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Abstract: In Hörmander inner product spaces, we investigate initial-boundary value problems for an arbitrary second
order parabolic partial differential equation and the Dirichlet or a general first-order boundary conditions. We prove
that the operators corresponding to these problems are isomorphisms between appropriate Hörmander spaces. The
regularity of the functions which form these spaces is characterized by a pair of number parameters and a function
parameter varying regularly at infinity in the sense of Karamata. Owing to this function parameter, the Hörmander
spaces describe the regularity of functions more finely than the anisotropic Sobolev spaces.
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1 Introduction

The modern theory of general parabolic initial-boundary problems has been developed for the classical scales of
Hölder–Zygmund and Sobolev function spaces [1–9]. The central result of this theory are the theorems on well-
posedness by Hadamard of these problems on appropriate pairs of these spaces. For applications, especially to the
spectral theory of differential operators, inner product Sobolev spaces play a special role.

In 1963 Hörmander [10] proposed a broad and meaningful generalization of the Sobolev spaces in the framework
of Hilbert spaces. He introduced the spaces

B2;� WD
˚
w 2 S0.Rk/ W �.�/bw.�/ 2 L2.Rk ; d�/	;

for which a general Borel measurable weight function � W Rk ! .0;1/ serves as an index of regularity of a
distribution w. (Here, bw denotes the Fourier transform of w.) These spaces and their versions within the category of
normed spaces (so called spaces of generalized smoothness) have found various applications to analysis and partial
differential equations [11–19].

Recently Mikhailets and Murach [20–24] have built a theory of solvability of general elliptic systems and elliptic
boundary-value problems on Hilbert scales of spaces H sI' WD B2;� for which the index of regularity is of the form

�.�/ WD .1C j�j2/s=2'..1C j�j2/1=2/:
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Here, s is a real number, and ' is a function varying slowly at infinity in the sense of Karamata [26]. This theory
is based on the method of interpolation with a function parameter between Hilbert spaces, specifically between
Sobolev spaces. This allows Mikhailets and Murach to deduce theorems about solvability of elliptic systems and
elliptic problems from the known results on the solvability of elliptic equations in Sobolev spaces. This theory is set
force in [18, 25].

Generally, the method of interpolation between normed spaces proved to be very useful in the theory of elliptic
[27–29] and parabolic [4, 8] partial differential equations. Specifically, Lions and Magenes [4] systematically used
the interpolation with a number (power) parameter between Hilbert spaces in their theory of solvability of parabolic
initial-boundary value problems on a complete scale of anisotropic Sobolev spaces. Using the more flexible method
of interpolation with a function parameter between Hilbert spaces, Los, Mikhailets, and Murach [30, 31] proved
theorems on solvability of semi-homogeneous parabolic problems in 2b-anisotropic Hörmander spacesH s;s=.2b/I' ,
where 2b is a parabolic weight and where the parameters s and ' are the same as those in the above mentioned elliptic
theory. These problems were considered in the case of homogeneous initial conditions (Cauchy data).

The purpose of this paper is to establish the well-posedness of inhomogeneous parabolic problems on
appropriate pairs of the Hörmander spaces, i.e. to prove new isomorphism theorems for these problems. We consider
the problems that consist of a general second order parabolic partial differential equation, the Dirichlet boundary
condition or a general first order boundary condition, and the Cauchy datum. We deduce these isomorphism theorems
from Lions and Magenes’ result [4] with the help of the interpolation with a function parameter between anisotropic
Sobolev spaces. The use of this method in the case of inhomogeneous parabolic problems meets additional difficulties
connected with the necessity to take into account quite complex compatibility conditions imposed on the right-hand
sides of the problem. The model case of initial boundary-value problems for heat equation is investigated in [32].

2 Statement of the problem

We arbitrarily choose an integer n � 2 and a real number � > 0. LetG be a bounded domain in Rn with an infinitely
smooth boundary � WD @G. We put � WD G � .0; �/ and S WD � � .0; �/; so, � is an open cylinder in RnC1, and
S is its lateral boundary. Then � WD G � Œ0; �� and S WD � � Œ0; �� are the closures of � and S respectively.

In �, we consider a parabolic second order partial differential equation

Au.x; t/ � @tu.x; t/C
X
j˛j�2

a˛.x; t/D
˛
xu.x; t/ D f .x; t/

for all x 2 G and t 2 .0; �/:

(1)

Here and below, we use the following notation for partial derivatives: @t WD @=@t and D˛x WD D
˛1
1
: : :D

˛n
n , where

Dj WD i @=@xj , x D .x1; : : : ; xn/ 2 Rn, and ˛ WD .˛1; : : : ; ˛n/ with 0 � ˛1; :::; ˛n 2 Z and j˛j WD ˛1C� � �C˛n.
We suppose that all the coefficients a˛ of A belong to the space C1.�/. In the paper, all functions and distributions
are supposed to be complex-valued, so we consider complex function spaces.

We suppose that the partial differential operator A is Petrovskii parabolic on �, i.e. it satisfies the following
condition (see, e.g. [1, Section 9, Subsection 1]):

Condition 2.1. For arbitrary x 2 G, t 2 Œ0; ��, � D .�1; : : : ; �n/ 2 Rn, and p 2 C with Rep � 0, the inequality

p C
X
j˛jD2

a˛.x; t/ �
˛1
1
� � � �˛nn ¤ 0 holds whenever j�j C jpj ¤ 0:

In the paper, we investigate the initial-boundary value problem that consists of the parabolic equation (1), the initial
condition

u.x; 0/ D h.x/ for all x 2 G; (2)

and the zero-order (Dirichlet) boundary condition

u.x; t/ D g.x; t/ for all x 2 � and t 2 .0; �/ (3)
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or the first order boundary condition

Bu.x; t/ �

nX
jD1

bj .x; t/Dju.x; t/C b0.x; t/u.x; t/ D g.x; t/ for all x 2 � and t 2 .0; �/: (4)

As to (4), we assume that all the coefficients b0, b1, ..., bn of B belong to C1.S/ and that B covers A on S [1,
Section 9, Subsection 1]. The latter assumption means the fulfilment of the following:

Condition 2.2. Choose arbitrarily x 2 � , t 2 Œ0; ��, vector � D .�1; : : : ; �n/ 2 Rn tangent to the boundary � at
the point x, and number p 2 C with Rep � 0 so that j�j C jpj ¤ 0. Let �.x/ D .�1.x/; : : : ; �n.x// be the unit
vector of the inward normal to � at x. Then:
a) the inequality

Pn
jD1 bj .x; t/�j .x/ ¤ 0 holds true;

b) the number

� D �

� nX
jD1

bj .x; t/�j

�� nX
jD1

bj .x; t/�j .x/

��1
is not a root of the polynomial

p C
X
j˛jD2

a˛.x; t/ .�1 C ��1.x//
˛1 � � � .�n C ��n.x//

˛n of � 2 C:

It is useful to note that if all the coefficients b1,..., bn are real-valued, then part b) of Condition 2.2 is satisfied. This
follows directly from Condition 2.1.

Thus, we examine both the parabolic problem (1), (2), (3) and the parabolic problem (1), (2), (4). We investigate
them in appropriate Hörmander inner product spaces considered in the next section.

3 Hörmander spaces

Among the normed function spaces Bp;� introduced by Hörmander in [10, Section 2.2], we use the inner product
spaces H�.Rk/ WD B2;� defined over Rk , with 1 � k 2 Z. Here, � W Rk ! .0;1/ is an arbitrary Borel
measurable function that satisfies the following condition: there exist positive numbers c and l such that

�.�/

�.�/
� c .1C j� � �j/l for all �; � 2 Rk :

By definition, the (complex) linear spaceH�.Rk/ consists of all tempered distributions w 2 S0.Rk/ whose Fourier
transform bw is a locally Lebesgue integrable function subject to the conditionZ

Rk

�2.�/ jbw.�/j2 d� <1:
The inner product in H�.Rk/ is defined by the formula

.w1; w2/H�.Rk/ D

Z
Rk

�2.�/cw1.�/cw2.�/ d�;
where w1; w2 2 H�.Rk/. This inner product induces the norm

kwkH�.Rk/ WD .w;w/
1=2

H�.Rk/:

According to [10, Section 2.2], the spaceH�.Rk/ is Hilbert and separable with respect to this inner product. Besides
that, this space is continuously embedded in the linear topological space S0.Rk/ of tempered distributions on Rk , and
the set C1

0
.Rk/ of test functions on Rk is dense inH�.Rk/ (see also Hörmander’s monograph [33, Section 10.1]).

