddi et al. [6], while its subclass was investigated by Owa and Srivastava
[7]. Related radius problem for this class can be found in [8] and [9].

Properties of linear combination, in particular, convex combination of functions belonging to various classes
of functions were initially investigated by Rahmanov in 1952 and 1953 [10, 11]. The survey article of Campbell
[12] provides several results concerning various combination of univalent functions as well as of locally univalent
functions. Convex combination of univalent functions and the identity function were investigated by several authors
(see Merkes [13] and references therein as well as [14]); in particular, Merkes [13] proved some results related to
the present investigation. Obradovic and Nunokowa [15] investigated functions f 2 A satisfying the following
condition

Re
�
1C

zf 00.z/

f 0.z/ � ˛

�
> 0 .z 2 D/ (1)

for some ˛ 2 Œ�1; 1/ and obtained the following result.
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Theorem 1.1 ([15, Theorem 2]). If f 2 A satisfies the condition (1), then (i) f 2 ST for �1
3
� ˛ � 1

3
, and (ii)

f 2 CCV for �1
3
� ˛ < 1.

If the function f is the convex combination f .z/ D ˛z C .1 � ˛/F.z/, then the condition (1) is equivalent to the
conditions that F 2 CV . If two subclasses G and F of A are given, the G-radius of F , denoted by RG.F/, is the
largest number R such that f .rz/=r 2 G for 0 < r < R, and for all f 2 F . Whenever G is characterized by
possesing a geometric property P , the number R is also referred to as the radius of property P for the class F . In
this paper, we investigate radius problem for functions f satisfying the condition (1) to belong to one of the classes
introduced above. We also prove the correct results corresponding to [15, Theorem 1(a) and Theorem 2(a), p. 100]
that f 2 CV if f 2 A satisfies the condition (1) for some 0 � ˛ � .12

p
2 � 15/=9. Their result is correct only

when ˛ D 0. Unlike the radii problems associated with starlikeness and convexity, where a central feature is the
estimate for the real part of the expressions zf 0.z/=f .z/ or 1C zf 00.z/=f 0.z/ respectively, the SL-radius problems
are tackled by first finding the disc that contains the values of zf 0.z/=f .z/ or 1 C zf 00.z/=f 0.z/. The techniques
used in this paper are earlier used for the class of uniformly convex functions investigated in [16–26].

For two analytic functions f; g 2 A with f .z/ D z C
P1
nD2 anz

n and g.z/ D z C
P1
nD2 bnz

n, their
convolution or Hadamard product, denoted by f � g, is defined by .f � g/.z/ WD zC

P1
nD2 anbnz

n. We need the
following results.

Theorem 1.2 ([28, Theorem 2.1-2.2, p. 125]). The classes ST , CV and CCV are closed under convolution with
functions in CV .

Theorem 1.3. The classes ST .ˇ/, SL and M.ˇ/
T

ST are closed under convolution with functions in CV .

Lemma 1.4 ([4, Lemma 2.2, p. 6559]). Let 0 < a <
p
2. If ra is given by

ra D

8<:
�p

1 � a2 � .1 � a2/
�1=2

.0 < a � 2
p
2=3/

p
2 � a .2

p
2=3 � a <

p
2/;

then fw W jw � aj < rag � fw W jw2 � 1j < 1g.

Theorem 1.3 is a special case of results of Shanmugam [27, Theorem 3.3, p. 336; Theorem 3.5, p. 337] (see also Ma
and Minda [18, Theorem 5, p. 167]).

2 Radii problems associated with convex combinations

For functions satisfying the condition (1), we determine, in the first part of the following theorem, the range of ˛
so that the function is starlike of order ˇ while the other parts of the theorem provide the radius of starlikeness of
order ˇ.

