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Abstract: A two species non-autonomous competitive phytoplankton system with Beddington-DeAngelis functional
response and the effect of toxic substances is proposed and studied in this paper. Sufficient conditions which
guarantee the extinction of a species and global attractivity of the other one are obtained. The results obtained here
generalize the main results of Li and Chen [Extinction in two dimensional nonautonomous Lotka-Volterra systems
with the effect of toxic substances, Appl. Math. Comput. 182(2006)684-690]. Numeric simulations are carried out
to show the feasibility of our results.
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1 Introduction

Given a function g.t/, let gL and gM denote inf�1<t<1 g.t/ and sup�1<t<1 g.t/, respectively.
The aim of this paper is to investigate the extinction property of the following two species non-autonomous

competitive system with Beddington-DeAngelis functional response and the effect of toxic substances

Px1.t/ D x1.t/
h
r1.t/ � a1.t/x1.t/ �

b1.t/x2.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/
� c1.t/x1.t/x2.t/

i
;

Px2.t/ D x2.t/
h
r2.t/ �

b2.t/x1.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/
� a2.t/x2.t/ � c2.t/x1.t/x2.t/

i
;

(1)

where ri .t/; ai .t/; bi .t/; di .t/; i D 1; 2; ci .t/ are assumed to be continuous and bounded above and below by
positive constants, ei .t/; fi .t/; i D 1; 2 are all non-negative continuous functions bounded above by positive
constants. x1.t/; x2.t/ are population density of species x1 and x2 at time t , respectively. ri .t/; i D 1; 2 are the
intrinsic growth rates of species; ai .i D 1; 2/ are the rates of intraspecific competition of the first and second
species, respectively. Here we make the following assumptions:
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(1) The interspecific competition between two species takes the Beddington-DeAngelis functional response type

b1.t/x2.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/
;

b2.t/x1.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/
;

respectively;

(2) The terms c1.t/x1.t/x2.t/ and c2x1.t/x2.t/ denote the effect of toxic substances, each species produces a
substance toxic to the other, only when the other is present.

We also consider the extinction property of the following two species non-autonomous competitive phytoplankton
system with Beddington-DeAngelis functional response

Px1.t/ D x1.t/
h
r1.t/ � a1.t/x1.t/ �

b1.t/x2.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/
� c1.t/x1.t/x2.t/

i
;

Px2.t/ D x2.t/
h
r2.t/ �

b2.t/x1.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/
� a2.t/x2.t/

i
;

(2)

where all the coefficients have the same meaning as that of system (1). However, we assume that the second species
could produce toxic, while the first one is non-toxic produce.

Traditional two species Lotka-Volterra competition model takes the form:

Px1.t/ D x1.t/
�
r1 � a1x1.t/ � b1x2.t/

�
;

Px2.t/ D x2.t/
�
r2 � a2x2.t/ � b2x1.t/

�
;

(3)

where ri ; ai ; bi ; i D 1; 2 are all positive constants, and x1.t/; x2.t/ are population density of species x1 and x2 at
time t , respectively. ri ; i D 1; 2 are the intrinsic growth rates of species; ai ; i D 1; 2 are the rates of intraspecific
competition of the first and second species, respectively; bi ; i D 1; 2 are the rates of interspecific competition of
the first and second species, respectively. This model is the foundation stone in the study of competition model.
Depending on the relationship of the coefficients, the system could have three different kinds of dynamics: (1) a
unique positive equilibrium which is globally attractive; (2) bistable; the positive equilibrium is unstable, and the
stability of the boundary equilibrium is dependent on the initial conditions; (3) the boundary equilibrium is globally
stable, which means the extinction of the partial species.

Based on the Lotka-Volterra model (3), Chattopadhyay [2] proposed a two species competition model, each
species produces a substance toxic to the other only when the other is present. The model takes the form:

Px1.t/ D x1.t/
�
r1 � a1x1.t/ � a2x2.t/ � d1x1.t/x2.t/

�
;

Px2.t/ D x2.t/
�
r2 � b1x2.t/ � b2x2.t/ � d2x1.t/x2.t/

�
:

(4)

By constructing some suitable Lyapunov function, he obtained sufficient conditions which ensure the global stability
of the unique positive equilibrium. By using the iterative method, Li and Chen [6] showed that if the system without
toxic substance admits the unique positive equilibrium, then system (4) also admits a unique positive equilibrium, in
this case, the toxic substance term has no influence on the stability of the positive equilibrium.

