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Abstract: A two species non-autonomous competitive phytoplankton system with Beddington-DeAngelis functional
response and the effect of toxic substances is proposed and studied in this paper. Sufficient conditions which
guarantee the extinction of a species and global attractivity of the other one are obtained. The results obtained here
generalize the main results of Li and Chen [Extinction in two dimensional nonautonomous Lotka-Volterra systems
with the effect of toxic substances, Appl. Math. Comput. 182(2006)684-690]. Numeric simulations are carried out
to show the feasibility of our results.
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1 Introduction

Given a function g(¢), let g7, and gas denote inf_ oo <s <00 () and SUP_ oo «; <o (1), respectively.
The aim of this paper is to investigate the extinction property of the following two species non-autonomous
competitive system with Beddington-DeAngelis functional response and the effect of toxic substances

o 3 B by (t)xa(r)
£10 =0 O[O —aOn o - oo

ba(#)x1(t) )
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where r;(t),a; (t),b;(t),d;i (t),i = 1,2,¢;(t) are assumed to be continuous and bounded above and below by

—aOx1 00|,
M

52(0) = x20)r2(1) -

positive constants, e; (z), fi(¢),i = 1,2 are all non-negative continuous functions bounded above by positive
constants. x1(¢), x2(¢) are population density of species x; and x5 at time #, respectively. r; (z),i = 1,2 are the
intrinsic growth rates of species; a; (i = 1,2) are the rates of intraspecific competition of the first and second
species, respectively. Here we make the following assumptions:
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(1) The interspecific competition between two species takes the Beddington-DeAngelis functional response type

by (t)x2(2) ba(t)x1 (1)
di(t) +e1()x1(t) + fi(O)x20t)" da(t) + e2(t)x1 (1) + f2(t)x2(1)’

respectively;
(2) The terms c1(¢t)x1(z)x2(¢) and c2x1(t)x2(¢) denote the effect of toxic substances, each species produces a

substance toxic to the other, only when the other is present.

We also consider the extinction property of the following two species non-autonomous competitive phytoplankton
system with Beddington-DeAngelis functional response

. . _ _ by (t)x2(t) _

x1(t) = x1(t)[r1 ) —ai(t)x1(t) 4O Ta0n0+ A0On0 cl(t)xl(t)xz(t)], o
. _ ba(t)x1(2)

X2(1) = xz(f)[rz(l) T B0 TR0+ Hhono az(t)xz(t)],

where all the coefficients have the same meaning as that of system (1). However, we assume that the second species
could produce toxic, while the first one is non-toxic produce.
Traditional two species Lotka-Volterra competition model takes the form:

x1(t) = x1(0)[r1 —a1x1(1) — bixa(1)].

3
X2(1) = x2(1)[r2 — azx2(t) — baox1 (1)]. @

where r;,a;,b;,i = 1,2 are all positive constants, and x1(¢), x2(¢) are population density of species x1 and x» at
time ¢, respectively. r;,i = 1,2 are the intrinsic growth rates of species; a;,i = 1,2 are the rates of intraspecific
competition of the first and second species, respectively; b;,i = 1,2 are the rates of interspecific competition of
the first and second species, respectively. This model is the foundation stone in the study of competition model.
Depending on the relationship of the coefficients, the system could have three different kinds of dynamics: (1) a
unique positive equilibrium which is globally attractive; (2) bistable; the positive equilibrium is unstable, and the
stability of the boundary equilibrium is dependent on the initial conditions; (3) the boundary equilibrium is globally
stable, which means the extinction of the partial species.

Based on the Lotka-Volterra model (3), Chattopadhyay [2] proposed a two species competition model, each
species produces a substance toxic to the other only when the other is present. The model takes the form:

X1(0) = x1()[r1 —a1x1 (1) —aax2(t) — dix1 ()x2(1)],

4
X2(1) = x2(1)[r2 — bix2(r) — baxa(r) — dax1 (1)x2(2)]. @

By constructing some suitable Lyapunov function, he obtained sufficient conditions which ensure the global stability
of the unique positive equilibrium. By using the iterative method, Li and Chen [6] showed that if the system without
toxic substance admits the unique positive equilibrium, then system (4) also admits a unique positive equilibrium, in
this case, the toxic substance term has no influence on the stability of the positive equilibrium.

