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1 Introduction

In the current millenium there has been a generalized interest in the search for large algebraic structures inside
nonlinear sets. This area of research is called lineability. Concepts, results and references concerning this topic can
be found in the survey [1] and the monograph [2]. In this note, we focus on the family of all injective (or one-to-
one) operators defined on a Banach space. Obviously, this family is not a vector space. Only recently (see below) a
number of assertions have been established within this context, in the real case. Our aim is to contribute to complete
the existing knowledge on lineability of the mentioned family, mainly in the complex infinite dimensional setting.

Our notation will be rather usual. The symbols N; N0; Q; R; C will stand for the set of positive integers, the
set N[f0g, the set of rational numbers, the real line, and the field of complex numbers, respectively. The cardinality
of the continuum, card .R/, is denoted by c. If X is a Banach space on K D R or C then X� and L.X/ will
represent, respectively, the topological dual space of X and the vector space of all operators on X , that is, the
family of all continuous linear self-mappings T W X ! X . Recall that L.X/ becomes a linear algebra (in fact,
a Banach algebra) if we endow this vector space with the internal law of composition of operators. If T 2 L.X/
then the spectrum and the point spectrum of T will be denoted by �.T / and �P .T /, respectively. Recall that
�.T / D f� 2 K W T � �I is not invertibleg (I D the identity) and �P .T / is the set of eigenvalues of T , that is,
�P .T / D f� 2 K W T � �I is not injectiveg .� �.T //. The adjoint of T is the operator T � 2 L.X�/ given by
.T �'/.x/ D '.T x/ .' 2 X�; x 2 X/.

A few lineability concepts (see [2]) will be convenient in order to establish our findings appropriately. If X is a
vector space, ˛ is a cardinal number and A � X , then A is said to be: lineable if there is an infinite dimensional
vector space M such that M n f0g � A, and ˛-lineable if there exists a vector space M with dim.M/ D ˛

and M n f0g � A (hence lineability means @0-lineability, where @0 D card .N/). If, in addition, X is contained
in some (linear) algebra then A is called: algebrable if there is an algebra M so that M n f0g � A and M is
infinitely generated, that is, the cardinality of any system of generators of M is infinite; ˛-algebrable if there is an
˛-generated algebra M with M n f0g � A; strongly algebrable if A [ f0g contains an infinitely generated algebra
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that is isomorphic with a free algebra, and strongly ˛-algebrable if A [ f0g contains an ˛-generated algebra that
is isomorphic with a free algebra. Note that if B � X is a set whose elements commute respect to the algebra
operation, then B is a generating set of some free algebra contained in A [ f0g if, and only if, for any N 2 N
and any nonzero polynomial P in N variables without a constant term and any distinct y1; : : : ; yN 2 B we have
P.y1; : : : ; yN / 2 A n f0g. Of course, strong (˛-)algebrability implies (˛-)algebrability, and this in turn implies (˛-,
resp.) lineability.

Even if no additional condition of linearity is imposed, there are not many injective self-mappings on R in the
algebraic sense, as the following result (see [3]) shows.

Theorem 1.1. The set of injective functions R! R is not 2-lineable.

As for higher dimensions, we gather in the next theorem a number of assertions, which have been recently proved
by Jiménez, Maghsoudi, Muñoz and Seoane [4] in the setting of real vector spaces.

Theorem 1.2. Let n;m 2 N. Then the following holds:
(a) The set ff W Rn ! Rm W f is injectiveg is m-lineable, but not .mC 1/-lineable.
(b) The set ff W R2nm ! R2nm W f is linear and bijectiveg is 2n-lineable.
(c) If m � 3 is odd then the set ff W Rm ! Rm W f is linear and bijectiveg is not m-lineable.

Recall that if X is a finite dimensional Banach space then any linear mapping X ! X is continuous, and any
injective linear mapping X ! X is bijective. Consistently, for a general Banach space, we consider the family

L1�1.X/ W D flinear continuous injective mappings X ! Xg

D fT 2 L.X/ W Ker .T / D f0gg:

It is well known that the group of bijective operators on a Banach space (equivalently, by the Open Mapping
Theorem, the group of invertible operators) is a nonempty open set (see e.g. [5, Chap. 7]). Hence L1�1.X/ contains
a nonempty open set, so it is not a too small set, in the topological sense. Thus, it is natural to raise the question of
whether L1�1.X/ is also large in the algebraic sense. Theorem 1.2 above gave us a partial answer in the realm of
real finite dimensional spaces. In [4], the following theorem concerning an important class of infinite dimensional
Banach spaces in the real case is also proved.