We will say that the function parameter � is the regularity index for the space H�.Rk/ and its versions H�.�/.



60 V. Los, A. Murach

A version of H�.Rk/ for an arbitrary nonempty open set V � Rk is introduced in the standard way. Namely,

H�.V / WD
˚
w�V W w 2 H�.Rk/

	
;

kukH�.V / WD inf
˚
kwkH�.Rk/ W w 2 H

�.Rk/; u D w�V
	
; (5)

where u 2 H�.V /. Here, as usual, w � V stands for the restriction of the distribution w 2 H�.Rk/ to the open
set V . In other words, H�.V / is the factor space of the space H�.Rk/ by its subspace

H
�

Q
.Rk/ WD

˚
w 2 H�.Rk/ W suppw � Q

	
with Q WD RknV: (6)

Thus, H�.V / is a separable Hilbert space. The norm (5) is induced by the inner product

.u1; u2/H�.V / WD .w1 � ‡w1; w2 � ‡w2/H�.Rk/;

where wj 2 H�.Rk/, wj D uj in V for each j 2 f1; 2g, and ‡ is the orthogonal projector of the space H�.Rk/
onto its subspace (6). The spaces H�.V / and H�

Q
.Rk/ were introduced and investigated by Volevich and Paneah

[11, Section 3].
It follows directly from the definition of H�.V / and properties of H�.Rk/ that the space H�.V / is

continuously embedded in the linear topological space D0.V / of all distributions on V and that the set

C10 .V / WD
˚
w�V W w 2 C10 .Rk/

	
is dense in H�.V /.

Suppose that the integer k � 2. Dealing with the above-stated parabolic problems, we need the Hörmander
spaces H�.Rk/ and their versions in the case where the regularity index � takes the form

�.� 0; �k/ D
�
1C j� 0j2 C j�k j

�s=2
'
�
.1C j� 0j2 C j�k j/

1=2
�

for all � 0 2 Rk�1 and �k 2 R: (7)

Here, the number parameter s is real, whereas the function parameter ' runs over a certain class M.
By definition, the class M consists of all Borel measurable functions ' W Œ1;1/! .0;1/ such that

a) both the functions ' and 1=' are bounded on each compact interval Œ1; b�, with 1 < b <1;
b) the function ' varies slowly at infinity in the sense of Karamata [26], i.e. '.�r/='.r/ ! 1 as r ! 1 for each
� > 0.

The theory of slowly varying functions (at infinity) is expounded, e.g., in [34, 35]. Their standard examples are the
functions

'.r/ WD .log r/�1 .log log r/�2 : : : . log : : : log„ ƒ‚ …
k times

r /�k of r � 1;

where the parameters k 2 N and �1; �2; : : : ; �k 2 R are arbitrary.
Let s 2 R and ' 2M. We putH s;s=2I'.Rk/ WD H�.Rk/ in the case where� is of the form (7). Specifically, if

'.r/ � 1, then H s;s=2I'.Rk/ becomes the anisotropic Sobolev inner product space H s;s=2.Rk/ of order .s; s=2/.
Generally, if ' 2M is arbitrary, then the following continuous and dense embeddings hold:

H s1;s1=2.Rk/ ,! H s;s=2I'.Rk/ ,! H s0;s0=2.Rk/ whenever s0 < s < s1: (8)

Indeed, let s0 < s < s1; since ' 2M, there exist positive numbers c0 and c1 such that c0 rs0�s � '.r/ � c1 rs1�s

for every r � 1 (see e.g., [35, Section 1.5, Property 1ı]). Then

c0
�
1C j� 0j2 C j�k j

�s0=2
�
�
1C j� 0j2 C j�k j

�s=2
'
�
.1C j� 0j2 C j�k j/

1=2
�
� c1

�
1C j� 0j2 C j�k j

�s1=2
for arbitrary � 0 2 Rk�1 and �k 2 R. This directly entails the continuous embeddings (8). They are dense because
the set C1

0
.Rk/ is dense in all the spaces from (8).

Consider the class of Hörmander inner product spaces˚
H s;s=2I'.Rk/ W s 2 R; ' 2M

	
: (9)
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The embeddings (8) show, that in (9) the function parameter ' defines additional regularity with respect to the basic
anisotropic .s; s=2/-regularity. Specifically, if '.r/ ! 1 [or '.r/ ! 0] as r ! 1, then ' defines additional
positive [or negative] regularity. In other words, ' refines the basic smoothness .s; s=2/.

We need versions of the function spaces (9) for the cylinder � D G � .0; �/ and its lateral boundary S D
� � .0; �/. We putH s;s=2I'.�/ WD H�.�/ in the case where � is of the form (7) with k WD nC1. For the function
spaceH s;s=2I'.�/, the numbers s and s=2 serve as the regularity indices of distributions u.x; t/ with respect to the
spatial variable x 2 G and to the time variable t 2 .0; �/ respectively.

Following [36, Section 1], we will define the function space H s;s=2I'.S/ with the help of special local charts
on S . Let s > 0 and ' 2 M. We put H s;s=2I'.…/ WD H�.…/ for the strip … WD Rn�1 � .0; �/ in the case
where � is defined by formula (7) with k WD n. Recall that, according to our assumption � D @� is an infinitely
smooth closed manifold of dimension n � 1, the C1-structure on � being induced by Rn. From this structure we
arbitrarily choose a finite atlas formed by local charts �j W Rn�1 $ �j with j D 1; : : : ; �. Here, the open sets
�1; : : : ; �� make up a covering of � . We also arbitrarily choose functions �j 2 C1.�/, with j D 1; : : : ; �, so that
supp�j � �j and �1 C � � ��� D 1 on � .

By definition, the linear space H s;s=2I'.S/ consists of all square integrable functions g W S ! C that the
function

gj .x; t/ WD �j .�j .x// g.�j .x/; t/ of x 2 Rn�1 and t 2 .0; �/

belongs to H s;s=2I'.…/ for each number j 2 f1; : : : ; �g. The inner product in H s;s=2I'.S/ is defined by the
formula

.g; g0/H s;s=2I'.S/ WD

�X
jD1

.gj ; g
0
j /H s;s=2I'.…/;

where g; g0 2 H s;s=2I'.S/. This inner product naturally induces the norm

kgkH s;s=2I'.S/ WD .g; g/
1=2

H s;s=2I'.S/
:

The space H s;s=2I'.S/ is complete (i. e. Hilbert) and does not depend up to equivalence of norms on the choice of
local charts and partition of unity on � [36, Theorem 1]. Note that this space is actually defined with the help of the
following special local charts on S :

��j W … D Rn�1 � .0; �/$ �j � .0; �/; j D 1; : : : ; �; (10)

where ��
j
.x; t/ WD .�j .x/; t/ for all x 2 Rn�1 and t 2 .0; �/.

We also need isotropic Hörmander spaces H sI'.V / over an arbitrary open nonempty set V � Rk with k � 1.
Let s 2 R and ' 2M. We put H sI'.V / WD H�.V / in the case where the regularity index � takes the form

�.�/ D
�
1C j�j2

�s=2
'
�
.1C j�j2/1=2

�
for arbitrary � 2 Rk : (11)

Since the function (11) is radial (i.e., depends only on j�j), the space H sI'.V / is isotropic. We will use the spaces
H sI'.V / given over the whole Euclidean space V WD Rk or over the domain V WD G in Rn.

Besides, we will use Hörmander spaces H sI'.�/ over � D @�. The are defined with the help of the above-
mentioned collection of local charts f�j g and partition of unity f�j g on � similarly to the spaces over S . Let s 2 R
and ' 2 M. By definition, the linear space H sI'.�/ consists of all distributions ! 2 D0.�/ on � that for each
number j 2 f1; : : : ; �g the distribution !j .x/ WD �j .�j .x// !.�j .x// of x 2 Rn�1 belongs to H sI'.Rn�1/. The
inner product in H sI'.�/ is defined by the formula

.!; !0/H sI'.�/ WD

�X
jD1

.!j ; !
0
j /H sI'.Rn�1/;

where !;!0 2 H sI'.�/. It induces the norm

k!kH sI'.�/ WD .!; !/
1=2

H sI'.�/
:
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The space H sI'.�/ is Hilbert separable and does not depend up to equivalence of norms on our choice of local
charts and partition of unity on � [37, Theorem 3.6(i)].

Note that the classes of isotropic inner product spaces˚
H sI'.V / W s 2 R; ' 2M

	
and

˚
H sI'.�/ W s 2 R; ' 2M

	
were selected, investigated, and systematically applied to elliptic differential operators and elliptic boundary-value
problems by Mikhailets and Murach [18, 25].