Li and Chen [4] argued that with the change of the circumstance, the coefficients of the system should be time-
varying, and they studied the nonautonomous case of system (4), i.e.,

x1(0) = x1(O)[r1(1) — a1 (Ox1(0) = ba()x2(1) — 1 (D)x1()x2(1)].

5
X2(1) = x2(0)[r2(1) — ba(1)x2(1) — az(1)x2(t) — ca(t)x1 (1) x2(1)]. ©

By applying the fluctuation theorem, they obtained a set of sufficient conditions which guarantee the extinction of
the second species and the globally attractive of the first species.

Solé et al [16] and Bandyopadhyay [14] considered a Lotka-Volterra type of model for two interacting
phytoplankton species, where one species could produce toxic, while the other one is non-toxic produce. The model
takes the form

X1(0) = x1(0)[r1 —a1x1 (1) — azx2(t) — dix1(1)x2(1)],

6
X2(1) = x2(1)[r2 — b1x2(t) — baxa(1)]. ©
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By constructing some suitable Lyapunov function, Bandyopadhyay [14] obtained a set of sufficient conditions which
ensure the global attractivity of the positive equilibrium. For more work on competitive system with toxic substance,
one could refer to [1-20,35-38] and the references cited therein.

On the other hand, based on the traditional Lotka-Volterra competition model, some scholars argued that the
more appropriate competition model should with nonlinear inter-inhibition terms. Wang, Liu and Li [23] proposed
the following two species competition model,

£10) = 5100 —an0x 0 - P2
o baox) @
£2() = 0020 - TELE - 000

bi)xa() 4nq b2 x1 @)
1+x2(7) 1+x1() °
II type. By using differential inequality, the module containment theorem and the Lyapunov function, the authors

obtained sufficient conditions which ensure the existence and global asymptotic stability of positive almost-periodic
solutions of system (7).

In this system, the inter-inhibition terms take the form

respectively, which is of Holling

Corresponding to system (7), several scholars [24, 25] investigated the dynamic behaviors of the discrete type
two species competition system with nonlinear inter-inhibition terms.

bi(k
£1lk -+ 1) = 51 @) exp {160 = G () - SHEZ B,
B b)) ®
xa(k 4 1) = w2 exp {r2() = T a2 (k).

Wang and Liu [24] studied the almost-periodic solution of the system (8) and Yu [25] further incorporated the
feedback control variables to the system (8) and investigated the persistent property of the system.

Recently, combining with the effect of toxic substance and the nonlinear inter-inhibition term, Yue [1] proposed
the following two species discrete competitive system

a1+ 1) = xa 0o {110 —an (a0 = S22 ey doato.
B b)) ©
w2k + 1) = x2(k) exp {ra(k) — = oS az(k)x2()}.

By constructing some suitable Lyapunov type extinction function, the author obtained some sufficient conditions
which guarantee the extinction of one of the components and the global attractivity of the other one.

It is well known that the functional response plays important role in the predator-prey model, and during the
past two decades, the Beddington-DeAngelis functional response, which is a combination of the famous Holling
II functional response and ratio-dependent functional response, having overcome the defect of the both functional
response, is studied by many scholars, see [26-30] and the references therein.

The success of [26-30] motivated us to propose the competition system with Beddington-DeAngelis functional
response, also, if we further assume that each species produces a substance toxic to the other only when the other
is present, or assume that one species is toxic produce while the other one is non-toxic producing, then, we could
establish the model (1) and (2), respectively. It is, to the best of the knowledge of the authors, the first time such kind
of model proposed. During the last decade, many scholars ([3-5], [8], [11-13], [31-38]) investigated the extinction
property of the competition system. In this paper, we still focus our attention to the extinction property of the system
(1) and (2).

The aim of this paper is, by developing the analysis technique of [1, 8, 9], to investigate the extinction property
of the system (1) and (2). The remaining part of this paper is organized as follows. In Section 2, we state several
useful Lemmas and we state the main results in Section 3. These results are then proved in Section 4. Some examples
together with their numerical simulations are presented in Section 5 to show the feasibility of our results. We give a
brief discussion in the last section.
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2 Lemmas

Following Lemma 2.1 is a direct corollary of Lemma 2.2 of F. Chen [10].
Lemma 2.1. [fa > 0,b > 0 and x > x(b — ax), whent > 0 and x(0) > 0, we have
b
liminf x(z) > —.
t—>—+o0 a
Ifa>0,b>0andx < x(b—ax),whent > 0and x(0) > 0, we have

b
limsup x(t) < —.
t—+o0 a

Lemma 2.2. Let x(t) = (x1(t), x2(t))T be any solution of system (1) (system (2)) with x; (to) > 0,i = 1,2, then
xi(t) > 0,t > to and there exists a positive constant My such that

limsup x; () < Mo, i=1,2,

t——+oo

i.e, any positive solution of system (1) are ultimately bounded above by some positive constant.