Theorem 2.1. Let �1 � ˛ < 1, 0 � ˇ < 1 and f 2 A satisfy the condition (1).
(a) If 0 � ˇ � 1=2 and j˛j � .1 � 2ˇ/=.3 � 2ˇ/, then f 2 ST .ˇ/:
(b) If either

(i) 0 � ˇ � 1=2, and .1 � 2ˇ/=.3 � 2ˇ/ < ˛ < 1, or
(ii) 1=2 < ˇ < 1, and .�ˇ C 2ˇ2/=.6 � 7ˇ C 2ˇ2/ < ˛ < 1,
then f .�1z/=.�1/ 2 ST .ˇ/ where �1 D �1.˛; ˇ/ is given by

�1.˛; ˇ/ D

0BBB@ ˛.3 � 2ˇ/2 � .1 � 2ˇ/2

4
p
.1 � ˛/˛2.˛.ˇ � 2/ � ˇ/.ˇ � 1/C ˛

�
1C 4ˇ � 4ˇ2

�
C ˛2

�
7 � 12ˇ C 4ˇ2

�
1CCCA
1
2

:
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(c) If either
(i) 0 � ˇ � 1=2, and �1 � ˛ < .1 � 2ˇ/=.�3C 2ˇ/, or
(ii) 1=2 < ˇ < 1, and �1 � ˛ < .�ˇ C 2ˇ2/=.6 � 7ˇ C 2ˇ2/,
then f .�0z/=�0 2 ST .ˇ/ where �0 D �0.˛; ˇ/ is given by

�0.˛; ˇ/ D
2.1 � ˇ/

˛.ˇ � 2/C ˇ C
p
�4˛.1 � ˇ/2 C .˛.ˇ � 2/C ˇ/2

:

Proof. Define the function g W D! C by

g.z/ D
z � ˛z2

1 � z
: (2)

For a fixed ˛ 2 Œ�1; 1/, define the function f1 W D! C by

f1.z/ D
f .z/ � ˛z

1 � ˛
: (3)

If f satisfies the condition (1), then it follows that the function f1 2 CV . With the function g defined by (2), the
equation (3) shows that

f .z/ D ˛z C .1 � ˛/f1.z/ D f1.z/ � g.z/:

If g is starlike in the disc D�, then g.�z/=� is starlike and hence, by Theorem 1.2, f1.z/ � .g.�z/=�/ is starlike or
equivalently f1 � g is starlike in the disc D�. In view of this, it is enough to investigate the radius of starlikeness of
the function g given by (2).

For the function g given by (2), we have

zg0.z/

g.z/
D

1

1 � z
�

˛z

1 � ˛z
:

With z D reit and x D cos t , a calculation shows that

Re
�
zg0.z/

g.z/

�
D

1 � r cos t
1C r2 � 2r cos t

C
r˛.r˛ � cos t /

1C r2˛2 � 2r˛ cos t

D
1C 2r2˛2 C r4˛2 � r.1C 3˛/.1C r2˛/x C 4r2˛x2

.1C r2 � 2rx/.1 � 2rx˛ C r2˛2/
:

Therefore, g is starlike of order ˇ in jzj < �1 if, for all 0 � r < �1 and for all x 2 Œ�1; 1�, we have

1C 2r2˛2 C r4˛2 � r.1C 3˛/.1C r2˛/x C 4r2˛x2

� ˇ.1C r2 � 2rx/.1 � 2rx˛ C r2˛2/ � 0:

This inequality is equivalent to

h.r; x/ W D 4r2˛.1 � ˇ/x2 C r.1C r2˛/.�1 � 3˛ C 2ˇ C 2˛ˇ/x

C 1C 2r2˛2 C r4˛2 � ˇ � r2ˇ � r2˛2ˇ � r4˛2ˇ � 0

for 0 � r < �1 and for all x 2 Œ�1; 1�. It follows that the derivative of function h.r; x/ with respect to x vanishes for

x D x0 D
.1C r2˛/.1 � 2ˇ C ˛.3 � 2ˇ//

8r˛.1 � ˇ/
.˛ ¤ 0/:

It should be noted for later use that, for ˇ � 1=2 and ˛ � 0,

h.r; 1/ � h.r;�1/ D .1 � r/.1 � r˛/.1C r2˛.1 � ˇ/ � ˇ C r.˛.ˇ � 2/C ˇ//

� .1C r/.1C r˛/.1C r2˛.1 � ˇ/ � ˇ C r.˛.2 � ˇ/ � ˇ//

D 2r.1C r2˛/.�1 � 3˛ C 2ˇ C 2˛ˇ/ (4)