If ' � 1, then the considered spacesH s;s=2I'.�/ andH sI'.�/ become the Sobolev spacesH s;s=2.�/ andH s.�/
respectively. It follows directly from (8) that

H s1;s1=2.�/ ,! H s;s=2I'.�/ ,! H s0;s0=2.�/ whenever s0 < s < s1: (12)

Analogously,
H s1.�/ ,! H sI'.�/ ,! H s0.�/ whenever s0 < s < s1I (13)

see [18, Theorems 2.3(iii) and 3.3(iii)]. These embeddings are continuous and dense. Of course, if s D 0, then
H s.�/ D H s;s=2.�/ is the Hilbert space L2.�/ of all square integrable functions given on the corresponding
measurable set.

In the Sobolev case of ' � 1, we will omit the index ' in designations of function spaces that will be introduced
on the base of the Hörmander spaces H s;s=2I'.�/ and H sI'.�/.

4 Main results

Consider first the parabolic problem (1)–(3), which corresponds to the Dirichlet boundary condition on S . In order
that a regular enough solution u to this problem exist, the right-hand sides of the problem should satisfy certain
compatibility conditions (see, e.g., [1, Section 11] or [3, Chapter 4, Section 5]). These conditions consist in that the
partial derivatives @kt u.x; t/

ˇ̌
tD0

, which could be found from the parabolic equation (1) and initial condition (2),
should satisfy the boundary condition (3) and some relations that are obtained by means of the differentiation of the
boundary condition with respect to t . To write these compatibility conditions we use Sobolev inner product spaces.

We associate the linear mapping

ƒ0 W u 7!
�
Au; u�S; u.�; 0/

�
; where u 2 C1.�/; (14)

with the problem (1)–(3). Let real s � 2; the mapping (14) extends uniquely (by continuity) to a bounded linear
operator

ƒ0 W H
s;s=2.�/! H s�2;s=2�1.�/˚H s�1=2;s=2�1=4.S/˚H s�1.G/: (15)

This follows directly from [38, Chapter I, Lemma 4, and Chapter II, Theorems 3 and 7]. Choosing any function
u.x; t/ from the space H s;s=2.�/, we define the right-hand sides

f 2 H s�2;s=2�1.�/; g 2 H s�1=2;s=2�1=4.S/; and h 2 H s�1.G/ (16)

of the problem by the formula .f; g; h/ WD ƒ0u with the help of this bounded operator.
According to [38, Chapter II, Theorem 7], the traces @kt u.�; 0/ 2 H

s�1�2k.G/ are well defined by closure for
all k 2 Z such that 0 � k < s=2� 1=2 (and only for these k). Using (1) and (2), we express these traces in terms of
the functions f .x; t/ and h.x/ by the recurrent formula

u.x; 0/ D h.x/;

@kt u.x; 0/ D �
X
j˛j�2

k�1X
qD0

 
k � 1

q

!
@
k�1�q
t a˛.x; 0/D

˛
x@
q
t u.x; 0/C @

k�1
t f .x; 0/

for each k 2 Z such that 1 � k < s=2 � 1=2;

(17)
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the equalities holding for almost all x 2 G.
Besides, the traces @kt g.�; 0/ 2 H

s�3=2�2k.�/ are well defined by closure for all k 2 Z such that 0 � k <
s=2 � 3=4 (and only for these k). Therefore, owing to the Dirichlet boundary condition (3), the equality

@kt g.x; 0/ D @
k
t u.x; 0/ for almost all x 2 � (18)

holds for these integers k. The right-hand part of this equality is well defined because the function @kt u.�; 0/ 2
H s�1�2k.G/ has the trace @kt u.�; 0/�� 2 H s�3=2�2k.�/ in view of s � 3=2 � 2k > 0.

Now, substituting (17) into (18), we obtain the compatibility conditions

@kt g�� D vk ��; with k 2 Z and 0 � k < s=2 � 3=4: (19)

Here, the functions vk are defined by the recurrent formula

v0.x/ WD h.x/;

vk.x/ WD �
X
j˛j�2

k�1X
qD0

 
k � 1

q

!
@
k�1�q
t a˛.x; 0/D

˛
xvq.x/C @

k�1
t f .x; 0/

for each k 2 Z such that 1 � k < s=2 � 1=2;

(20)

these relations holding for almost all x 2 G. Since

vk 2 H
s�1�2k.G/ for each k 2 Z \ Œ0; s=2 � 1=2/ (21)

due to (16), the trace vk � � 2 H s�3=2�2k.�/ is defined by closure whenever s � 3=2 � 2k > 0. Thus, the
compatibility conditions (19) are well posed.

For instance, if 2 < s � 7=2, then formula (19) gives one compatibility condition g�� D h�� . Next, if
7=2 < s � 11=2, then (19) gives two compatibility conditions g�� D h�� and

@tg�� D
�
�

X
j˛j�2

a˛.x; 0/D
˛
xh.x/C f .x; 0/

�
��;

and so on.
We put E0 WD f2r C 3=2 W 1 � r 2 Zg. Note that E0 is the set of all discontinuities of the function that assigns

the number of compatibility conditions (19) to s � 2.
Our main result on the parabolic problem (1)–(3) consists in that the linear mapping (14) extends uniquely to

an isomorphism between appropriate pairs of Hörmander spaces introduced in the previous section. Let us indicate
these spaces. We arbitrarily choose a real number s > 2 and function parameter ' 2 M. We take H s;s=2I'.�/
as the source space of this isomorphism; otherwise speaking, H s;s=2I'.�/ serves as a space of solutions u to the
problem. To introduce the target space of the isomorphism, consider the Hilbert space

Hs�2;s=2�1I'
0

WD H s�2;s=2�1I'.�/˚H s�1=2;s=2�1=4I'.S/˚H s�1I'.G/:

In the Sobolev case of ' � 1 this space coincides with the target space of the bounded operator (15). The target
space of the isomorphism is imbedded in Hs�2;s=2�1I'

0
and is denoted by Qs�2;s=2�1I'

0
. We separately define

this space in the s … E0 case and s 2 E0 case.
Suppose first that s … E0. By definition, the linear space Qs�2;s=2�1I'

0
consists of all vectors

�
f; g; h

�
2

Hs�2;s=2�1I'
0

that satisfy the compatibility conditions (19). As we have noted, these conditions are well defined
for every

�
f; g; h

�
2 Hs�2�";s=2�1�"=2

0
for sufficiently small " > 0. Hence, they are also well defined for every�

f; g; h
�
2 Hs�2;s=2�1I'

0
due to the continuous embedding

Hs�2;s=2�1I'
0

,! Hs�2�";s=2�1�"=2
0

: (22)

The latter follows directly from (12) and (13). Thus, our definition is reasonable.
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We endow the linear space Qs�2;s=2�1I'
0

with the inner product and norm in the Hilbert space Hs�2;s=2�1I'
0

.
The space Qs�2;s=2�1I'

0
is complete, i.e. a Hilbert one. Indeed, if the number " > 0 is sufficiently small, then

Qs�2;s=2�1I'
0

D Hs�2;s=2�1I'
0

\Qs�2�";s=2�1�"=2
0

:

Here, the space Qs�2�";s=2�1�"=2
0

is complete because the differential operators and traces operators used in the
compatibility conditions are bounded on the corresponding pairs of Sobolev spaces. Therefore the right-hand side of
this equality is complete with respect to the sum of the norms in the components of the intersection, this sum being
equivalent to the norm in Hs�2;s=2�1I'

0
due to (22). Thus, the space Qs�2;s=2�1I'

0
is complete (with respect to

the latter norm).
If s 2 E0, then we define the Hilbert space Qs�2;s=2�1I'

0
by means of the interpolation between its analogs

just introduced. Namely, we put

Qs�2;s=2�1I'
0

WD
�
Qs�2�";s=2�1�"=2I'
0

;Qs�2C";s=2�1C"=2I'
0

�
1=2

: (23)

Here, the number " 2 .0; 1=2/ is arbitrarily chosen, and the right-hand side of the equality is the result of the
interpolation of the written pair of Hilbert spaces with the parameter 1=2. We will recall the definition of the
interpolation between Hilbert spaces in Section 5. The Hilbert space Qs�2;s=2�1I'

0
defined by formula (23) does

not depend on the choice of " up to equivalence of norms and is continuously embedded in Hs�2;s=2�1I'
0

. This will
be shown in Remark 6.3 at the end of Section 6.

Now we can formulate our main result concerning the parabolic initial-boundary value problem (1)–(3).