Theorem 1.3. Let X be a real Banach space with a Schauder basis. Then L1�1.X/ is lineable.

In Section 2, we will briefly deal with the finite dimensional case in order to generalize Theorem 1.2. In Section 3,
which is the main one, we will extend the aforementioned results to the complex setting when the Banach spaces
have infinite dimension. Our main contribution consists of a criterion providing algebrability in this case. Through a
modification of this criterion we will also improve Theorem 1.3 by showing that its conclusion still holds –in both
real and complex cases– if X is just separable and infinite dimensional. Examples of nonseparable Banach spaces
where the result remains valid are also provided.

2 Injective operators on finite dimensional Banach spaces

Theorem 1.1 and item (a) of Theorem 1.2 hold in the case K D C with virtually the same proofs. (In the light of
the original proof in [4, Theorem 2.4], we can even afford a slight generalization in the initial set Rn.) Observe that,
trivially, we have also 1-lineability for the set of bijective linear self-mappings of K D R or C (any nonzero multiple
of the identity is bijective). Item (c) of Theorem 1.2 also holds for K D C, not only for odd m but for all m 2 N
(hence Theorem 1.2(b) is false for m D 1 if we replace R by C). Indeed, the proof of part (c) in [4] (see Remark
2.7, proof of Corollary 2.8 and Remark 2.9 of this reference) was based on properties of determinants and on the fact
that any polynomial of odd degree with coefficients in R possesses at least one (real) zero. The restriction “m odd”
is not needed in C by the Fundamental Theorem of Algebra.
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As a consequence, we can state the following result.

Theorem 2.1. Let m 2 N and S be a set with card .S/ � c. We have:
(a) For K D R or C, the set ff W S ! Km W f is injectiveg is m-lineable, but not .mC 1/-lineable.
(b) The set ff W Cm ! Cm W f is linear and bijectiveg is m-lineable if and only if m D 1.

A natural problem remains open: for K D R or C and m � 2, is the family ff W Km ! Km W f is linear and
bijectiveg .m � 1/-lineable?

3 Injective operators on infinite dimensional Banach spaces

We turn to the infinite dimensional case when the field is K D C. Let us establish our criterion (Theorem 3.1), with
which a high level of lineability is obtained. Observe that this criterion is not applicable to the finite dimensional
setting, because any operator has always (complex) eigenvalues in this case. Note also that, despite the fact that the
algebra L.X/ is not commutative, our approach furnishes a large commutative algebra.

Theorem 3.1. Let X be a complex Banach space supporting an operator without eigenvalues. Then the family
L1�1.X/ is strongly c-algebrable.

The proof will make use of some background about holomorphic functions of operators (see for instance [6, Chap. 1]
or [7, Chap. 10]). Let X be a complex Banach space and T 2 L.X/. If f is a complex function that is analytic
on a neighborhood of �.T / then it is possible to define an operator f .T / 2 L.X/ satisfying f .T / D I if
f .z/ � 1, f .T / D T if f .z/ � z, .f C g/.T / D f .T /C g.T / and f .T /g.T / D .fg/.T / (where f .T /g.T /
denotes composition of f .T / and g.T /, while fg denotes pointwise multiplication). Observe that, for fixed T ,
the operators f .T / form a commutative linear algebra. In the special case of an entire function f W C ! C, we
have that if f has Taylor expansion f .z/ D

P1
nD0 anz

n then

f .T / D

1X
nD0

anT
n;

the series being convergent in the norm topology of L.X/. Here, T 0 D I and T nC1 D T n ı T .n � 0/. A special
version of the spectral mapping theorem (see [7, Theorem 10.33]) reads as follows.

Theorem 3.2. Assume that X is a complex Banach space. Let T 2 L.X/ and f W � ! C be holomorphic
on an open set � � �.T /. Then f .�P .T // � �P .f .T //. If, in addition, f is nonconstant on every connected
component of �, then f .�P .T // D �P .f .T //.

The following auxiliary assertion provides a free algebra consisting of entire functions. Its proof is easy and is
essentially contained in the proof of Lemma 2.4 in [8], which in turn is in the same spirit as [9, Proposition 7] (see
also [10, Theorem 1.5] and [11]); so it will be omitted. Let H0.C/ denote the set of all entire functions f with
f .0/ D 0.