Li and Chen [4] argued that with the change of the circumstance, the coefficients of the system should be time-
varying, and they studied the nonautonomous case of system (4), i.e.,

Px1.t/ D x1.t/
�
r1.t/ � a1.t/x1.t/ � b2.t/x2.t/ � c1.t/x1.t/x2.t/

�
;

Px2.t/ D x2.t/
�
r2.t/ � b2.t/x2.t/ � a2.t/x2.t/ � c2.t/x1.t/x2.t/

�
:

(5)

By applying the fluctuation theorem, they obtained a set of sufficient conditions which guarantee the extinction of
the second species and the globally attractive of the first species.

Sol Ke et al [16] and Bandyopadhyay [14] considered a Lotka-Volterra type of model for two interacting
phytoplankton species, where one species could produce toxic, while the other one is non-toxic produce. The model
takes the form

Px1.t/ D x1.t/
�
r1 � a1x1.t/ � a2x2.t/ � d1x1.t/x2.t/

�
;

Px2.t/ D x2.t/
�
r2 � b1x2.t/ � b2x2.t/

�
:

(6)
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By constructing some suitable Lyapunov function, Bandyopadhyay [14] obtained a set of sufficient conditions which
ensure the global attractivity of the positive equilibrium. For more work on competitive system with toxic substance,
one could refer to [1-20,35-38] and the references cited therein.

On the other hand, based on the traditional Lotka-Volterra competition model, some scholars argued that the
more appropriate competition model should with nonlinear inter-inhibition terms. Wang, Liu and Li [23] proposed
the following two species competition model,

Px1.t/ D x1.t/
h
r1.t/ � a1.t/x1.t/ �

b1.t/x2.t/

1C x2.t/

i
;

Px2.t/ D x2.t/
h
r2.t/ �

b2.t/x1.t/

1C x1.t/
� a2.t/x2.t/

i
:

(7)

In this system, the inter-inhibition terms take the form b1.t/x2.t/
1Cx2.t/

and b2.t/x1.t/
1Cx1.t/

, respectively, which is of Holling
II type. By using differential inequality, the module containment theorem and the Lyapunov function, the authors
obtained sufficient conditions which ensure the existence and global asymptotic stability of positive almost-periodic
solutions of system (7).

Corresponding to system (7), several scholars [24, 25] investigated the dynamic behaviors of the discrete type
two species competition system with nonlinear inter-inhibition terms.

x1.k C 1/ D x1.k/ exp
n
r1.k/ � a1.k/x1.k/ �

b1.k/x2.k/

1C x2.k/

o
;

x2.k C 1/ D x2.k/ exp
n
r2.k/ �

b2.k/x1.k/

1C x1.k/
� a2.k/x2.k/

o
:

(8)

Wang and Liu [24] studied the almost-periodic solution of the system (8) and Yu [25] further incorporated the
feedback control variables to the system (8) and investigated the persistent property of the system.

Recently, combining with the effect of toxic substance and the nonlinear inter-inhibition term, Yue [1] proposed
the following two species discrete competitive system

x1.k C 1/ D x1.k/ exp
n
r1.k/ � a1.k/x1.k/ �

b1.k/x2.k/

1C x2.k/
� c1.k/x1.k/x2.k/

o
;

x2.k C 1/ D x2.k/ exp
n
r2.k/ �

b2.k/x1.k/

1C x1.k/
� a2.k/x2.k/

o
:

(9)

By constructing some suitable Lyapunov type extinction function, the author obtained some sufficient conditions
which guarantee the extinction of one of the components and the global attractivity of the other one.

It is well known that the functional response plays important role in the predator-prey model, and during the
past two decades, the Beddington-DeAngelis functional response, which is a combination of the famous Holling
II functional response and ratio-dependent functional response, having overcome the defect of the both functional
response, is studied by many scholars, see [26-30] and the references therein.

The success of [26-30] motivated us to propose the competition system with Beddington-DeAngelis functional
response, also, if we further assume that each species produces a substance toxic to the other only when the other
is present, or assume that one species is toxic produce while the other one is non-toxic producing, then, we could
establish the model (1) and (2), respectively. It is, to the best of the knowledge of the authors, the first time such kind
of model proposed. During the last decade, many scholars ([3-5], [8], [11-13], [31-38]) investigated the extinction
property of the competition system. In this paper, we still focus our attention to the extinction property of the system
(1) and (2).

The aim of this paper is, by developing the analysis technique of [1, 8, 9], to investigate the extinction property
of the system (1) and (2). The remaining part of this paper is organized as follows. In Section 2, we state several
useful Lemmas and we state the main results in Section 3. These results are then proved in Section 4. Some examples
together with their numerical simulations are presented in Section 5 to show the feasibility of our results. We give a
brief discussion in the last section.
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2 Lemmas

Following Lemma 2.1 is a direct corollary of Lemma 2.2 of F. Chen [10].