Theorem 4.1. For arbitrary s > 2 and ' 2M the mapping (14) extends uniquely (by continuity) to an isomorphism

ƒ0 W H
s;s=2I'.�/$ Qs�2;s=2�1I'

0
: (24)

Otherwise speaking, the parabolic problem (1)–(3) is well posed (in the sense of Hadamard) on the pair of Hilbert
spacesH s;s=2I'.�/ and Qs�2;s=2�1I'

0
whenever s > 2 and ' 2M, the right-hand side

�
f; g; h

�
2 Qs�2;s=2�1I'

0

of the problem being defined by closer for an arbitrary function u 2 H s;s=2I'.�/.
Note that the necessity to define the target space Qs�2;s=2�1I'

0
separately in the s 2 E0 case is caused by the

following: if we defined this space for s 2 E0 in the way used in the s … E0 case, then the isomorphism (24) would
not hold at least for ' � 1. This follows from a result by Solonnikov [39, Section 6].

Consider now the parabolic problem (1), (2), (4), which corresponds to the first order boundary condition on S .
Let us write the compatibility conditions for the right-hand sides of this problem.

We associate the linear mapping

ƒ1 W u 7!
�
Au;Bu; u.�; 0/

�
; where u 2 C1.�/; (25)

with the problem (1), (2), (4). For arbitrary real s � 2, this mapping extends uniquely (by continuity) to a bounded
linear operator

ƒ1 W H
s;s=2.�/! H s�2;s=2�1.�/˚H s�3=2;s=2�3=4.S/˚H s�1.G/: (26)

Choosing any function u.x; t/ from H s;s=2.�/, we define the right-hand sides

f 2 H s�2;s=2�1.�/; g 2 H s�3=2;s=2�3=4.S/; and h 2 H s�1.G/

of the problem by the formula .f; g; h/ WD ƒ1u with the help of this bounded operator. Here, unlike (16), the
inclusion u 2 H s;s=2.�/ implies g D Bu 2 H s�3=2;s=2�3=4.S/ due to [38, Chapter II, Theorem 7]. According to
this theorem, the traces @kt g.�; 0/ 2 H

s�5=2�2k.�/ are defined by closure for all k 2 Z such that 0 � k < s=2�5=4
(and only for these k). We can express these traces in terms of the function u.x; t/ and its time derivatives; namely,

@kt g.x; 0/ D
�
@kt Bu.x; t/

�
jtD0

D

kX
qD0

 
k

q

!� nX
jD1

@
k�q
t bj .x; 0/Dj @

q
t u.x; 0/C @

k�q
t b0.x; 0/ @

q
t u.x; 0/

� (27)
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for almost all x 2 � . Here, all the functions u.x; 0/, @tu.x; 0/,..., @kt u.x; 0/ of x 2 G are expressed in terms of the
functions f .x; t/ and h.x/ by the recurrent formula (17).

Substituting (17) in the right-hand side of formula (27), we obtain the compatibility conditions

@kt g�� D Bk Œv0; : : : ; vk ���; with k 2 Z and 0 � k < s=2 � 5=4: (28)

Here, the functions v0, v1,..., vk are defined on G by the recurrent formula (20), and we put

Bk Œv0; : : : ; vk �.x/ WD

kX
qD0

 
k

q

!� nX
jD1

@
k�q
t bj .x; 0/Dj vq.x/C @

k�q
t b0.x; 0/ vq.x/

�
for all x 2 G. The right-hand side of the equality (28) is well defined because the function Bk Œv0; : : : ; vk � belongs
to H s�2�2k.G/ due to (21) and therefore the trace

Bk Œv0; : : : ; vk ��� 2 H s�5=2�2k.�/

is defined by closure whenever s � 5=2 � 2k > 0. Note that if s � 5=2, then there are no compatibility conditions.
We set E1 WD f2r C 1=2 W 1 � r 2 Zg. Observe that E1 is the set of all discontinuities of the function that

assigns the number of compatibility conditions (28) to s � 2.
To formulate our isomorphism theorem for the parabolic problem (1), (2), (4), we introduce the source and target

spaces of this isomorphism. Let s > 2 and ' 2M. As above, we take H s;s=2I'.�/ as the source space. The target
space denoted by Qs�2;s=2�1I'

1
is embedded in the Hilbert space

Hs�2;s=2�1I'
1

WD H s�2;s=2�1I'.�/˚H s�3=2;s=2�3=4I'.S/˚H s�1I'.G/:

In the Sobolev case of ' � 1 this space coincides with the target space of the bounded operator (26).
If s … E1, then the linear space Qs�2;s=2�1I'

1
is defined to consist of all vectors

�
f; g; h

�
2 Hs�2;s=2�1I'

1

that satisfy the compatibility conditions (28). The definition is reasonable because these conditions are well defined
for every

�
f; g; h

�
2 Hs�2�";s=2�1�"=2

1
for sufficiently small " > 0 and because

Hs�2;s=2�1I'
1

,! Hs�2�";s=2�1�"=2
1

: (29)

This continuous embedding follows immediately from (12) and (13). The linear space Qs�2;s=2�1I'
1

is endowed
with the inner product and the norm in the Hilbert space Hs�2;s=2�1I'

1
. The space Qs�2;s=2�1I'

1
is complete, i.e.

a Hilbert one. This is justified by the same reasoning as we have used to prove the completeness of Qs�2;s=2�1I'
0

.
Note that if 2 < s < 5=2, then the spaces Hs�2;s=2�1I'

1
and Qs�2;s=2�1I'

1
coincide because the compatibility

conditions (28) are absent.
If s 2 E1, then we define the Hilbert space Qs�2;s=2�1I'

1
by the interpolation, namely

Qs�2;s=2�1I'
1

WD
�
Qs�2�";s=2�1�"=2I'
1

;Qs�2C";s=2�1C"=2I'
1

�
1=2

; (30)

with the number " 2 .0; 1=2/ chosen arbitrarily. This Hilbert space does not depend on the choice of " up to
equivalence of norms and is embedded continuously in Hs�2;s=2�1I'

1
, which will be shown in Remark 6.3.

Now we can formulate our main result concerning the parabolic initial-boundary value problem (1), (2), (4).

Theorem 4.2. For arbitrary s > 2 and ' 2M the mapping (25) extends uniquely (by continuity) to an isomorphism

ƒ1 W H
s;s=2I'.�/$ Qs�2;s=2�1I'

1
: (31)

In other words, the parabolic problem (1), (2), (4) is well posed on the pair of Hilbert spaces H s;s=2I'.�/ and
Qs�2;s=2�1I'
1

whenever s > 2 and ' 2 M, the right-hand side
�
f; g; h

�
2 Qs�2;s=2�1I'

1
of this problem being

defined by closer for an arbitrary function u 2 H s;s=2I'.�/.
Note that the necessity to define the target space Qs�2;s=2�1I'

1
separately in the s 2 E1 case is stipulated by a

similar cause as that indicated for the space Qs�2;s=2�1I'
0

. Namely, if we defined this space for s 2 E1 in the way



66 V. Los, A. Murach

used in the s … E1 case, then the isomorphism (31) would not hold at least when ' � 1 and (4) is the Neumann
boundary condition (see [39, Section 6]).

Theorems 4.1 and 4.2 are known in the Sobolev case where ' � 1 and neither s nor s=2 is half-integer. Namely,
they are contained in Agranovich and Vishik’s result [1, Theorem 12.1] in the case of s; s=2 2 Z and are covered
by Lions and Magenes’ result [4, Theorem 6.2]. Solonnikov [39, Theorem 17] proved the corresponding a priory
estimates for anisotropic Sobolev norms of solutions to the problem (1)–(3) and to the problem (1), (2), (4) provided
that (4) is the Neumann boundary condition. Note that these results include the limiting case of s D 2.

In Section 6 we will deduce Theorems 4.1 and 4.2 from the above-mentioned results with the help of the method
of interpolation with a function parameter between Hilbert spaces, specifically between Sobolev inner product
spaces. Therefore we devote the next section to this method and its applications to Sobolev and Hörmander spaces.

5 Interpolation with a function parameter between Hilbert spaces

This method of interpolation is a natural generalization of the classical interpolation method by S. Krein and
J.-L. Lions to the case when a general enough function is used instead of a number as an interpolation parameter; see,
e.g., monographs [40, Chapter IV, Section 1, Subsection 10] and [28, Chapter 1, Sections 2 and 5]. For our purposes,
it is sufficient to restrict the discussion of the interpolation with a function parameter to the case of separable complex
Hilbert spaces. We mainly follow the monograph [18, Section 1.1], which systematically expounds this interpolation
(see also [37, Section 2]).