Lemma 3.3. Let H � .0;C1/ be a set with card .H/ D c and which is linearly independent over the field Q.
For each r > 0, consider the function Er .z/ WD e

rz � 1. Then fEr W r 2 H g is a free system of generators of an
algebra contained in H0.C/.

In the proof of our Theorem 3.1, Lemma 3.3 plays the role of generating the appropriate algebra by superposing a
fixed operator belonging to the considered class with the representatives of a well chosen algebra of functions. This
method was already used in [12].

Proof of Theorem 3.1. Consider the algebra A generated by the functions Er of Lemma 3.3, that is, the collection
all finite linear combinations of products E

m1
r1
� � �E

mN
rN

.N 2 NI r1; : : : ; rN 2 H I .m1; : : : ; mN / 2 NN
0
n
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f.0; : : : ; 0/g/. Note that the cardinality of the free system fErgr2H is c. By hypothesis, there exists T 2 L.X/
such that �P .T / D ¿. Let f 2 H0.C/ such that f is not identically zero. Then f is not constant on � D C,
which is connected. It follows from Theorem 3.2 that �P .f .T // D f .�P .T // D f .¿/ D ¿. In particular,
0 62 �P .f .T //. Thus, the operator f .T / is injective, that is, f .T / 2 L1�1.X/. Now, consider the family

B WD ff .T / W f 2 Ag;

which is clearly an algebra. Since A � H0.C/, we get B n f0g � L1�1.X/. Clearly, the operators Er .T / .r 2 H/

generate the algebra B. It remains to show that they generate B in a free way. In other words, we should prove that,
if N 2 N, Q is a complex polynomial in N variables without constant term, r1; : : : ; rN are different numbers in
H and Q.Er1

.T /; : : : ; ErN
.T // D 0, then Q D 0.

To this end, observe that, under the latter assumptions, we get from the properties of holomorphic functions of
operators that F.T / D 0, where F.z/ WD Q.Er1

.z/; : : : ; ErN
.z//. Assume, by way of contradiction, that Q ¤ 0.

Since the Er ’s generate a free algebra, we have F 2 H0.C/ n f0g. From Theorem 3.2, it follows that

f0g D �P .0/ D �P .F.T // D F.�P .T // D F.¿/ D ¿;

which is absurd. The proof is finished.

Concerning applications of Theorem 3.1 (see Theorem 3.7 below), a tool that will be used is the following strong
result due to Ovsepian and Pelczynski [13] about the structure of separable (real or complex) Banach spaces.

Theorem 3.4. If X is an infinite-dimensional separable Banach space, then there are sequences fengn�1 � X

and f'ngn�1 � X
� with the following properties:

(a) 'm.en/ D ımn for all m; n 2 N.
(b) If 'n.x/ D 0 for all n 2 N then x D 0.
(c) kenk D 1 for all n 2 N and supn2N k'nk <1.

Remark 3.5. It is proved in [13] that the sequence fengn�1 may satisfy, in addition, that span fen W n 2 Ng D X .
Nevertheless, we do not need this property at all.

Since Theorem 3.1 is given in the complex setting, in order to apply it in the real one the technique of
complexification will be needed. Recall that if X is a Banach space on R then its complexification eX is the
vector space on C given by X2 endowed with the operations

.x; y/C .u; v/ D .x C u; y C v/ and c.x; y/ D .ax � by; bx C ay/;

where c D aC ib, a; b 2 R, x; y; u; v 2 X . Then eX becomes a Banach space on C under, for instance, the norm
k.x; y/k D kxk C kyk. If T 2 L.X/ then the complexification of T is the operator eT on eX defined as

eT .x; y/ D .T x; Ty/:
Note that fT n D .eT /n for all n � 0. Observe also that if f .z/ D

P1
nD0 anz

n is an entire function with real
Taylor coefficients an then the expression f .T / D

P1
nD0 anT

n also makes sense and defines an operator on X
satisfying Af .T / D f .eT /. The following is a variant of Theorem 3.1 when K D R.

Lemma 3.6. Let X be a real Banach space and T 2 L.X/ be an operator such that �P .eT / D ¿. Then the set
L1�1.X/ is strongly c-algebrable.