Lemma 2.1. If a > 0; b > 0 and Px � x.b � ax/; when t � 0 and x.0/ > 0, we have

lim inf
t!C1

x.t/ �
b

a
:

If a > 0; b > 0 and Px � x.b � ax/; when t � 0 and x.0/ > 0, we have

lim sup
t!C1

x.t/ �
b

a
:

Lemma 2.2. Let x.t/ D .x1.t/; x2.t//
T be any solution of system (1) (system (2)) with xi .t0/ > 0; i D 1; 2, then

xi .t/ > 0; t � t0 and there exists a positive constant M0 such that

lim sup
t!C1

xi .t/ �M0; i D 1; 2;

i.e, any positive solution of system (1) are ultimately bounded above by some positive constant.

Proof. Let x.t/ D .x1.t/; x2.t//T be any solution of system (1) with xi .t0/ > 0; i D 1; 2, then

x1.t/ D x1.t0/ exp
n tZ
t0

�1.s/ds
o
> 0:

x2.t/ D x2.t0/ exp
n tZ
t0

�2.s/ds
o
> 0:

(10)

where

�1.s/ D r1.s/ � a1.s/x1.s/ �
b1.s/x2.s/

d1.s/C e1.s/x1.s/C f1.s/x2.s/
� c1.s/x1.s/x2.s/;

�2.s/ D r2.s/ �
b2.s/x1.s/

d2.s/C e2.s/x1.s/C f2.s/x2.s/
� a2.s/x2.s/ � c2.s/x1.s/x2.s/:

From the first equation of system (1), we have

Px1.t/ � x1.t/Œr1.t/ � a1.t/x1.t/� � x1.t/Œr1M � a1Lx1.t/�: (11)

By applying Lemma 2.1 to differential inequality (11), it follows that

lim sup
t!C1

x1.t/ �
r1M

a1L

def
D M1: (12)

Similarly to the analysis of (11) and (12), from the second equation of system (1), we have

lim sup
t!C1

x2.t/ �
r2M

a2L

def
D M2: (13)

Set M0 D maxfM1;M2g; then the conclusion of Lemma 2.2 follows.
The proof for system (2) is similar to the above proof, with some minor revision, we omit the detail here. This

ends the proof of Lemma 2.2.

Lemma 2.3 ([21], Fluctuation lemma). Let x.t/ be a bounded differentiable function on .˛;1/, then there exist
sequences �n !1; �n !1 such that

.a/ Px.�n/! 0 and x.�n/! lim sup
t!1

x.t/ D x as n!1;

.b/ Px.�n/! 0 and x.�n/! lim inf
t!1

x.t/ D x as n!1:
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For the Logistic equation
Px1.t/ D x1.t/

�
r1.t/ � a1.t/x1.t/

�
: (14)

From Lemma 2.1 of Zhao and Chen [22], we have

Lemma 2.4. Suppose that r1.t/ and a1.t/ are continuous functions bounded above and below by positive constants,
then any positive solutions of Eq. (14) are defined on Œ0;C1/, bounded above and below by positive constants and
globally attractive.

3 Main results

Our main results are the following Theorem 3.1-3.9.

Theorem 3.1. Assume that

r1L

r2M
> max

na1M �
d2M C e2MM1 C f2MM2

�
b2L

;
c1M

c2L
;
b1M

d1La2L

o
(15)

holds, then the species x2 will be driven to extinction, that is, for any positive solution .x1.t/; x2.t//T of system (1),
x2.t/! 0 as t !C1:

Remark 3.2. The main result of Li and Chen [4] is the special case of Theorem 3.1, If we take di .t/ � 1; ei .t/ D

fi .t/ D 0; i D 1; 2 in system (1), then system (1) is degenerate to system (5), and Theorem 3.1 is degenerate to the
main result in [4]. Hence we generalize the main result of [4].