Let X WD ŒX0; X1� be an ordered pair of separable complex Hilbert spaces such that X1 � X0 and this
embedding is continuous and dense. This pair is said to be admissible. For X , there is a positive-definite self-adjoint
operator J on X0 with the domain X1 such that kJvkX0 D kvkX1 for every v 2 X1. This operator is uniquely
determined by the pair X and is called a generating operator for X ; see, e.g., [40, Chapter IV, Theorem 1.12]. The
operator defines an isometric isomorphism J W X1 $ X0.

Let B denote the set of all Borel measurable functions  W .0;1/ ! .0;1/ such that  is bounded on each
compact interval Œa; b�, with 0 < a < b <1, and that 1= is bounded on every semiaxis Œa;1/, with a > 0.

Choosing a function  2 B arbitrarily, we consider the (generally, unbounded) operator  .J / defined on
X0 as the Borel function  of J . This operator is built with the help of Spectral Theorem applied to the self-
adjoint operator J . Let ŒX0; X1� or, simply, X denote the domain of  .J / endowed with the inner product
.v1; v2/X WD . .J /v1;  .J /v2/X0 and the corresponding norm kvkX WD k .J /vkX0 . The linear space X is
Hilbert and separable with respect to this norm.

A function  2 B is called an interpolation parameter if the following condition is satisfied for all admissible
pairs X D ŒX0; X1� and Y D ŒY0; Y1� of Hilbert spaces and for an arbitrary linear mapping T given on X0: if the
restriction of T to Xj is a bounded operator T W Xj ! Yj for each j 2 f0; 1g, then the restriction of T to X is
also a bounded operator T W X ! Y .

If  is an interpolation parameter, then we say that the Hilbert space X is obtained by the interpolation with
the function parameter  of the pair X D ŒX0; X1� or, otherwise speaking, between the spaces X0 and X1. In this
case, the dense and continuous embeddings X1 ,! X ,! X0 hold.

The class of all interpolation parameters (in the sense of the given definition) admits a constructive description.
Namely, a function  2 B is an interpolation parameter if and only if  is pseudoconcave in a neighbourhood
of infinity. The latter property means that there exists a concave positive function  1.r/ of r � 1 that both the
functions  = 1 and  1= are bounded in some neighbourhood of infinity. This criterion follows from Peetre’s
description of all interpolation functions for the weighted Lebesgue spaces [41, 42] (this result of Peetre is set forth
in the monograph [43, Theorem 5.4.4]). The proof of the criterion is given in [18, Section 1.1.9].

An application of this criterion to power functions gives the classical result by Lions and S. Krein. Namely,
the function  .r/ � r� is an interpolation parameter whenever 0 � � � 1. In this case, the exponent � serves as
a number parameter of the interpolation, and the interpolation space X is also denoted by X� . This interpolation
was used in formulas (23) and (30) in the special case of � D 1=2.
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Let us formulate some general properties of interpolation with a function parameter; they will be used in our
proofs. The first of these properties enables us to reduce the interpolation of subspaces to the interpolation of the
whole spaces (see [18, Theorem 1.6] or [29, Section 1.17.1, Theorem 1]). As usual, subspaces of normed spaces are
assumed to be closed. Generally, we consider nonorthogonal projectors onto subspaces of a Hilbert space.

Proposition 5.1. Let X D ŒX0; X1� be an admissible pair of Hilbert spaces, and let Y0 be a subspace of X0. Then
Y1 WD X1 \ Y0 is a subspace of X1. Suppose that there exists a linear mapping P W X0 ! X0 such that P is
a projector of the space Xj onto its subspace Yj for each j 2 f0; 1g. Then the pair ŒY0; Y1� is admissible, and
ŒY0; Y1� D X \ Y0 with equivalence of norms for an arbitrary interpolation parameter  2 B. Here, X \ Y0
is a subspace of X .

The second property reduces the interpolation of orthogonal sums of Hilbert spaces to the interpolation of their
summands (see [18, Theorem 1.8].

Proposition 5.2. Let ŒX .j/
0
; X
.j/

1
�, with j D 1; : : : ; q, be a finite collection of admissible pairs of Hilbert spaces.

Then � qM
jD1

X
.j/

0
;

qM
jD1

X
.j/

1

�
 

D

qM
jD1

�
X
.j/

0
; X

.j/

1

�
 

with equality of norms for every function  2 B.

The third property shows that the interpolation with a function parameter is stable with respect to its repeated
fulfillment [18, Theorem 1.3].

Proposition 5.3. Let ˛; ˇ;  2 B, and suppose that the function ˛=ˇ is bounded in a neighbourhood of infinity.
Define the function ! 2 B by the formula !.r/ WD ˛.r/ .ˇ.r/=˛.r// for r > 0. Then ! 2 B, and ŒX˛; Xˇ� D X!
with equality of norms for every admissible pairX of Hilbert spaces. Besides, if ˛; ˇ;  are interpolation parameters,
then ! is also an interpolation parameter.

Our proof of Theorems 4.1 and 4.2 is based on the key fact that the interpolation with an appropriate function
parameter between margin Sobolev spaces in (12) and (13) gives the intermediate Hörmander spaces H s;s=2I'.�/
and H sI'.�/ respectively. Let us formulate this property separately for isotropic and for anisotropic spaces.

Proposition 5.4. Let real numbers s0, s, and s1 satisfy the inequalities s0 < s < s1, and let ' 2M. Put

 .r/ WD

(
r.s�s0/=.s1�s0/ '.r1=.s1�s0// if r � 1;

'.1/ if 0 < r < 1:
(32)

Then the function  2 B is an interpolation parameter, and the equality of spaces

H s��I'.W / D
�
H s0��.W /;H s1��.W /

�
 

(33)

holds true up to equivalence of norms for arbitrary � 2 R provided that W D G or W D � . If W D Rk with
1 � k 2 Z, then (33) holds true with equality of norms in spaces.

This result is due to [21, Theorems 3.1 and 3.5]; see also monograph [18, Theorems 1.14, 2.2, and 3.2] for the cases
where W D Rk , W D � , and W D G respectively.

Proposition 5.5. Let real numbers s0, s, and s1 satisfy the inequalities 0 � s0 < s < s1, and let ' 2M. Define an
interpolation parameter  2 B by formula (32). Then the equality of spaces

H s��;.s��/=2I'.W / D
�
H s0��;.s0��/=2.W /;H s1��;.s1��/=2.W /

�
 

(34)

holds true up to equivalence of norms for arbitrary real � � s0 provided that W D � or W D S . If W D Rk with
2 � k 2 Z, then (34) holds true with equality of norms in spaces without the assumption that 0 � s0.
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This result is due to [36, Theorem 2 and Lemma 1] for the cases where W D S and W D Rk respectively. In the
W D � case, the proof of the result is the same as the proof of its analog for a strip [36, Lemma 2].

6 Proofs

To deduce Theorems 4.1 and 4.2 from their known counterparts in the Sobolev case, we need to prove a version
of Proposition 5.5 (with � D 0) for the target spaces of isomorphisms (24) and (31). This proof will be based on
the following lemma about properties of the operator that assigns the Cauchy data to an arbitrary function g 2
H s;s=2I'.S/.

Lemma 6.1. Choose an integer r � 1, and consider the linear mapping

R W g 7!
�
g��; @tg��; : : : ; @r�1t g��

�
; with g 2 C1.S/: (35)

This mapping extends uniquely (by continuity) to a bounded linear operator

R W H s;s=2I'.S/!

r�1M
kD0

H s�2k�1I'.�/ DW HsI'.�/ (36)

for arbitrary s > 2r � 1 and ' 2 M. This operator is right invertible; moreover, there exists a linear mapping
T W .L2.�//

r ! L2.S/ that for arbitrary s > 2r � 1 and ' 2 M the restriction of T to the space HsI'.�/ is a
bounded linear operator

T W HsI'.�/! H s;s=2I'.S/ (37)

and that RT v D v for every v 2 HsI'.�/.

Proof. We first prove an analog of this lemma for Hörmander spaces defined on Rn and Rn�1 instead of S and � .
Then we deduce the lemma with the help of the special local charts on S .

Consider the linear mapping

R0 W w 7!
�
w jtD0; @tw jtD0; : : : ; @

r�1
t w jtD0

�
; with w 2 C10 .Rn/: (38)

Here, we interpretw as a functionw.x; t/ of x 2 Rn�1 and t 2 R so thatR0w 2 .C10 .Rn�1//r . Choose s > 2r�1
and ' 2M arbitrarily, and prove that the mapping (38) extends uniquely (by continuity) to a bounded linear operator

R0 W H
s;s=2I'.Rn/!

r�1M
kD0

H s�2k�1I'.Rn�1/ DW HsI'.Rn�1/: (39)

This fact is known in the Sobolev case of ' � 1 due to [38, Chapter II, Theorem 7]. Using the interpolation with a
function parameter between Sobolev spaces, we can deduce this fact in the general situation of arbitrary ' 2M.