� 2r.1C r2˛/.�2˛/ � 0;
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and so we have h.r; 1/ � h.r;�1/.
(a) Case (i) Let 0 � ˇ � 1=2 and 0 � ˛ � .1 � 2ˇ/=.3 � 2ˇ/. If ˇ D 1=2, then ˛ D 0, h.r; x/ D .1 � r2/=2

and hence minjxj�1 h.r; x/ > 0 for 0 � r < 1. If 0 � ˇ < 1=2 and ˛ D 0, then

h.r; x/ D 1 � ˇ � r2ˇ C .2ˇ � 1/rx

and so
min
jxj�1

h.r; x/ D h.r; 1/ D .1 � r/.1 � ˇ C ˇr/ > 0 for 0 � r < 1:

If 0 � ˇ < 1=2 and 0 < ˛ � .1 � 2ˇ/=.3 � 2ˇ/, then it can be verified that x0 > 1. In view of this and from (4), it
follows that minjxj�1 h.r; x/ D h.r; 1/: Since h.r; 1/ is a decreasing function of ˛, we have, for 0 � r < 1,

min
jxj�1

h.r; x/ D h.r; 1/ �

.1 � r/.3 � 2ˇ C r.�1C 2ˇ//

�
�
3 � 5ˇ C 2ˇ2 C r

�
�2C 8ˇ � 4ˇ2

�
C r2

�
1 � 3ˇ C 2ˇ2

��
.3 � 2ˇ/2

> 0:

Therefore, for 0 � r < 1, minjxj�1 h.r; x/ > 0 and so g is starlike of order ˇ.
Case (ii) Let 0 � ˇ < 1=2 and .1�2ˇ/=.�3C2ˇ/ < ˛ < 0. For fixed r , the second partial derivative of h.r; x/

with respect to x is negative and so the minimum of h.r; x/ in Œ�1; 1� is attained at the end points x D ˙1. Using (4)
and the fact that h.r; 1/ is a decreasing function of ˛, minjxj�1 h.r; x/ > 0 for 0 � r < 1, and minjxj�1 h.r; x/ > 0.
Therefore, g is starlike of order ˇ.

(b) Case (i) Let 0 � ˇ � 1=2 and .1 � 2ˇ/=.3 � 2ˇ/ < ˛ < 1. It can be seen that �1 � x0 � 1 if

r �
4˛.1 � ˇ/ �

p
.1 � ˛/˛.˛.3 � 2ˇ/2 � .1 � 2ˇ/2/

˛.1 � 2ˇ C ˛.3 � 2ˇ//
WD 
0:

So, for 
0 � r < �1, minjxj�1 h.r; x/ D h.r; x0/ > 0, where

h.r; x0/ D
1 � ˛

16˛.1 � ˇ/
.9˛ � 1C 4ˇ � 12˛ˇ � 4ˇ2 C 4˛ˇ2 � 2.1C 7˛ C 4ˇ � 12˛ˇ

� 4ˇ2 C 4˛ˇ2/˛r2 C .9˛ � 1C 4ˇ � 12˛ˇ � 4ˇ2 C 4˛ˇ2/˛2r4/:

Notice that the number �1.˛; ˇ/ is the root of h.r; x0/ D 0. For 0 � r < 
0, since

s.˛/ D 1C r2˛.1 � ˇ/ � ˇ C r.˛.ˇ � 2/C ˇ/

is a decreasing function of ˛,

min
jxj�1

h.r; x/ D h.r; 1/ D .1 � r/.1 � r˛/.1C r2˛.1 � ˇ/ � ˇ C r.˛.ˇ � 2/C ˇ//

� .1 � r/4.1 � ˇ/ > 0:

(5)

Therefore, minjxj�1 h.r; x/ � 0 for 0 � r < �1 and hence g is starlike of order ˇ in jzj < �1.
Case (ii) Let 1=2 < ˇ < 1 and .1 � 2ˇ/=.�3C 2ˇ/ < ˛ < 1. Let r < �1. It can be shown that

�1 � x0 � 1 for r �
4˛.1 � ˇ/ �

p
.1 � ˛/˛.˛.3 � 2ˇ/2 � .1 � 2ˇ/2/

˛.1 � 2ˇ C ˛.3 � 2ˇ//
WD 
1:

This shows that for 
1 � r < �1, minjxj�1 h.r; x/ D h.r; x0/ > 0.
On the other hand if 0 < r < 
1, then x0 > 1. Now proceeding as in case (i) we get minjxj�1 h.r; x/ D

h.r; 1/ > 0. Thus g is starlike of order ˇ in jzj < �1.
Case (iii) Let 1=2 < ˇ < 1 and .�ˇC2ˇ2/=.6�7ˇC2ˇ2/ < ˛ � .1�2ˇ/=.�3C2ˇ/. Let r2 be the root of the

equation x0 D �1. Then r2 � �1. Let r < �1. If r � r2 then �1 � x0 � 1. Thus minjxj�1 h.r; x/ D h.r; x0/ > 0.
On the other hand if r < r2, then x0 < �1. Also �1 < �0. Thus minjxj�1 h.r; x/ D h.r;�1/ > 0 in jzj < �1 and
hence g is starlike of order ˇ in jzj < �1.