Theorem 3.3. Assume that

a1M
�
d2M C e2MM1 C f2MM2

�
b2L

<
r1L � c1MM1M2

r2M
(16)

and
b1M

d1La2L
<
r1L � c1MM1M2

r2M
(17)

hold, then the species x2 will be driven to extinction, that is, for any positive solution .x1.t/; x2.t//T of system (1),
x2.t/! 0 as t !C1:

Theorem 3.4. Assume that

.a1M C c1MM2/
�
d2M C e2MM1 C f2MM2

�
b2L

<
r1L

r2M
(18)

and
b1M

d1La2L
<
r1L

r2M
(19)

hold, then the species x2 will be driven to extinction, that is, for any positive solution .x1.t/; x2.t//T of system (1),
x2.t/! 0 as t !C1:

Theorem 3.5. Assume that
a1M

�
d2M C e2MM1 C f2MM2

�
b2L

<
r1L

r2M
(20)

and
b1M
d1L
C c1MM1

a2L
<
r1L

r2M
(21)

hold, then the species x2 will be driven to extinction, that is, for any positive solution .x1.t/; x2.t//T of system (1),
x2.t/! 0 as t !C1:
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Remark 3.6. From the proof of Theorem 3.3-3.5 in Section 4, one could easily see that under the assumption of
Theorem 3.3-3.5, the conclusion also holds for system (2). i.e., under the assumption of Theorem 3.3, 3.4 or 3.5, the
species x2 in system (2) will be driven to extinction.

Remark 3.7. Another interesting thing is to investigate the extinction property of species x1 in system (1). One
could easily establish some parallel results as that of Theorem 3.1-3.5 for the extinction of species x1, and we omit
the detail here.

Theorem 3.8. Assume that the conditions of Theorem 3.1 or 3.3 or 3.4 or 3.5 hold, let x.t/ D .x1.t/; x2.t//
T be

any positive solution of system (1), then the species x2 will be driven to extinction, that is, x2.t/! 0 as t ! C1;
and x1.t/! x�

1
.t/ as t !C1; where x�

1
.t/ is any positive solution of the system

Px1.t/ D x1.t/
�
r1.t/ � a1.t/x1.t/

�
:

Theorem 3.9. Assume that
r1M

r2L
<

b1L

a2M
�
d1M C e1MM1 C f1MM2

� (22)

and
r1M

r2L
<
a1Ld2L

b2M
(23)

hold, then the species x1 will be driven to extinction, that is, for any positive solution .x1.t/; x2.t//T of system
(1), x1.t/ ! 0 as t ! C1 and x2.t/ ! x�

2
.t/ as t ! C1; where x�

2
.t/ is any positive solution of system

Px2.t/ D x2.t/
�
r2.t/ � b2.t/x2.t/

�
.

4 Proof of the main results

Proof of Theorem 3.1. It follows from (15) that one could choose enough small positive constant "1 > 0 such that

r1L

r2M
> max

na1M �
d2M C e2M .M1 C "1/C f2M .M2 C "1/

�
b2L

;
c1M

c2L
;
b1M

d1La2L

o
: (24)

(24) is equivalent to

a1M

b2L

d2M C e2M .M1 C "1/C f2M .M2 C "1/

<
r1L

r2M
;

b1M
d1L

a2L
<
r1L

r2M
;
c1M

c2L
<
r1L

r2M
:

(25)

Therefore, there exist two constants ˛; ˇ such that

a1M

b2L

d2M C e2M .M1 C "1/C f2M .M2 C "1/

<
ˇ

˛
<
r1L

r2M
;

b1M
d1L

a2L
<
ˇ

˛
<
r1L

r2M
;
c1M

c2L
<
ˇ

˛
<
r1L

r2M
:

(26)

That is

˛c1M � ˇc2L < 0; ˛a1M �
ˇb2L

d2M C e2M .M1 C "1/C f2M .M2 C "1/
< 0;

˛
b1M

d1L
� ˇa2L < 0; �˛r1L C ˇr2M

def
D �ı1 < 0:

(27)
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Let x.t/ D .x1.t/; x2.t//
T be a solution of system (1) with xi .0/ > 0; i D 1; 2. For above "1 > 0, from Lemma

2.2 there exists T1 large enough such that

x1.t/ < M1 C "1; x2.t/ < M2 C "1 for all t � T1: (28)

From (1) we have

Px1.t/

x1.t/
D r1.t/ � a1.t/x1.t/ �

b1.t/x2.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/
� c1.t/x1.t/x2.t/;

Px2.t/

x2.t/
D r2.t/ �

b2.t/x1.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/
� a2.t/x2.t/ � c2.t/x1.t/x2.t/:

(29)

Let
V.t/ D x�˛1 .t/x

ˇ

2
.t/:

From (27)-(29), for t � T1, it follows that

PV .t/ D V.t/
h
� ˛

�
r1.t/ � a1.t/x1.t/ �

b1.t/x2.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/

�c1.t/x1.t/x2.t/
�
C ˇ

�
r2.t/ � a2.t/x2.t/

�
b2.t/x1.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/
� c2.t/x1.t/x2.t/