Namely, choose s0; s1 2 R such that 2r � 1 < s0 < s < s1 and consider the bounded linear operators

R0 W H
sj ;sj =2.Rn/! Hsj .Rn�1/; with j 2 f0; 1g: (40)

Let  be the interpolation parameter (32). Then the restriction of the mapping (40) with j D 0 to the space�
H s0;s0=2.Rn/;H s1;s1=2.Rn/

�
 
D H s;s=2I'.Rn/ (41)

is a bounded operator
R0 W H

s;s=2I'.Rn/!
�
Hs0.Rn�1/;Hs1.Rn�1/

�
 
: (42)

The latter equality is due to Proposition 5.5. This operator is an extension by continuity of the mapping (38) because
the set C1

0
.Rn/ is dense in H s;s=2I'.Rn/. Owing to Propositions 5.2 and 5.4, we get�

Hs0.Rn�1/;Hs1.Rn�1/
�
 
D

r�1M
kD0

�
H s0�2k�1.Rn�1/;H s1�2k�1.Rn�1/

�
 

D

r�1M
kD0

H s�2k�1I'.Rn�1/ D HsI'.Rn�1/:

(43)
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Hence, the linear bounded operator (42) is the required operator (39).
Let us now build a linear mapping

T0 W
�
L2.Rn�1/

�r
! L2.Rn/ (44)

that its restriction to each space HsI'.Rn�1/ with s > 2r � 1 and ' 2M is a bounded operator between the spaces
HsI'.Rn�1/ and H s;s=2I'.Rn/ and that this operator is right inverse to (39).

Similarly to Hörmander [10, Proof of Theorem 2.5.7] we define the linear mapping

T0 W v 7! F�1� 7!x

�
ˇ
�
h�i2t

� r�1X
kD0

1

kŠ
cvk.�/ � tk�.x; t/ (45)

on the linear topological space of vectors

v WD .v0; : : : ; vr�1/ 2
�
S0.Rn�1/

�r
:

We consider T0v as a distribution on the Euclidean space Rn of points .x; t/, with x D .x1; : : : ; xn�1/ 2 Rn�1

and t 2 R. In (45), the function ˇ 2 C1
0
.R/ is chosen so that ˇ D 1 in a certain neighbourhood of zero. As usual,

F�1
� 7!x

denotes the inverse Fourier transform with respect to � D .�1; : : : ; �n�1/ 2 Rn�1, and h�i WD .1Cj�j2/1=2.
The variable � is dual to x relative to the direct Fourier transform bw.�/ D .Fw/.�/ of a function w.x/.

Obviously, the mapping (45) is well defined and acts continuously between .S0.Rn�1/r and S0.Rn/. It is also
evident that the restriction of this mapping to the space .L2.Rn�1//r is a bounded operator between .L2.Rn�1//r

and L2.Rn/.
We assert that

R0T0v D v for every v 2
�
S.Rn�1/

�r
: (46)

Here, as usual, S.Rn�1/ denotes the linear topological space of all rapidly decreasing infinitely smooth functions
on Rn�1. Since v 2 .S.Rn�1/r implies T0v 2 S.Rn�1/, the left-hand side of the equality (46) is well defined. Let
us prove this equality.

Choosing j 2 f0; : : : ; r � 1g and v D .v0; : : : ; vr�1/ 2 .S.Rn�1//r arbitrarily, we get

F
�
@
j
t T0v jtD0

�
.�/ D @

j
t Fx 7!� ŒT0v�.�; t/

ˇ̌
tD0
D @

j
t

�
ˇ
�
h�i2t

� r�1X
kD0

1

kŠ
cvk.�/ tk�ˇ̌̌̌

tD0

D ˇ.0/

�
@
j
t

r�1X
kD0

1

kŠ
cvk.�/ tk �̌̌̌̌

tD0

D ˇ.0/ j Š
1

j Š
bvj .�/ D bvj .�/

for every � 2 Rn�1. In the fourth equality, we have used the fact that ˇ D 1 in a neighbourhood of zero. Thus, the
Fourier transforms of all components of the vectors R0T0v and v coincide, which is equivalent to (46).

Let us now prove that the restriction of the mapping (45) to each space

H2m.Rn�1/ D
r�1M
kD0

H2m�2k�1.Rn�1/ (47)

with 0 � m 2 Z is a bounded operator between H2m.Rn�1/ and H2m;m.Rn/. Note that the integers 2m � 2k � 1
may be negative in (47).

Let an integerm � 0. We make use of the fact that the norm in the spaceH2m;m.Rn/ is equivalent to the norm

kwk2m;m WD

�
kwk2 C

n�1X
jD1

k@2mxj wk
2
C k@mt wk

2

�1=2
(see, e.g., [44, Section 9.1]). Here and below in this proof, k � k stands for the norm in the Hilbert space L2.Rn/.
Of course, @xj u and @t denote the operators of generalized partial derivatives with respect to xj and t respectively.
Choosing v D .v0; : : : ; vr�1/ 2 .S.Rn�1//r arbitrarily and using the Parseval equality, we obtain the following:

kT0vk
2
2m;m D kT0vk

2
C

n�1X
jD1

k@2mxj T0vk
2
C k@mt T0vk

2
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D kbT0vk2 C
n�1X
jD1

k�2mj
bT0vk2 C k@mt bT0vk2

�

r�1X
kD0

1

kŠ

Z
Rn

ˇ̌
ˇ.h�i2t /cvk.�/ tk ˇ̌2d�dt

C

n�1X
jD1

r�1X
kD0

1

kŠ

Z
Rn

ˇ̌
�2mj ˇ.h�i2t /cvk.�/ tk ˇ̌2d�dt

C

r�1X
kD0

1

kŠ

Z
Rn

ˇ̌
@mt
�
ˇ.h�i2t / tk

�cvk.�/ˇ̌2d�dt:
Let us estimate each of these three integrals separately. We begin with the third integral. Changing the variable
� D h�i2t in the interior integral with respect to t , we get the equalitiesZ

Rn

ˇ̌
@mt
�
ˇ.h�i2t / tk

�cvk.�/ˇ̌2d�dt D Z
Rn�1

jcvk.�/j2d� Z
R

j@mt .ˇ.h�i
2t /tk/j2dt

D

Z
Rn�1

h�i4m�4k�2 jcvk.�/j2d� Z
R

j@m� .ˇ.�/�
k/j2d�:

Hence, Z
Rn

ˇ̌
@mt
�
ˇ.h�i2t / tk

�cvk.�/ˇ̌2d�dt D c1 kvkk2H2m�2k�1.Rn�1/;

with
c1 WD

Z
R

j@m� .ˇ.�/�
k/j2d� <1:

Using the same changing of the variable t in the second integral, we obtain the following:Z
Rn

ˇ̌
�2mj ˇ.h�i2t /cvk.�/ tk ˇ̌2d�dt D Z

Rn�1

j�j j
4m
jcvk.�/j2d� Z

R

jtk ˇ.h�i2t /j2dt

D

Z
Rn�1

j�j j
4m
h�i�4k�2 jcvk.�/j2d� Z

R

j�kˇ.�/j2d�

�

Z
Rn�1

h�i4m�4k�2 jcvk.�/j2d� Z
R

j�kˇ.�/j2d�:

Hence, Z
Rn

ˇ̌
�2mj ˇ.h�i2t /cvk.�/ tk ˇ̌2d�dt � c2 kvkk2H2m�2k�1.Rn�1/;

with
c2 WD

Z
R

j�kˇ.�/j2d� <1:

Finally, replacing the symbol �j with 1 in the previous reasoning, we obtain the following estimate for the first
integral: Z

Rn

ˇ̌
ˇ.h�i2t /cvk.�/ tk ˇ̌2d�dt � c2 kvkk2H�2k�1.Rn�1/ � c2 kvkk2H2m�2k�1.Rn�1/:

Thus, we conclude that

kT0vk
2
H2m;m.Rn/ � c

r�1X
kD0

kvkk
2

H2m�2k�1.Rn�1/ D c kvk
2
H2m.Rn�1/
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for any v 2 .S.Rn�1//r , with the number c > 0 being independent of v. Since the set
�
S.Rn�1/

�r is dense in
H2m.Rn�1/, it follows from the latter estimate that the mapping (45) sets a bounded linear operator