(c) Case (i) Let 0 � ˇ � 1=2 and �1 � ˛ < .1 � 2ˇ/=.�3 C 2ˇ/. For fixed r , the second derivative
test shows that the minimum of h.r; x/ in Œ�1; 1� is attained at the end points x D ˙1. It follows from (4) that
minjxj�1 h.r; x/ D h.r;�1/. Notice that

h.r;�1/ D .1C r/.1C r˛/.1 � ˇ � r.ˇ C ˛.�2C r.�1C ˇ/C ˇ///
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and the number �0.˛; ˇ/ is the root of h.r;�1/ D 0. Since h.r;�1/ > 0 for r < �0, minjxj�1 h.r; x/ > 0 in
jzj < �0. Thus g is starlike of order ˇ in jzj < �0.

Case (ii) Let 1=2 < ˇ < 1 and 0 < ˛ � .�ˇ C 2ˇ2/=.6 � 7ˇ C 2ˇ2/. Then r2 � �0. Let r < �0. Since
x0 < �1, we have minjxj�1 h.r; x/ D h.r;�1/ > 0 in jzj < �0. Thus g is starlike of order ˇ in jzj < �0.

Case (iii) Let 1=2 < ˇ < 1 and �1 � ˛ � 0. For fixed r , the minimum of h.r; x/ in Œ�1; 1� is attained at the
end points x D ˙1. Also h.r; 1/ � h.r;�1/ > 0. Thus minjxj�1 h.r; x/ D h.r;�1/ > 0 in jzj < �0 . Thus g is
starlike of order ˇ in jzj < �0.

To prove the sharpness, consider the functions f and g given by

f .z/ D g.z/ D
z � ˛z2

1 � z
: (6)

For the function f given in (6), we have

Re
�
1C

zf 00.z/

f 0.z/ � ˛

�
D Re

�
1C z

1 � z

�
> 0:

The function f satisfies the condition (1) and since radius is sharp for the function g, the sharpness follows.

Remark 2.2. If �1=3 � ˛ � 1=3 and f 2 A satisfy the condition (1), then f 2 ST .ˇ/ where

ˇ D
1 � 3j˛j

2.1 � j˛j/
� 0:

In particular, we have the following corollary.

Corollary 2.3 ([15, Theorem 2(b), p. 100]). If f satisfies the condition (1) for some ˛ with j˛j � 1
3

, then f 2 ST .

For other ranges of ˛, we have the following corollary.

Corollary 2.4. The radius of starlikeness of the class of functions f 2 A satisfying the condition (1) for ˛ 2
.�1;�1=3� [ Œ1=3; 1/ is given by

r D

8̂<̂
:
�

9˛�1

˛C7˛2C4
p
2
p
.1�˛/˛3

� 1
2

if 1
3
� ˛ < 1;

1p
˛.˛�1/�˛

if � 1 < ˛ � �1
3
:

Theorem 2.5. For �1 � ˛ < 1, the SL-radius of the class of functions f 2 A satisfying the condition (1) is given
by

�2.˛/ D
2 �
p
2

1C ˛ �
p
2˛ C

r
.1 � ˛/

�
1 � 3˛ C 2

p
2˛
� :

Proof. First we observe that

j.1 � ˛z/.1 � z/j � .1 � ˛r/.1 � r/; jzj D r < 1: (7)

For 0 � ˛ < 1, (7) is trivial. For �1 � ˛ < 0, the inequality (7) holds as the function

h.r; x/ WD j.1 � ˛z/.1 � z/j2 D .1 � 2r˛x C r2˛2/.1 � 2rx C r2/;

where x D cos t , is a decreasing function. Since the function g given by (2) satisfiesˇ̌̌̌
zg0.z/

g.z/
� 1

ˇ̌̌̌
D

ˇ̌̌̌
.1 � ˛/z

.1 � z/.1 � ˛z/

ˇ̌̌̌
�

r.1 � ˛/

.1 � r/.1 � ˛r/
; (8)