�i
D V.t/

h
.�˛r1.t/C ˇr2.t//C

�
˛c1.t/ � ˇc2.t/

�
x1.t/x2.t/

C
�
˛a1.t/ �

ˇb2.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/

�
x1.t/

C
�
˛

b1.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/
� ˇa2.t/

�
x2.t/

i
� V.t/

h
.�˛r1L C ˇr2M /C .˛c1M � ˇc2L/x1.t/x2.t/

C
�
˛a1M �

ˇb2L

d2M C e2M .M1 C "1/C f2M .M2 C "1/

�
x1.t/

C
�
˛
b1M

d1L
� ˇa2L

�
x2.t/

i
� �ı1V.t/; t � T1:

Integrating this inequality from T1 to t .� T1/, it follows

V.t/ � V.T1/ exp.�ı1.t � T1//: (30)

By Lemma 2.2 we know that there exists M > M0 > 0 such that

xi .t/ < M for all i D 1; 2 and t � T1: (31)

Therefore, (30) implies that

x2.t/ < C exp
�
�
ı1

ˇ
.t � T1/

�
; (32)

where
C DM˛=ˇ.x1.T1//

�˛=ˇx2.T1/ > 0: (33)

Consequently, we have x2.t/! 0 exponentially as t !C1: This ends the proof of Theorem 3.1.
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Proof of Theorem 3.3. It follows from (16) and (17) that one could choose a positive constant "2 > 0 small enough
such that

a1M

b2L

d2M C e2M .M1 C "2/C f2M .M2 C "2/

<
r1L � c1M .M1 C "2/.M2 C "2/

r2M
(34)

and
b1M

d1La2L
<
r1L � c1M .M1 C "2/.M2 C "2/

r2M
(35)

hold. Therefore, there exist two constants ˛; ˇ such that

a1M

b2L

d2M C e2M .M1 C "2/C f2M .M2 C "2/

<
ˇ

˛
<
r1L � c1M .M1 C "2/.M2 C "2/

r2M
(36)

and
b1M

d1La2L
<
ˇ

˛
<
r1L � c1M .M1 C "2/.M2 C "2/

r2M
(37)

hold. That is

˛a1M �
ˇb2L

d2M C e2M .M1 C "2/C f2M .M2 C "2/
< 0;

˛
b1M

d1L
� ˇa2L < 0;

� ˛r1L C ˇr2M C ˛c1M .M1 C "2/.M2 C "2/
def
D �ı2 < 0:

(38)

Let x.t/ D .x1.t/; x2.t//
T be a solution of system (1) with xi .0/ > 0; i D 1; 2. For above "2 > 0, from Lemma

2.2 there exists T2 large enough such that

x1.t/ < M1 C "2; x2.t/ < M2 C "2 for all t � T2: (39)

Let
V.t/ D x�˛1 .t/x

ˇ

2
.t/:

From (29), (38) and (39), for t � T2, it follows that

PV .t/ D V.t/
h
� ˛

�
r1.t/ � a1.t/x1.t/ �

b1.t/x2.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/

�c1.t/x1.t/x2.t/
�
C ˇ

�
r2.t/ � a2.t/x2.t/

�
b2.t/x1.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/
� c2.t/x1.t/x2.t/

�i
� V.t/

h
.�˛r1.t/C ˇr2.t//C ˛c1.t/x1.t/x2.t/

C
�
˛a1.t/ �

ˇb2.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/

�
x1.t/

C
�
˛

b1.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/
� ˇa2.t/

�
x2.t/

i
� V.t/

h
� ˛r1L C ˇr2M C ˛c1M .M1 C "2/.M2 C "2/

C
�
˛a1M �

ˇb2L

d2M C e2M .M1 C "2/C f2M .M2 C "2/

�
x1.t/

C
�
˛
b1M

d1L
� ˇa2L

�
x2.t/

i
� �ı2V.t/; t � T2:
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Integrating this inequality from T2 to t .� T2/, it follows

V.t/ � V.T2/ exp.�ı2.t � T2//: (40)

From (40), similarly to the analysis of (30)-(33), we have x2.t/! 0 exponentially as t !C1: This ends the proof
of Theorem 3.3.