T0 W H2m.Rn�1/! H2m;m.Rn/ whenever 0 � m 2 Z:

Let us deduce from this fact that the mapping (45) acts continuously between the spaces HsI'.Rn�1/ and
H s;s=2I'.Rn/ for every s > 2r � 1 and ' 2 M. Put s0 D 0, choose an even integer s1 > s, and consider the
linear bounded operators

T0 W Hsj .Rn�1/! H sj ;sj =2.Rn/; with j 2 f0; 1g: (48)

Let, as above,  be the interpolation parameter (32). Then the restriction of the mapping (48) with j D 0 to the
space �

Hs0.Rn�1/;Hs1.Rn�1/
�
 
D HsI'.Rn�1/

is a bounded operator
T0 W HsI'.Rn�1/! H s;s=2I'.Rn/: (49)

Here, we have used formulas (41) and (43), which remain true for the considered s0 and s1.
Now the equality (46) extends by continuity over all vectors v 2 HsI'.Rn�1/. Hence, the operator (49) is right

inverse to (39). Thus, the required mapping (44) is built.
We need to introduce analogs of the operators (39) and (49) for the strip

… D
˚
.x; t/ W x 2 Rn�1; 0 < t < �

	
:

Let s > 2r � 1 and ' 2M. Given u 2 H s;s=2I'.…/, we put R1u WD R0w, where a function w 2 H s;s=2I'.Rn/
satisfies the condition w�… D u. Evidently, this definition does not depend on the choice of w. The linear mapping
u 7! R1u is a bounded operator

R1 W H
s;s=2I'.…/! HsI'.Rn�1/: (50)

This follows immediately from the boundedness of the operator (39) and from the definition of the norm in
H s;s=2I'.…/.

Let us introduce a right-inverse of (50) on the base of the mapping (45). We put T1v WD .T0v/�… for arbitrary
v 2 .L2.Rn�1//r . The restriction of the linear mapping v 7! T1v over vectors v 2 HsI'.Rn�1/ is a bounded
operator

T1 W HsI'.Rn�1/! H s;s=2I'.…/: (51)

This follows directly from the boundedness of the operator (49). Observe that

R1T1v D R1
�
.T0v/�…

�
D R0T0v D v for every v 2 HsI'.Rn�1/:

Thus, the operator (51) is right inverse to (50).
Using operators (50) and (51), we can now prove our lemma with the help of the special local charts (10) on S .

As above, let s > 2r�1 and ' 2M. Choosing k 2 f0; : : : ; r�1g and g 2 C1.S/ arbitrarily, we get the following:

k@kt g��k2
H s�2k�1I'.�/

D

�X
jD1

k
�
�j .@

k
t g��/

�
ı �j k

2

H s�2k�1I'.Rn�1/

D

�X
jD1

k@kt
�
.�j g/ ı �

�
j

�
�Rn�1/k2

H s�2k�1I'.Rn�1/

� c2
�X
jD1

k.�j g/ ı �
�
j k
2

H s;s=2I'.…/
D c2 kgk2

H s;s=2I'.S/
:

Here, c denotes the norm of the bounded operator (50), and, as usual, symbol "ı" designates a composition of
functions. Recall that f�j g is a collection of local charts on � and that f�j g is an infinitely smooth partition of unity
on � . Thus,

kRgkHsI'.�/ � c
p
r kgkH s;s=2I'.S/ for every g 2 C1.S/:
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This implies that the mapping (35) extends by continuity to the bounded linear operator (36).
Let us build the linear mapping T W .L2.�//r ! L2.S/ whose restriction to HsI'.�/ is a right-inverse of (36).

Consider the linear mapping of flattening of �

L W v 7!
�
.�1v/ ı �1; : : : ; .��v/ ı ��

�
; with v 2 L2.�/:

Its restriction to H�I'.�/ is an isometric operator

L W H�I'.�/!
�
H�I'.Rn�1/

�� whenever � > 0: (52)

Besides, consider the linear mapping of sewing of �

K W .h1; : : : ; h�/ 7!

�X
jD1

Oj
�
.�jhj / ı �

�1
j

�
; with h1; : : : ; h� 2 L2.Rn�1/:

Here, each function �j 2 C10 .Rn�1/ is chosen so that �j D 1 on the set ��1
j
.supp�j /, whereas Oj denotes the

operator of the extension by zero to � of a function given on �j . The restriction of this mapping to .H�I'.Rn�1//�

is a bounded operator
K W

�
H�I'.Rn�1/

��
! H�I'.�/ whenever � > 0;

and this operator is left inverse to (52) (see [18, the proof of Theorem 2.2]).
The mapping K induces the operator K1 of the sewing of the manifold S D � � .0; �/ by the formula�

K1.g1; : : : ; g�/
�
.x; t/ WD

�
K.g1.�; t /; : : : ; g�.�; t //

�
.x/

for arbitrary functions g1; : : : ; g� 2 L2.…/ and almost all x 2 � and t 2 .0; �/. The restriction of the mapping K1
to .H�;�=2I'.…//� is a bounded operator

K1 W .H
�;�=2I'.…//� ! H�;�=2I'.S/ whenever � > 0 (53)

(see [36, the proof of Theorem 2]).
Given v WD .v0; v1; : : : ; vr�1/ 2 .L2.�//r , we set

T v WD K1
�
T1.v0;1; : : : ; vr�1;1/; : : : ; T1.v0;�; : : : ; vr�1;�/

�
;

where
.vk;1; : : : ; vk;�/ WD Lvk 2 .L2.Rn�1//�

for each integer k 2 f0; : : : ; r � 1g. The linear mapping v 7! T v acts continuously between .L2.�//r and L2.S/,
which follows directly from the definitions of L, T1, and K1. The restriction of this mapping to HsI'.�/ is the
bounded operator (37). This follows immediately from the boundedness of the operators (51), (52), and (53). The
operator (37) is right inverse to (36). Indeed, choosing a vector v D .v0; v1; : : : ; vr�1/ 2 HsI'.�/ arbitrarily, we
obtain the following equalities:

.RT v/k D
�
RK1

�
T1.v0;1; : : : ; vr�1;1/; : : : ; T1.v0;�; : : : ; vr�1;�/

��
k

D K
��
R1T1.v0;1; : : : ; vr�1;1/

�
k
; : : : ;

�
R1T1.v0;�; : : : ; vr�1;�/

�
k

�
D K.vk;1; : : : ; vk;�/ D KLvk D vk :

Here, the index k runs over the set f0; : : : ; r �1g and denotes the k-th component of a vector. Hence, RT v D v.

Using this lemma, we will now prove a version of Proposition 5.5 for the target spaces of isomorphisms (24) and
(31). Note that the number of the compatibility conditions (19) and (28) are constant respectively on the intervals

J0;1 WD .2; 7=2/; J0;r WD .2r � 1=2; 2r C 3=2/; with 2 � r 2 Z;

and
J1;0 WD .2; 5=2/; J1;r WD .2r C 1=2; 2r C 5=2/; with 1 � r 2 Z;

of the varying of s. Namely, if s ranges over some Jl;r , then this number equals r .
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Lemma 6.2. Let l 2 f0; 1g and 1 � r 2 Z. Suppose that real numbers s0; s; s1 2 Jl;r satisfy the inequality
s0 < s < s1 and that ' 2M. Define an interpolation parameter  2 B by formula (32). Then the equality of spaces

Qs�2;s=2�1I'
l

D
�
Qs0�2;s0=2�1
l

;Qs1�2;s1=2�1
l

�
 

(54)

holds true up to equivalence of norms.