Proof. Let x(t) = (x1(t), x2(¢))7 be any solution of system (1) with x; (fo) > 0,i = 1,2, then
t

x1(t) = xl(to)exp{/ Al(s)ds} > 0.

to

; (10)
x2(1) = x2(to) exp{/ Az(s)ds} > 0.
lo
where b1(5)x2()
1(85)XxX2(S
A1(s) =r1(s) —ar(s)xi(s) — —c1(8)x1(s)x2(s),
1(s) = ri(s) —ai(s)xi(s) L) Faeme) + Ao 1(s)x1(s)x2(s)
Ba(s) = ras) - P20, () — aa(5)x2(5) — e2(s)1 (a2 9).
da(s) + e2(s)x1(s) + f2(s)x2(s)
From the first equation of system (1), we have
1(0) = x1@)[rn @) —a1@x1()] = x1@O[rim —arLx1 @) (1
By applying Lemma 2.1 to differential inequality (11), it follows that
limsup x1 (1) < M & pp (12)
t——+o0 ai
Similarly to the analysis of (11) and (12), from the second equation of system (1), we have
limsup x2(¢) < oM &t M. (13)
t——+o0 azy

Set Mo = max{M7, M>}, then the conclusion of Lemma 2.2 follows.
The proof for system (2) is similar to the above proof, with some minor revision, we omit the detail here. This
ends the proof of Lemma 2.2. O

Lemma 2.3 ([21], Fluctuation lemma). Let x(t) be a bounded differentiable function on (a, o0), then there exist
sequences t,; — 00,0, — 00 such that

(a) x(tq) = 0 and x(t,) — limsupx(t) =X as n — oo,
—>00

(b) x(05) = 0 and x(o,) — ltiminfx(t) =Xxasn— oo.
—00
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For the Logistic equation

£10) = 1O (r () = a1 (0)x1 0). (14)
From Lemma 2.1 of Zhao and Chen [22], we have
Lemma 2.4. Suppose that r1(t) and a1 (t) are continuous functions bounded above and below by positive constants,

then any positive solutions of Eq. (14) are defined on [0, +00), bounded above and below by positive constants and
globally attractive.

3 Main results

Our main results are the following Theorem 3.1-3.9.

Theorem 3.1. Assume that

"L >max{a1M(d2M+€2MM1+f2MM2) cam bim } (15)

M bay cop dipazp

holds, then the species x> will be driven to extinction, that is, for any positive solution (x1(t), x2(t))T of system (1),
x2(t) > 0ast — +oo.

Remark 3.2. The main result of Li and Chen [4] is the special case of Theorem 3.1, If we take d; (t) = 1,e;(t) =
fi(t) = 0,i = 1,2 in system (1), then system (1) is degenerate to system (5), and Theorem 3.1 is degenerate to the
main result in [4]. Hence we generalize the main result of [4].

Theorem 3.3. Assume that

aim (dom + eape My + fopr M) L —cimMiM>
bar raM

16)

and
bim e —c1m M M>

(17)
dipaszr rm

hold, then the species x» will be driven to extinction, that is, for any positive solution (x1(t), x2(t))T of system (1),
x2(t) > 0ast — +oo.

Theorem 3.4. Assume that

(arm + cxm M2)(dans + eapa My + fons M) _ e
bar M

(18)

and

b r
M _ L (19)
diLazr.  r2m
hold, then the species x2 will be driven to extinction, that is, for any positive solution (x1(t), x2(t))T of system (1),

x2(t) > 0ast — +oo.