Proof. Observe that Lemma 3.3 also works when the linear algebra A generated by the functions Er .r 2 H/ is
considered over K D R. Then this algebra is also freely c-generated and, since H � R, all its members are entire
functions with real Taylor coefficients. As in the proof of Theorem 3.1 we get that the family B WD ff .eT / W f 2 Ag
is a c-generated free algebra satisfying B n f0g � L1�1.eX/. Let us prove that the algebra

B1 D ff .T / W f 2 Ag
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is freely generated by the operators Er .T / .r 2 H/. To this end, let us fix, as in the last part of the proof of Theorem
3.1, functions Er1

; : : : ; ErN
as well as a polynomial Q with degree N , but this time with real coefficients. Let

F WD Q.Er1
; : : : ; ErN

/ and assume that F.T / D 0. Then F.eT / DAF.T / De0 D 0, so F D 0 as in the mentioned
proof. Hence Q D 0 because A was freely generated by the Er ’s. Finally, each operator f .T / 2 B1 n f0g is one-
to-one because, otherwise, there would exist x 2 X n f0g with f .T /x D 0. This would imply that the nonzero
vector .x; 0/ 2 eX satisfies

f .eT /.x; 0/ DAf .T /.x; 0/ D .f .T /x; f .T /0/ D .0; 0/;

which contradicts the injectivity of f .eT /. The proof is finished.

We are now ready to show that separability is enough to guarantee algebrability for our family of one-to-one
operators.

Theorem 3.7. Assume that X is a separable infinite dimensional Banach space. Then L1�1.X/ is strongly c-
algebrable.

Proof. Choose a pair of sequences fengn�1 � X and f'ngn�1 � X
� with the properties given in Theorem 3.4.

Define the mapping

T W x 2 X 7!

1X
nD1

1

2n
'n.x/ enC1 2 X: .1/

From property (c) in Theorem 3.4, it follows that

1X
nD1



 1
2n
'n.x/ enC1



 � sup
n2N
k'nk kxk <1: .2/

Since X is a complete space, (2) shows that the series in (1) converges to a vector of X , so T is well defined.
Trivially, T is linear and, by (2), kT xk � Ckxk (x 2 X ) with C D supn2N k'nk <1. In other words, T 2 L.X/.

Let us show that T lacks eigenvalues. Assume, by way of contradiction, that there is a 2 �P .T /. Then there
exists x 2 X n f0g such that

1X
nD1

1

2n
'n.x/ enC1 D a x: .3/

If we let '1 act on both members of (3) then we get 0 D a '1.x/, thanks to property (a) in Theorem 3.4. Suppose
first that a ¤ 0. This implies '1.x/ D 0. By making '2 act on (3), we obtain 1

2
'1.x/ D a '2.x/, hence

'2.x/ D 0. With this procedure, we successively derive 'n.x/ D 0 for all n 2 N. It follows from property (b) in
Theorem 3.4 that x D 0, which is absurd. Then a D 0 and T x D 0. Letting 'mC1 .m � 1/ act on (3), we get

1
2m 'm.x/ D 0, so 'n.x/ D 0 for all n 2 N, which again implies x D 0, a contradiction. Hence �P .T / D ¿.
This is valid in both cases K D R and K D C.

According to Theorem 3.1,L1�1.X/ is strongly c-algebrable if K D C. Finally, we will prove by using Lemma
3.6 that the conclusion also holds if K D R. All that we have to show is �P .eT / D ¿. Assume, contrariwise, that
there is c D aC ib 2 C as well as a vector z D .x; y/ 2 eX n f.0; 0/g such that eT z D c z. Then T x D ax � by
and Ty D bxC ay. Note that if a D 0 D b then T x D 0 D Ty, in which case 0 2 �P .T / D ¿, which is absurd.
Consequently, c ¤ 0 or, that is the same, a2 C b2 ¤ 0. Therefore we have that for some .a; b/ ¤ .0; 0/ and some
.x; y/ ¤ .0; 0/ the following holds:

1X
nD1

1

2n
'n.x/ enC1 D ax � by and

1X
nD1

1

2n
'n.y/ enC1 D bx C ay: .4/

Letting '1 and then 'mC1 .m 2 N/ act on both equalities of (4) we obtain

a '1.x/ � b '1.y/ D 0; b '1.x/C a '1.y/ D 0; and .5/

a 'mC1.x/ � b 'mC1.y/ D 2
�m'm.x/;
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b 'mC1.x/C a 'mC1.y/ D 2
�m'm.y/: .6/