Proof. Recall that Qs�2;s=2�1I'
l

and Qsj�2;sj =2�1
l

, with j 2 f0; 1g, are subspaces of the Hilbert spaces

Hs�2;s=2�1I'
l

and Hsj�2;sj =2�1
l

respectively. According to Propositions 5.2, 5.4, and 5.5 we obtain the following:�
Hs0�2;s0=2�1
l

;Hs1�2;s1=2�1
l

�
 

D
�
H s0�2;s0=2�1.�/˚H s0�.2lC1/=2;s0=2�.2lC1/=4.S/˚H s0�1.G/;

H s1�2;s1=2�1.�/˚H s1�.2lC1/=2;s1=2�.2lC1/=4.S/˚H s1�1.G/
�
 

D
�
H s0�2;s0=2�1.�/;H s1�2;s1=2�1.�/

�
 

˚
�
H s0�.2lC1/=2;s0=2�.2lC1/=4.S/;H s1�.2lC1/=2;s1=2�.2lC1/=4.S/

�
 

˚
�
H s0�1.G/;H s1�1.G/

�
 

D H s�2;s=2�1I'.�/˚H s�.2lC1/=2;s=2�.2lC1/=4I'.S/˚H s�1I'.G/ D Hs�2;s=2�1I'
l

:

Thus, �
Hs0�2;s0=2�1
l

;Hs1�2;s1=2�1
l

�
 
D Hs�2;s=2�1I'

l
(55)

up to equivalence of norms.
We will deduce the required formula (54) from (55) with the help of Proposition 5.1. To this end, we need to

present a linear mappingP on Hs0�2;s0=2�1
l

such thatP is a projector of the space Hsj�2;sj =2�1
l

onto its subspace

Qsj�2;sj =2�1
l

for each j 2 f0; 1g. If we have this mapping, we will get�
Qs0�2;s0=2�1
l

;Qs1�2;s1=2�1
l

�
 
D
�
Hs0�2;s0=2�1
l

;Hs1�2;s1=2�1
l

�
 
\Qs0�2;s0=2�1

l

D Hs�2;s=2�1I'
l

\Qs0�2;s0=2�1
l

D Qs�2;s=2�1I'
l

due to Proposition 5.1, formula (55), and the conditions s0; s 2 Jl;r and s0 < s. Note that these conditions imply the
last equality because the elements of the spaces Qs0�2;s0=2�1

l
and Qs�2;s=2�1I'

l
satisfy the same compatibility

conditions and because Hs�2;s=2�1I'
l

is embedded continuously in Hs0�2;s0=2�1
l

.
We will build the above-mentioned mapping P with the help of Lemma 6.1. Consider first the case of l D 0.

Given .f; g; h/ 2 Hs0�2;s0=2�1
0

, we put

g� WD g C T
�
v0�� � g��; : : : ; vr�1�� � @ r�1t g��

�
:

Here, the functions vk 2 H s0�1�2k.G/, with k D 0; : : : ; r � 1, are defined by the recurrent formula (20), and
the mapping T is taken from Lemma 6.1. The linear mapping P W .f; g; h/ 7! .f; g�; h/ defined on all vectors
.f; g; h/ 2 Hs0�2;s0=2�1

0
is required. Indeed, its restriction to each space Hsj�2;sj =2�1

0
, with j 2 f0; 1g, is a

bounded operator on this space. This follows directly from Lemma 6.1 in which we take s WD sj � 1=2. Moreover,
if .f; g; h/ 2 Qsj�2;sj =2�1

0
, then P.f; g; h/ D .f; g; h/ due to the compatibility conditions (19).

Consider now the case of l D 1. Given .f; g; h/ 2 Hs0�2;s0=2�1
1

, we put

g� WD g C T
�
B0Œv0��� � g��; : : : ; Br�1Œv0; : : : ; vr�1��� � @r�1t g��

�
:

Here, the functions v0; : : : ; vr�1 and mapping T are the same as in the l D 0 case. The linear mapping P W
.f; g; h/ 7! .f; g�; h/ defined on all vectors .f; g; h/ 2 Hs0�2;s0=2�1

1
is required. Indeed, its restriction to each

space Hsj�2;sj =2�1
1

, with j 2 f0; 1g, is a bounded operator on this space due to Lemma 6.1 in which s WD sj �3=2.

Moreover, if .f; g; h/ 2 Qsj�2;sj =2�1
1

, then P.f; g; h/ D .f; g; h/ by the compatibility conditions (28).
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Remark 6.3. If l D 1 and r D 0, then the conclusion of Lemma 6.2 remains true. Indeed, in this case
Qs�2;s=2�1I'
1

D Hs�2;s=2�1I'
1

and Qsj�2;sj =2�1
1

D Hsj�2;sj =2�1
1

for each j 2 f0; 1g so that (54) coincides
with the equality (55). The latter is valid in the case considered as well.

Now we are in position to prove the main results of the paper.

Proofs of Theorems 4.1 and 4.2. Let s > 2, ' 2M, and l 2 f0; 1g. If l D 0 [or l D 1], then our reasoning relates
to Theorem 4.1 [or Theorem 4.2]. We first consider the case where s … El . Then s 2 Jl;r for a certain integer r .
Choose numbers s0; s1 2 Jl;r such that s0 < s < s1. According to Lions and Magenes [4, Theorem 6.2], the
mapping

u 7! ƒlu; with u 2 C1.�/; (56)

extends uniquely (by continuity) to an isomorphism

ƒl W H
sj ;sj =2.�/$ Qsj�2;sj =2�1

l
for each j 2 f0; 1g: (57)

Let  be the interpolation parameter from Proposition 5.4. Then the restriction of the operator (57) with j D 0 to
the space �

H s0;s0=2.�/;H s1;s1=2.�/
�
 
D H s;s=2I'.�/

is an isomorphism

ƒl W H
s;s=2I'.�/$

�
Qs0�2;s0=2�1
l

;Qs1�2;s1=2�1
l

�
 
D Qs�2;s=2�1I'

l
: (58)

Here, the equalities of spaces hold true up to equivalence of norms due to Proposition 5.5 and Lemma 6.2 (see
also Remark 6.3). The operator (58) is an extension by continuity of the mapping (56) because C1.�/ is dense in
H s;s=2I'.�/. Thus, Theorems 4.1 and 4.2 are proved in the case considered.

Consider now the case where s 2 El . Choose " 2 .0; 1=2/ arbitrarily. Since s ˙ " … El and s � " > 2, we have
the isomorphisms

ƒl W H
s˙";.s˙"/=2I'.�/$ Qs˙"�2;.s˙"/=2�1I'

l
: (59)

They imply that the mapping (56) extends uniquely (by continuity) to an isomorphism

ƒl W
�
H s�";.s�"/=2I'.�/;H sC";.sC"/=2I'.�/

�
1=2

$
�
Qs�"�2;.s�"/=2�1I'
l

;QsC"�2;.sC"/=2�1I'
l

�
1=2
D Qs�2;s=2�1I'

l
:

(60)

Recall that the last equality is the definition of the space Qs�2;s=2�1I'
l

.
It remains to prove that

H s;s=2I'.�/ D
�
H s�";.s�"/=2I'.�/;H sC";.sC"/=2I'.�/

�
1=2

(61)

up to equivalence of norms. We reduce the interpolation of Hörmander spaces to an interpolation of Sobolev spaces
with the help of Proposition 5.3. Let us choose real ı > 0 such that s � " � ı > 0. According to Proposition 5.5 we
have the equalities

H s�";.s�"/=2I'.�/ D
�
H s�"�ı;.s�"�ı/=2.�/;H sC"Cı;.sC"Cı/=2.�/

�
˛

and
H sC";.sC"/=2I'.�/ D

�
H s�"�ı;.s�"�ı/=2.�/;H sC"Cı;.sC"Cı/=2.�/

�
ˇ
:

Here, the interpolation parameters ˛ and ˇ are defined by the formulas

˛.r/ WD rı=.2"C2ı/'.r1=.2"C2ı//; ˇ.r/ WD r.2"Cı/=.2"C2ı/'.r1=.2"C2ı// if r � 1

and ˛.r/ D ˇ.r/ WD 1 if 0 < r < 1. Therefore, owing to Propositions 5.3 and 5.5, we get�
H s�";.s�"/=2I'.�/;H sC";.sC"/=2I'.�/

�
1=2
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D

h�
H s�"�ı;.s�"�ı/=2.�/;H sC"Cı;.sC"Cı/=2.�/

�
˛
;�

H s�"�ı;.s�"�ı/=2.�/;H sC"Cı;.sC"Cı/=2.�/
�
ˇ

i
1=2

D
�
H s�"�ı;.s�"�ı/=2.�/;H sC"Cı;.sC"Cı/=2.�/

�
!
D H s;s=2I'.�/:

Here, the interpolation parameter ! is defined by the formulas

!.r/ WD ˛.r/.ˇ.r/=˛.r//1=2 D r1=2'.r1=.2"C2ı// if r � 1

and !.r/ WD 1 if 0 < r < 1. Thus, (61) is valid.

Remark 6.4. The spaces defined by formulas (23) and (30) are independent of the choice of the number " 2 .0; 1=2/
up to equivalence of norms. Indeed, let l 2 f0; 1g, s 2 El ; then according to Theorems 4.1 and 4.2 we have the
isomorphisms

ƒl W H
s;s=2I'.�/$

�
Qs�2�";s=2�1�"=2I'
l

;Qs�2C";s=2�1C"=2I'
l

�
1=2

: (62)

whenever 0 < " < 1=2. This means the required independence.
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