Theorem 3.5. Assume that
aipm (danr + e2pe My + fans Ma) _ L

bay M

(20)

and b
1M
4, TamM _ e @1
arr ram

hold, then the species x> will be driven to extinction, that is, for any positive solution (x1(t), x2(t))T of system (1),
x2(t) > 0ast — +oo.
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Remark 3.6. From the proof of Theorem 3.3-3.5 in Section 4, one could easily see that under the assumption of
Theorem 3.3-3.5, the conclusion also holds for system (2). i.e., under the assumption of Theorem 3.3, 3.4 or 3.5, the
species x2 in system (2) will be driven to extinction.

Remark 3.7. Another interesting thing is to investigate the extinction property of species x1 in system (1). One
could easily establish some parallel results as that of Theorem 3.1-3.5 for the extinction of species x1, and we omit
the detail here.

Theorem 3.8. Assume that the conditions of Theorem 3.1 or 3.3 or 3.4 or 3.5 hold, let x(t) = (x1(t),x2(t))7 be
any positive solution of system (1), then the species x» will be driven to extinction, that is, x2(t) — 0 ast — +o00,
and x1(t) — x{(t) ast — +o00, where x7 (t) is any positive solution of the system

x1(1) = x1(0)(r1(t) —ay (H)x1(1)).

Theorem 3.9. Assume that

b
Mo _ 1L 22)

rar. axp(dim + e My + fiv M)

and
"M arpday

(23)
L bopm

hold, then the species x1 will be driven to extinction, that is, for any positive solution (x1(t), x2(t))T of system

(1), x1(t) - 0ast — 400 and x2(t) — x5(t) ast — 400, where x;(t) is any positive solution of system

%2(1) = x2(t) (r2(1) — b2 (1) x2(1))-

4 Proof of the main results

Proof of Theorem 3.1. 1t follows from (15) that one could choose enough small positive constant €1 > 0 such that

"L arm (dopr + e2p (M1 + €1) + fomr (M2 + 1)) cim bim
> max | LA b 24
M bar c2r dipazr
(24) is equivalent to
arm F1L
< )
bar ram
dopr +eaps (M1 +€1) + fopr (M + 1) (25)
b L am  ne
dir , < )
arr,  ra2m 2L T2M
Therefore, there exist two constants ¢, 8 such that
arm B e ,
b2L o 2M
dopr +eopr (M1 + 1) + forr (M2 + 1) (26)
bim
. B _reoam B
azy, o M C2L o r2m
That is
BbaL
acipm — PBear <0, aarp — <0
dop +eop (My +€1) + fopr (M2 + €1) @7

bim

OZT—,BQQL <0, —ariL + Brom d;f—(gl < 0.
1L
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Let x(¢) = (x1(¢), x2(t))” be a solution of system (1) with x;(0) > 0,i = 1,2. For above £; > 0, from Lemma
2.2 there exists T large enough such that

x1(t) < My +¢1, x2(t) < My + ¢ for all t > T. (28)
From (1) we have
@) _ b1(1)x2(t)
O B 1) E Y B T PN B .
20 _ ) b2 (0) — ar(t)x2(0) — e2(0)x1 ()2 0).

xa() C da(t) + ea(t)x1(0) + fo(t)x2(0)

Let
V(r) = x7 %)% ).

From (27)-(29), for t > Ty, it follows that

bi(t)x2(t)
di(t) +er()x1(t) + f1(1)x2(1)
—c1()x1(D)x2(t)) + B(r2(1) — az(t)x2(1)

) b2 ()1 (1)
da(t) + ex(t)x1(t) + fo(t)x2(t)

Ve = Vo a0 -aox@ -

— e2(0x1(0x2(0)) |

= V(t)[(—om (1) + Br2()) + (ac1 (1) — Bea (1) x1 (1)x2(t)
Bba(1)

+(Olal([) - d2([) =+ EZ(I)XI([) + f2([)X2([))XI(t)
by (1) B
O T a0 + AR ﬂaz(f))m(t)]

< VO[(—arir + Bram) + (@ein = fear)xi (0x2(0)
Bbar

Hlaain - domt + eamr (M1 + 1) + formr (M2 +81))XI(I)
+(a% —ﬁazL)xz(f)]

< -=61V(@), t=T.