Proof of Theorem 3.4. It follows from (18) and (19) that one could choose a positive constant "3 > 0 small enough
such that

a1M C c1M .M2 C "3/

b2L

d2M C e2M .M1 C "3/C f2M .M2 C "3/

<
r1L

r2M
(41)

and
b1M

d1La2L
<
r1L

r2M
: (42)

hold. Therefore, there exist two constants ˛; ˇ such that

a1M C c1M .M2 C "3/

b2L

d2M C e2M .M1 C "3/C f2M .M2 C "3/

<
ˇ

˛
<
r1L

r2M
(43)

and
b1M

d1La2L
<
ˇ

˛
<
r1L

r2M
(44)

hold. That is

˛a1M C ˛c1M .M2 C "3/ �
ˇb2L

d2M C e2M .M1 C "3/C f2M .M2 C "3/
< 0;

˛
b1M

d1L
� ˇa2L < 0; �˛r1L C ˇr2M

def
D �ı3 < 0:

(45)

Let x.t/ D .x1.t/; x2.t//
T be a solution of system (1) with xi .0/ > 0; i D 1; 2. For above "3 > 0, from Lemma

2.2 there exists T3 large enough such that

x1.t/ < M1 C "3; x2.t/ < M2 C "3 for all t � T3: (46)

Let
V.t/ D x�˛1 .t/x

ˇ

2
.t/:

From (29), (45) and (46), for t � T3, it follows that

PV .t/ D V.t/
h
� ˛

�
r1.t/ � a1.t/x1.t/ �

b1.t/x2.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/

�c1.t/x1.t/x2.t/
�
C ˇ

�
r2.t/ � a2.t/x2.t/

�
b2.t/x1.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/
� c2.t/x1.t/x2.t/

�i
� V.t/

h
.�˛r1.t/C ˇr2.t//C

�
˛a1.t/C ˛c1.t/x2.t/

�
ˇb2.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/

�
x1.t/

C
�
˛

b1.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/
� ˇa2.t/

�
x2.t/

i
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� V.t/
h
� ˛r1L C ˇr2M C

�
˛a1M C ˛c1M .M2 C "3/

�
ˇb2L

d2M C e2M .M1 C "3/C f2M .M2 C "3/

�
x1.t/

C
�
˛
b1M

d1L
� ˇa2L

�
x2.t/

i
� �ı3V.t/; t � T3:

Integrating this inequality from T3 to t .� T3/, it follows

V.t/ � V.T3/ exp.�ı3.t � T3//: (47)

From (47), similarly to the analysis of (30)-(33), we have x2.t/! 0 exponentially as t !C1: This ends the proof
of Theorem 3.4.

Proof of Theorem 3.5. It follows from (20) and (21) that one could choose a positive constant "4 > 0 small enough
such that

a1M

b2L

d2M C e2M .M1 C "4/C f2M .M2 C "4/

<
r1L

r2M
(48)

and
b1M
d1L
C c1M .M1 C "4/

d1La2L
<
r1L

r2M
: (49)

hold. Therefore, there exist two constants ˛; ˇ such that

a1M

b2L

d2M C e2M .M1 C "4/C f2M .M2 C "4/

<
ˇ

˛
<
r1L

r2M
(50)

and
b1M
d1L
C c1M .M1 C "4/

d1La2L
<
ˇ

˛
<
r1L

r2M
(51)

hold. That is

˛a1M �
ˇb2L

d2M C e2M .M1 C "4/C f2M .M2 C "4/
< 0;

˛
b1M

d1L
C ˛c1M .M2 C "4/ � ˇa2L < 0;

� ˛r1L C ˇr2M
def
D �ı3 < 0:

(52)

Let x.t/ D .x1.t/; x2.t//
T be a solution of system (1) with xi .0/ > 0; i D 1; 2. For above "4 > 0, from Lemma

2.2 there exists T4 large enough such that

x1.t/ < M1 C "4; x2.t/ < M2 C "4 for all t � T4: (53)

Let
V.t/ D x�˛1 .t/x

ˇ

2
.t/:
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From (29), (52) and (53), for t � T4, it follows that

PV .t/ D V.t/
h
� ˛

�
r1.t/ � a1.t/x1.t/ �

b1.t/x2.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/

�c1.t/x1.t/x2.t/
�
C ˇ

�
r2.t/ � a2.t/x2.t/

�
b2.t/x1.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/
� c2.t/x1.t/x2.t/

�i
� V.t/

h
.�˛r1.t/C ˇr2.t//C

�
˛c1.t/x1.t/ � ˇa2.t/

C˛
b1.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/

�
x2.t/

C
�
˛a1.t/ �

ˇb2.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/

�
x1.t/

i
� V.t/

h�
� ˛r1L C ˇr2M

�
C
�
˛a1M �

ˇb2L

d2M C e2M .M1 C "4/C f2M .M2 C "4/

�
x1.t/

C
�
˛
b1M

d1L
C ˛c1M .M1 C "4/ � ˇa2L

�
x2.t/

i
� �ı4V.t/; t � T4:

Integrating this inequality from T4 to t .� T4/, it follows

V.t/ � V.T4/ exp.�ı4.t � T4//: (54)

From (54), similarly to the analysis of (30)-(33), we have x2.t/! 0 exponentially as t !C1: This ends the proof
of Theorem 3.5.