Equation 8 and Lemma 1.4 yield ˇ̌̌̌
ˇ
�
zg0.z/

g.z/

�2
� 1

ˇ̌̌̌
ˇ < 1 .jzj < r/
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provided
1 �
p
2C
p
2
�
1 �
p
2˛ C ˛

�
r C ˛

�
1 �
p
2
�
r2 � 0 or r � �2:

Thus g.�2z/=�2 2 SL. As the function f satisfies (1), the function f1 defined by (3) is convex. Hence, by Theorem
1.3, we have

f .�2z/

�2
D f1.z/ �

g.�2z/

�2
2 SL

or, equivalently ˇ̌̌̌
ˇ
�
zf 0.z/

f .z/

�2
� 1

ˇ̌̌̌
ˇ < 1 .jzj < �2/:

For z D �2, the function g given by (2) satisfiesˇ̌̌̌
ˇ
�
zg0.z/

g.z/

�2
� 1

ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇ
�

1

1 � �2
�

˛�2

1 � ˛�2

�2
� 1

ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇ
�

�2.1 � ˛/

.1 � �2/.1 � ˛�2/
C 1

�2
� 1

ˇ̌̌̌
ˇ D 1:

Thus, the result is sharp for the function

f .z/ D g.z/ D
z � ˛z2

1 � z
:

Corollary 2.6. The SL-radius of the class CV of convex functions is 2 �
p
2.

Theorem 2.7. For �1=3 � ˛ � 1=3 and ˇ > 1, the Mˇ \ ST radius of the class of functions f 2 A satisfying
the condition (1) is given by

�3.˛; ˇ/ D
2.ˇ � 1/

ˇ � 2˛ C ˛ˇ C
q
.˛ � 1/

�
4˛ � 4˛ˇ � ˇ2 C ˛ˇ2

� :
Proof. From the inequality (8) for the function g given by (2), we have

Re
zg0.z/

g.z/
� 1C

r.1 � ˛/

.1 � r/.1 � ˛r/
� ˇ

provided
1 � ˇ C .�2˛ C ˇ C ˛ˇ/r C ˛.1 � ˇ/r2 � 0:

The last inequality holds if 0 < r � �3.˛; ˇ/. Thus g.�3z/=�3 2 Mˇ . Since the function f satisfies (1), the
function f1 defined by (3) is convex. Hence, by Theorem 1.3, we have

f .�3z/

�3
D f1.z/ �

g.�3z/

�3
2Mˇ

or

Re
�
zf 0.z/

f .z/

�
< ˇ .jzj < �3/:

Also, by Corollary 2.3,

0 < Re
�
zf 0.z/

f .z/

�
.jzj < 1/:

Thus f .�3z/=�3 2Mˇ

T
ST : For z D �3, the function g given by (2) satisfies

Re
zg0.z/

g.z/
D 1C

�3.1 � ˛/

.1 � �3/.1 � ˛�3/
D ˇ:

Thus the result is sharp for the function

f .z/ D g.z/ D
z � ˛z2

1 � z
:

Corollary 2.8. For ˇ > 1, the Mˇ

T
ST -radius of the class CV of convex functions is 1 � ˇ�1.
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The results [15, Theorem 1(a) and Theorem 2(a), p. 100] of Obradovic and Nunokawa are incorrect. The correct
version of these results are given in the following theorem.

Theorem 2.9. For �1 � ˛ < 1, the radius of convexity of the class of functions f 2 A satisfying the condition (1)
is

�4.˛/ D

(
r1; if 0 � ˛ < 1;

r2 if � 1 � ˛ � 0;
(9)

where r1 2 .0; 1� is the root of the equation in r:

1 � r2.1C ˛/ � r4˛.1 � 2˛/ � 2r3˛

q
.1 � ˛/

�
1 � r2˛

�
D 0

and r2 2 .0; 1� is the root of the equation in r:

1C 6˛r �
�
1 � 8˛ � 8˛2

�
r2 C 2˛ .1C 9˛/ r3 C 15˛2r4 C 6˛2r5 C ˛2r6 D 0:

Proof. If the function f satisfies (1) with ˛ D 0, then the function f is convex and so �4.0/ D 1 as claimed. Now,
assume that ˛ ¤ 0. For the function g given by (2), a calculation shows that, with x D cos t ,

Re
�
1C

zg00.z/

g0.z/

�
D

1 � r2

1C r2 � 2r cos t

C
2r˛.�.1C 3r2˛/ cos t C r..2C r2/˛ C cos.2t///

1C r2.4C r2/˛2 C 2r˛.�2.1C r2˛/ cos t C r cos.2t//

D
�.r; x/

h.r; x/

where
h.r; x/ D

�
1C r2 � 2rx

� �
1C r2

�
4C r2

�
˛2 � 2r˛

�
r C 2x � 2rx2 C 2r2x˛

��
and

�.r; x/ D 1 � r2 � 4r2˛ C 8r2˛2 C 3r4˛2 C r6˛2 � 6r˛
�
1 � r2 C 3r2˛ C r4˛

�
x

C 12r2˛
�
1C r2˛

�
x2 � 8r3˛x3:

(10)

Then
@

@x
�.r; x/ D �6r˛

�
1 � r2 C 4r2x2 C 3r2˛ C r4˛

�
C 24r2x˛

�
1C r2˛

�
:

A calculation shows that

@

@x
�.r; x/ D 0 if x D x0 D

1C r2˛ � r
q
.1 � ˛/

�
1 � r2˛

�
2r

and
@2

@x2
�.r; x0/ D 24r

3˛

q
.1 � ˛/

�
1 � r2˛

�
> 0 for 0 < ˛ < 1:

So for 0 < ˛ < 1,

min
jxj�1

�.r; x/ D �.r; x0/ D .1 � ˛/
�
1 � r2˛

� �
1 � r2.1C ˛/ � r4˛.1 � 2˛/

� 2r3˛

q
.1 � ˛/

�
1 � r2˛

��
> 0:

On the other hand, if �1 < ˛ < 0, then, for r < r2, it can be verified that

min
jxj�1

�.r; x/ D �.r;�1/ D 1C 6˛r �
�
1 � 8˛ � 8˛2

�
r2 C 2˛ .1C 9˛/ r3

C 15˛2r4 C 6˛2r5 C ˛2r6 > 0:
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Thus g.�4z/=�4 2 CV . Since the function f satisfies (1), the function f1 defined by (3) is convex. Hence

f .�4z/

�4
D f1.z/ �

g.�4z/

�4
2 CV

or

Re
�
1C

zf 00.z/

f 0.z/

�
> 0 .jzj < �4/:

The result is sharp for the function f given by (6).

Theorem 2.10. For �1 � ˛ < �1=3, the radius of close-to-convexity of the class of functions f 2 A satisfying the
condition (1) is given by

�5.˛/ D
1p

˛.˛ � 1/ � ˛
:

Proof. The function g1 W D! C by
g1.z/ D � ln.1 � z/ .z 2 D/

is clearly convex in D. For the functions g given by (2) and g1 above, we have

Re

 
g0.reit /

g0
1
.reit /

!
D
1C ˛r2 � .2˛ C 1C ˛r2/rx C 2˛r2x2

1C r2 � 2rx
(11)

where x WD cos t . Let h W Œ�1; 1�! R be defined by

h.r; x/ D 1C ˛r2 � .2˛ C 1C ˛r2/rx C 2˛r2x2:

Then
@

@x
h.r; x/ D 0 if x D x0 D

1C 2˛ C r2˛

4r˛

and
@2

@x2
h.r; x/ D 4r2˛ < 0:

Therefore, for a fixed r , the minimum of h.r; x/ is attained at x D ˙1. Since

h.r;�1/ � h.r; 1/ D 2r.1C 2˛ C r2˛/ < 0;

it follows that
min
jxj�1

h.r; x/ D h.r;�1/ D .1C r/
�
1C 2r˛ C r2˛

�
> 0 for r < �5:

Thus g.�5z/=�5 2 CCV . Since the function f1 defined by (3) is convex as f satisfies (1), we have, by Theorem 1.2,

f .�5z/

�5
D f1.z/ �

g.�5z/

�5
2 CCV

or

Re
�
g0.z/

g0
1
.z/

�
> 0 .jzj < �5/:

The result is sharp for the function

f .z/ D g.z/ D
z � ˛z2

1 � z
:
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