Integrating this inequality from 77 to ¢(> T1), it follows
V(t) < V(T1) exp(=61(t — T1)). (30)

By Lemma 2.2 we know that there exists M > Mg > 0 such that

xi(t) <M foralli =1,2and t > T}. 31
Therefore, (30) implies that
31
x2(1) <Cexp(—F(I—T1)), (32)
where
C = MYP(x(T1)"* P xa(T1) > 0. (33)

Consequently, we have x»(¢) — 0 exponentially as t — +o00. This ends the proof of Theorem 3.1. O
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Proof of Theorem 3.3. 1t follows from (16) and (17) that one could choose a positive constant ¢2 > 0 small enough

such that
arm <r1L—ClM(M1+82)(M2+82)

(34)
boyp rm
dops + eapr (M1 + €2) + o (Ma + €2)
and b M M
M _TiL —cim (M1 + e2)(Ma + &2) (35)
dirazr r2m
hold. Therefore, there exist two constants ¢, 8 such that
— M M
aim _ B _ L —cam(Mi+ ) (M + &2) 36)
bar o ram
dopr + eapr (M1 + €2) + forr (M + €2)
and 5 Iy M
M <E<V1L—61M( 1+ 82) (M2 + &2) 37)
dirazr o M
hold. That is
w1y — Bbar -
dop +eam(My + €2) + fopr (M +62)
b
«M _ Ban, <0, (38)
dip

—ariz + Bram + acip (My + e2)(Ma + £2) & 85 < 0.

Let x(t) = (x1(t), x2(¢))7 be a solution of system (1) with x; (0) > 0,i = 1, 2. For above &> > 0, from Lemma
2.2 there exists 7> large enough such that

x1(t) < My + &3, x2(t) < My 4+ g5 for all ¢ > T5. 39)

Let
V(t) = x7%(0)x5 ().

From (29), (38) and (39), for t > T5, it follows that

by (t)x2(t)
di(t) +e1(Dx1(t) + f1()x2(t)

—c1(O)x1()x2(1)) + B(r2(t) — a2(t)x2(1)

3 ba(t)x1(t)
da(t) + e2()x1(t) + f2(t)x2(2)

V()| (—ari () + Bra) + aer ()x1(0x2(0)
Bba(t)

Vo = v - -aon@ -

— e2(Ox1 ()x2() ]

IA

+(aar(r) - d>(t) + ea(t)x1 (1) + fz(t)xz(t)))ﬂ(l‘)
bi(t)
e di(1) + er(Dx1() + fi(Ox2(1) ﬁaZ(t))xZ(l)]

IA

VO ~arie + Bra +acin (M +e2)(Ms + )
Bbar

e = o O 4 o0) & fant Ol 6210
—I—(a% - ﬁazL)xz(l)]

IA

=8V (t), t > T».
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Integrating this inequality from 7% to ¢t (> T»), it follows
V(1) = V(T2) exp(=02(1 — T2)). (40)

From (40), similarly to the analysis of (30)-(33), we have x»(¢) — 0 exponentially as ¢ — +o0. This ends the proof
of Theorem 3.3. O

Proof of Theorem 3.4. 1t follows from (18) and (19) that one could choose a positive constant €3 > 0 small enough

such that
aim + cim (Ma + €3) Y

41
bar M
dopr + eanr (My + &3) + forpr (M2 + £3)
and b
M _ L “2)
dirLazr  ram
hold. Therefore, there exist two constants «, § such that
M
aim + cim (Ma + €3) B _ e 43)
by a  ram
dosr + eapr (M1 + €3) + forr (Mo + €3)
and b
M P L (44)
dirazr, o ram
hold. That is
Bbar
aaip +acipr(Mz + e3) — <0,
dospr + eapr (M1 + €3) + forr (M2 + €3) 45)
b -
adliM —Bazr <0, —arip + Bram o —383 < 0.
1L

Let x(¢) = (x1(¢), x2(t))” be a solution of system (1) with x;(0) > 0,i = 1,2. For above 3 > 0, from Lemma
2.2 there exists T3 large enough such that

x1(t) < M1 + &3, x2(t) < My + &3 for all ¢t > Ts. 46)

Let
V(t) = x7 %)% ).
From (29), (45) and (46), for t > T3, it follows that
b1(1)x2(7)

di(t) +e1(D)x1(t) + f1(D)x2(t)

—c1()x1(D)x2(t)) + B(r2(1) — az(t)x2(1)

B ba(1)x1(7) _

da(t) + e2()x1(t) + f2()x2(F)

V(f)[(—arl (0) + Br2(1)) + (aa1(t) + aci(t)x2(1)

B Bba(1)

da(t) + e2()x1(t) + f2()x2(F)
o b1 (1)

di(2) +er(H)x1(2) + f1(0)x2(7)

Vo = Vo = a(n @) - aiox) -

e2(0x1(0)%20)]

IA

)x1(1)

+( ~ paz(0)x2(1) |
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< V(f)[—OlVlL + Bram + (a@arpr + aciar (Mo + €3)
Bbar

—d2M +exp (M1 + €3) + fopr (M2 +83))X1(I)
+(“% —ﬁazL)xz(t)]

= _83V(t)a 1= T3~

Integrating this inequality from 73 to ¢ (> T3), it follows

V(1) < V(T3) exp(=83(t — T3)).