Proof of Theorem 3.8. By applying Lemma 2.3 and 2.4, the proof of Theorem 3.8 is similar to that of the proof of
Theorem in [4]. We omit the detail here.

Proof of Theorem 3.9. Conditions (22) and (23) imply that there exist two constants ˛; ˇ and a positive constant "5
small enough, such that

r1M

r2L
<
ˇ

˛
<

b1L

d1M C e1M .M1 C "5/C f1M .M2 C "5/

a2M
;

r1M

r2L
<
ˇ

˛
<
a1Ld2L

b2M
:

(55)

That is

� ˛a1L C ˇ
b2M

d2L
< 0; ˛r1M � ˇr2L

def
D �ı4 < 0;

�
˛b1L

d1M C e1M .M1 C "5/C f1M .M2 C "5/
C ˇa2M < 0:

(56)

For above "5 > 0, from Lemma 2.2 there exists T5 large enough such that

x2.t/ < M2 C "5 for all t � T5: (57)

Let
V1.t/ D x

˛
1 .t/x

�ˇ

2
.t/:
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It follows from (56) and (57) that

PV1.t/ D V1.t/
h
˛
�
r1.t/ � a1.t/x1.t/ �

b1.t/x2.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/

�c1.t/x1.t/x2.t/
�

�ˇ
�
r2.t/ �

b2.t/x1.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/
� a2.t/x2.t/

�i
D V1.t/

h
.˛r1.t/ � ˇr2.t//

C
�
� ˛a1.t/C

ˇb2.t/

d2.t/C e2.t/x1.t/C f2.t/x2.t/

�
x1.t/

C
�
�

˛b1.t/

d1.t/C e1.t/x1.t/C f1.t/x2.t/
C ˇa2.t/

�
x2.t/

i
� V1.t/

h
.˛r1M � ˇr2L/C

�
� ˛a1L C ˇ

b2M
d2L

�
x1.t/

C
�
�

˛b1L

d1M C e1M .M1 C "5/C f1M .M2 C "5/
C ˇa2M

�
x2.t/

i
� �ı5V1.t/:

Integrating this inequality from T5 to t .� T5/, it follows

V1.t/ � V1.T5/ exp
�
� ı5.t � T5/

�
: (58)

From this, similarly to the analysis of (30)-(33), we have x1.t/! 0 exponentially as t !C1: The rest of the proof
of Theorem 3.9 is similar to that of the proof of Theorem in [4]. We omit the detail here.

5 Numeric examples

Now let us consider the following examples.

Example 5.1.

Px.t/ D x
�
10 �

�
2:3C 0:3 sin.4t/

�
x �

.3C 1
2

cos.4t//y
1C 0:1y C 0:1x

� 6xy
�
;

Py.t/ D y
�
2 �

.6C sin.4t//x
1C 0:1x C 0:1y

� 2y � .4C cos.4t//xy
�
:

(59)

Corresponding to system (1), one has

r1.t/ D 10; a1.t/ D 2:3C 0:3 sin.2t/; b1.t/ D 3C
1

2
cos.2t/; c1.t/ D 6;

r2.t/ D 2; a2.t/ D 2; b2.t/ D 6C sin.2t/; c2.t/ D 4C cos.2t/:

d2.t/ D d1.t/ D 1; e1.t/ D e2.t/ D f1.t/ D f2.t/ D 0:1:

And so,
M1 D

r1M

a1L
D 5; M2 D

r2M

a2L
D 1: (60)

Consequently

r1L

r2M
D 5;

a1M
�
d2M C e2MM1 C f2MM2

�
b2L

D
104

125
;
c1M

c2L
D 2;

b1M

d1La2L
D
7

4
:
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Fig. 1. Dynamic behavior of the first component x.t/ of the solution .x.t/; y.t// of system (59) with the initial conditions
.x.0/; y.0// D .1; 1/, .2; 2/, .0:2; 3/ and .7; 4/, respectively.

Fig. 2. Dynamic behavior of the second component y.t/ of the solution .x.t/; y.t// of system (59) with the initial conditions
.x.0/; y.0// D .1; 1/, .2; 2/, .0:2; 3/ and .7; 4/, respectively.