Since (5) is a homogeneous linear system in the unknowns '1.x/; '1.y/ whose determinant is a2 C b2 ¤ 0, one
derives '1.x/ D 0 D '1.y/. By proceeding recursively and assuming 'm.x/ D 0 D 'm.y/ for an m 2 N, one
finds that (6) is, again, a homogeneous linear system with determinant a2 C b2 ¤ 0. Hence its unique solution
is 'mC1.x/ D 0 D 'mC1.y/. To summarize, 'm.x/ D 0 D 'm.y/ for all m 2 N, from which it follows that
.x; y/ D .0; 0/ because of Theorem 3.4(b). This contradiction concludes the proof.

Remarks 3.8.
1. In particular L1�1.X/ is lineable under the assumptions of Theorem 3.7. Notice that our approach is radically

different from that of Theorem 1.3 given in [4, Theorem 2.12]. Observe also that this theorem is strengthened in
a double direction: the conclusion is reinforced and extended, and our assumptions are weaker because every
Banach space with a Schauder basis is separable but, as Enflo proved in [14], the reverse is not true.

2. The conclusion of Theorem 3.7 is optimal, in terms of the cardinality of the generating family of operators.
Indeed, since X is separable, it follows that card.X/ D c. Again by separability, card.C.X// D c. Hence
card.L.X// D c because this cardinality lies between card.X/ and card.C.X//. Then the cardinality of the
generating set of the algebra founded in Theorem 3.7 is optimal.

Let us give an example of an application of Theorem 3.1 that cannot be derived from Theorem 3.7. Assume that �
is a topological space and that X is a Banach space of continuous functions �! K. Assume that m W �! R is
a function such that m � f 2 X for all f 2 X . Then the mapping

f 2 X 7! m � f 2 X

is well defined and linear, so it defines an operator Mm 2 L.X/ (the multiplication operator bym) due to the closed
graph theorem. Instances of such spaces are the space X1 of all continuous functions Œ0; 1�! K (endowed with the
supremum norm k � k1) and the space X2 of functions Œ0; 1� ! K that are continuous and of bounded variation
(endowed with the total variation norm kf k D jf .0/j C VarŒ0;1�.f /). Notice that X1 is separable, while X2 is
not. Since each of these spaces Xi is in fact a Banach algebra, one can choose as m any member of Xi . We impose,
in addition, that every a-point set m�1.fag/ .a 2 K/ has empty interior in � (for instance, take m.x/ D x in the
above examples X D X1; X2). Then

�P .Mm/ D ¿ and, if K D R; �P .eMm/ D ¿: .9/

Theorem 3.1 yields that L1�1.X/ is strongly c-algebrable. It is enough to prove (9). With this aim, assume that
there exists � 2 �P .Mm/, so that there is f 2 X n f0g with mf D �f . By continuity, there is a nonempty open
set G � � such that f .x/ ¤ 0 for all x 2 G. Then m D � on G, hence m�1.f�g/ has nonempty interior, a
contradiction. Finally, suppose that K D R and that there exists � D aCbi 2 �P .eMm/, so that there are functions
f; g 2 X with .f; g/ ¤ .0; 0/ satisfying mf D af � bg and mg D bf C ag. Fix x 2 � nm�1.fag/. It follows
that

.m.x/ � a/f .x/C bg.x/ D 0 and � bf .x/C .m.x/ � a/ g.x/ D 0:

The determinant of this homogeneous linear system with unknowns f .x/; g.x/ is .m.x/ � a/2 C b2, which is
nonzero because m.x/ ¤ a. Then its unique solution is .f .x/; g.x// D .0; 0/. Therefore f D 0 and g D 0 on the
dense set � nm�1.fag/. By continuity, f D 0 D g, that again is a contradiction.

In order to furnish another class of Banach spaces to which Theorem 3.1 applies, we need to recall a concept
and some properties coming from hypercyclicity, for whose general theory and results (updated up to 2011) we refer
the reader to the excellent books [15] and [16]. If X is a (Hausdorff) topological vector space (over K D R or C)
then an operator T 2 L.X/ is said to be hypercyclic if it possesses a dense orbit, that is, if there is a vector x0 2 X ,
called hypercyclic for T , such that the set

fT nx0 W n � 1g is dense in X:

It is evident that if X supports some hypercyclic operator then X must be separable. In addition,X cannot be finite
dimensional. Conversely, if X is an infinite dimensional separable Fréchet (in particular, Banach) space then there
is a hypercyclic operator T 2 L.X/; see, e.g., [16, Chap. 8].
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Theorem 3.9. Assume that X is a complex Banach space that is the dual space of some separable infinite
dimensional Banach space. Then L1�1.X/ is strongly c-algebrable.