DE GRUYTER OPEN

(47)

From (47), similarly to the analysis of (30)-(33), we have x> (¢) — 0 exponentially as ¢ — +o0. This ends the proof

O

(48)

of Theorem 3.4.
Proof of Theorem 3.5. It follows from (20) and (21) that one could choose a positive constant €4 > 0 small enough
such that

arm rrL

<
bar M
dops 4+ eapr (M1 + e4) + fopr (M2 + £4)

and

DM 4 i (M) + £4) _ne
dirazr ram
hold. Therefore, there exist two constants ¢, 8 such that
aim - B _ e
b2L o 2M
dom +eap (M + e4) + fam (M2 + e4)

and b
Y+ cim (My + €4) - B _ne

dirazy a  rpm
hold. That is

Bbar -
dopr + eanr (M + €4) + forr (M + 4)

cairp —

)

b
Otd]iM + acip (Ma + €4) — Bazy, <0,
1L

def
—ar1p + Bropg = =63 < 0.

(49)

(50)

(5D

(52)

Let x(t) = (x1(t), x2())7 be a solution of system (1) with x; (0) > 0,i = 1,2. For above g4 > 0, from Lemma

2.2 there exists T4 large enough such that
x1(t) < My + &4, x2(t) < My 4 g4 for all ¢t > Ty.

Let
V() = x7 %)% 1)

(53)
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From (29), (52) and (53), for t > T4, it follows that
b]([)Xz(t)
di(t) +e1(D)x1(2) + fi1()x2(7)
—c1()x1(D)x2(t)) + B(r2(t) — az(t)x2 (1)
B bz(l)xl (l)
da(t) + ex(D)x1(2) + f2()x2(2)
V(t)[(—arl (1) + Bra(1)) + (cxc1 (1)x1 (1) — Bax(t)
ta by(t)
di(t) +e1(D)x1(t) + f1()x2(2)

Bba (1)
da(t) + e2(t)x1(t) + f2(t)x2(t)

V(1)

V)| —elri ) —a@x0) -

— e2(Ox1()x2(0)) ]

IA

)x2(t)

+(ota1(t)— )Xl(f)]

< V(l)[( —ariz + Bram)

+(carpr — Poor )x1(t)
dopr + eanr (M1 + €4) + forr (Mo + &4)
b
—l—(ozdl—M +oacip (My + e4) — ﬂazL)xz(t)]
1L

< =84V (1), t = Ts.

Integrating this inequality from T4 to ¢ (> T4), it follows

V(t) < V(T4) exp(=3a4(t — T4)). (54)

From (54), similarly to the analysis of (30)-(33), we have x»(¢) — 0 exponentially as ¢ — +o0. This ends the proof
of Theorem 3.5. O

Proof of Theorem 3.8. By applying Lemma 2.3 and 2.4, the proof of Theorem 3.8 is similar to that of the proof of
Theorem in [4]. We omit the detail here. O

Proof of Theorem 3.9. Conditions (22) and (23) imply that there exist two constants «, 8 and a positive constant €5
small enough, such that

bir
dip +erm (M +e5) + fim (Ma + e5)
< ,
aszp (55)

rnm

2L
"m
2L

arrdar
< ==
bop

RI™ R I™

That is

b .
—aarL + ﬁ% <0, arip —Brar € —84 <0,

abir (56)

Cdim + e (M + e5) + fia (Mo + €5)

+ Bazar < 0.
For above &5 > 0, from Lemma 2.2 there exists 75 large enough such that

x2(t) < My + ¢5 for all t > Ts. 57

Let
Vi) = x¥(1)x; 2 (1)
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It follows from (56) and (57) that

b]([)Xz([)

Vi) di(t) + e1(t)x1(t) + f1(t)x2(t)