Since

5 > max
n104
125

; 2;
7

4

o
;

it follows from Theorem 3.1 that the first species of the system (59) is globally attractive, and the second species will
be driven to extinction. Numeric simulations (Fig. 1, 2) also support this findings.

Example 5.2.

Px.t/ D x
�
10 �

�
2:3C 0:3 sin.4t/

�
x �

.3C 1
2

cos.4t//y
1C 0:1y C 0:1x

� 1xy
�
;

Py.t/ D y
�
2 �

.6C sin.4t//x
1C 0:1x C 0:1y

� 2y � 0:1xy
�
:

(61)

In system (61), we let c1.t/ D 1; c2.t/ D 0:1, and all the other coefficients are the same as that of system (59). In
this case, since

r1L

r2M
D 5 < 10 D

c1M

c2L
;

the conditions of Theorem 3.1 could not satisfied, however,

a1M
�
d2M C e2MM1 C f2MM2

�
b2L

D
104

125
<
5

2
D
r1L � c1MM1M2

r2M
(62)

and
b1M

d1La2L
D
7

4
<
5

2
D
r1L � c1MM1M2

r2M
: (63)

(62) and (63) show that all the conditions of Theorem 3.3 are satisfied, and so, the first species in system (61) is
globally attractive, and the second species will be driven to extinction. Numeric simulations (Fig. 3, 4) also support
this findings.
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Fig. 3. Dynamic behavior of the first component x.t/ of the solution .x.t/; y.t// of system (61) with the initial conditions
.x.0/; y.0// D .1; 1/, .2; 2/, .0:2; 3/ and .7; 4/, respectively.

Fig. 4. Dynamic behavior of the second component y.t/ of the solution .x.t/; y.t// of system (61) with the initial conditions
.x.0/; y.0// D .1; 1/, .2; 2/, .0:2; 3/ and .7; 4/, respectively.

Example 5.3.

Px.t/ D x
�
2 �

.6C sin.4t//y
1C 0:1x C 0:1y

� 2x � 0:1xy
�
;

Py.t/ D y
�
10 �

�
2:3C 0:3 sin.4t/

�
y �

.3C 1
2

cos.4t//x
1C 0:1y C 0:1x

�
:

(64)

Corresponding to system (1), one has

r2.t/ D 10; a2.t/ D 2:3C 0:3 sin.2t/; b2.t/ D 3C
1

2
cos.2t/;

r1.t/ D 2; a1.t/ D 2; b1.t/ D 6C sin.2t/; c1.t/ D 0:1:

d2.t/ D d1.t/ D 1; e1.t/ D e2.t/ D f1.t/ D f2.t/ D 0:1:

And so,
M1 D

r1M

a1L
D 1; M2 D

r2M

a2L
D 5: (65)

Consequently
r1M

r2L
D
1

5
<
125

104
D

b1L

a2M
�
d1M C e1MM1 C f1MM2

� ;
r1M

r2L
D
1

5
<
a1Ld2L

b2M
D
4

7
:

Hence, all the conditions of Theorem 3.9 hold. It follows from Theorem 3.9 that the first species of the system (64)
will be driven to extinction, and the second species is globally attractive, numeric simulations (Fig. 5, 6) also support
this findings.
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Fig. 5. Dynamic behavior of the first component x.t/ of the solution .x.t/; y.t// of system (64) with the initial conditions
.x.0/; y.0// D .1; 1/, .2; 2/, .0:2; 3/ and .7; 4/, respectively.

Fig. 6. Dynamic behavior of the second component y.t/ of the solution .x.t/; y.t// of system (64) with the initial conditions
.x.0/; y.0// D .1; 1/, .2; 2/, .0:2; 3/ and .7; 4/, respectively.

6 Discussion

During the last decade, many scholars paid attention to the extinction property of the competition system, in their
series work, Li and Chen [3-7], Chen et al [8, 9] studied the extinction property of the competition system with toxic
substance. He et al [31], Chen et al [34, 35] studied the extinction property of the Gilpin-Ayala competition model.
Recently, Yue [1] proposed a competitive system with both toxic substance and nonlinear inter-inhibition terms, i.e.,
system (9), she also investigated the extinction property of the system. Noting that the functional response used in
[1] is of Holling II type, in this paper, we consider a more plausible one, i.e., the Beddington-DeAngelis functional
response. By constructing some suitable Lyapunov type extinction function, several set of sufficient conditions which
ensure the extinction of a species are obtained. Our results generalize the main result of Li and Chen [6].

We mention here that in system (1) and (2), we did not consider the influence of delay, we leave this for future
investigation.
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