Proof. By hypothesis, there is a separable infinite dimensional Banach space Y such that X D Y �. Choose a
hypercyclic operator S 2 L.Y / and define T WD S�. But the adjoint of any hypercyclic operator has no eigenvalues:
see, e.g., [16, Lemma 2.53(a)]. Thus, it suffices to apply Theorem 3.1.

Remarks 3.10.
1. Theorem 3.9 covers important examples of nonseparable Banach spaces, such as `1.C/ WD fx D .xn/n�1 2

CN W .xn/n�1 is boundedg (under the norm kxk D supn�1 jxnj) and BV.Œ0; 1�;C/ WD ff W Œ0; 1�! C W f is
of bounded variationg (under the total variation norm) because the former is the dual space of the space `1.C/
of all absolutely summable complex sequences, while the latter is the dual space of the space C.Œ0; 1�;C/ of
continuous complex functions on Œ0; 1� (Riesz’s theorem).

2. We conjecture that Theorem 3.9 also holds for K D R. This is supported by the fact that any separable
infinite dimensional Banach space Y supports a mixing operator S , that is, an operator satisfying the
following property: for any pair U; V of nonempty open subsets of Y , there exists some N 2 N such that
Sn.U / \ V ¤ ¿ for all n � N [16, Chap. 8]. This easily implies that eS is hypercyclic on eY . Then
�P ..eS/�/ D ¿. The handicap in order to apply Lemma 3.6 lies in the fact that we need �P .fS�/ D ¿,
but .eS/� acts on .Y � Y /�, while fS� does so on Y � � Y �.

Despite the last remark, the big algebraic size of the family of injective operators on `1.R/ happens to be true. In
fact, an approach similar to that used in the proof of Theorem 3.7 shows the following.

Theorem 3.11. Let X be a Banach space that is a subset of the sequence space KN. Assume that every member of
the canonical unit sequence .en/n�1 belongs to X and that the projections

'm W x D .xn/n�1 2 X 7! xm 2 K .m 2 N/

are continuous. Then L1�1.X/ is strongly c-algebrable.

Proof. Define T by

T W x D .xn/n�1 2 X 7!

1X
nD1

2�n
k'nk

�1
kenC1k

�1xnenC1 2 X

and mimic the proof of Theorem 3.7. The details are left as an exercise.

If our Banach space is reflexive, a result due to H. Salas provides us with a dual pair of large algebras of one-to-one
operators.

Theorem 3.12. Let X be a complex infinite dimensional separable reflexive Banach space. Then there are families
F � L.X/, G � L.X�/ satisfying the following properties:
(a) F and G are commutative linear algebras.
(b) F and G are freely c-generated.
(c) Every member of F or G is injective.
(d) G D fS� W S 2 Fg.

Proof. In 2007, Salas [17] proved that if X is an infinite dimensional Banach space whose dual X� is separable,
then there exists a hypercyclic operator T on X such that its adjoint T � is also hypercyclic. Under our assumptions,
X is, in addition, reflexive, so X D X�� D .X�/� is separable. Hence X� is separable (because if the dual Y � of
a Banach space Y is separable then Y is itself separable). Therefore we can find a hypercyclic operator T 2 L.X/
such that T � 2 L.X�/ is hypercyclic. From [16, Lemma 2.53(a)] we have

�P .T
�/ D ¿ and �P .T / D �P .T

��/ D �P ..T
�/�/ D ¿:
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Then Theorem 3.1 furnishes families F � L.X/, G � L.X�/ satisfying properties (a), (b) and (c). But it is
known (see, e.g., [6, Chap. 1] or [7, Chap. 10]) that f .T �/ D .f .T //� for every entire function f , hence by the
construction given in the proof of Theorem 3.1 one obtains that (d) is also fulfilled.

We want to finish this paper by posing the following problem, which is in the same spirit as [4, Question 2.14].

Problem. Is L1�1.X/ large –in any algebraic sense– for all infinite dimensional Banach spaces?
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