Vio|elri () —ar0x10) -

—c1(t)x1(t)x2(t))

ba(1)x1(7)
da(t) + ex(t)x1(t) + f2(t)x2(t)

Vi) @ri () = Bra(0))

~Blra() - —ax(1)x2(0)) |

pba(1)
da(t) + e2(t)x1(t) + f2(0)x2(1)

+(—aai () +
aby (1)
+(_ dl([) + el(t)xl([) + fl([)xz([) + ﬂaz(t))xz([):l

Vl(l)[(otrlM — Brar) + (—aair + B2M)x (1)

)x1()

IA

dor
+(_ abyy,
dipr +erpr (M1 + e5) + fim (Ma + &5)
< =851 ().

+ ﬂaZM)Xz(t)]

Integrating this inequality from 75 to (> T5), it follows
Vi(t) < Vi(Ts)exp (—85(t — Ts)). (58)

From this, similarly to the analysis of (30)-(33), we have x; (#) — 0 exponentially as # — +o0. The rest of the proof
of Theorem 3.9 is similar to that of the proof of Theorem in [4]. We omit the detail here. O

5 Numeric examples

Now let us consider the following examples.
Example 5.1.

1
X(1) = x(lo — (2.3 + 0.3sin(41))x — BF ety )

1+0.1y +0.1x

(59)
. (6 + sin(41))x
H=yl2———""F—-2y—(4 4t .
50 =y (2= T oy ~ 2 @ eosn)
Corresponding to system (1), one has
1
r1(t) =10, a1(t) = 2.3+ 0.3sin(27), b1(t) =3+ 3 cos(2t), c1(t) =6,
r(t) =2, ax(t) =2, ba(t) = 6+ sin(2t), c2(t) = 4 + cos(2¢t).
da(t) = di(t) = 1, ei1(t) = e2(t) = f1(t) = f(t) = 0.1
And so, . -
My ="M s My =M (60)
air azy,
Consequently
"Lo_ . arm (dom +eomMi + ouMa) 104 cip bim 7

)

M boy T 1257 ¢ dipaar 4
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Fig. 1. Dynamic behavior of the first component x (¢) of the solution (x(¢), y(¢)) of system (59) with the initial conditions
(x(0), y(0)) = (1,1), (2,2), (0.2, 3) and (7, 4), respectively.

7

6

x(2)

)

I
2Il

/

z

Fig. 2. Dynamic behavior of the second component y (¢) of the solution (x(¢), y(¢)) of system (59) with the initial conditions
(x(0),y(0)) = (1,1), (2,2), (0.2, 3) and (7, 4), respectively.

Since
104 7
5 > max {—,2, f},
125 4

it follows from Theorem 3.1 that the first species of the system (59) is globally attractive, and the second species will
be driven to extinction. Numeric simulations (Fig. 1, 2) also support this findings.

Example 5.2.

B+ %cos(4z))y )
- —1xy),
1401y +0.1x

-2y —0.lxy).

() = x(lO — (2.3 + 0.3sin(41))x
(1) = (2 B (6 + sin(41))x 61
T =Y T 01x + 0.1y

In system (61), we let c1(t) = 1,c2(t) = 0.1, and all the other coefficients are the same as that of system (59). In

this case, since

L C1M

=5<10= —,
r2M 2L

the conditions of Theorem 3.1 could not satisfied, however,

aim(dosps + oMy + oy Mz) 104 5 rip —cimMi Mo
bay, 125 2 M
and b 7 5 M M-
v T _5_nL—amMMy ©3)
dipazr, 4 2 r2m

(62) and (63) show that all the conditions of Theorem 3.3 are satisfied, and so, the first species in system (61) is
globally attractive, and the second species will be driven to extinction. Numeric simulations (Fig. 3, 4) also support
this findings.
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Fig. 3. Dynamic behavior of the first component x (¢) of the solution (x(¢), y(¢)) of system (61) with the initial conditions
(x(0), y(0)) = (1, 1), (2,2), (0.2, 3) and (7, 4), respectively.
7

6

s ~ r ~
x| |/ I/ .\\/ \/ \J/\v/\\./ \..
3 J'
24
i

z

Fig. 4. Dynamic behavior of the second component y(¢) of the solution (x(¢), y(¢)) of system (61) with the initial conditions
(x(0),¥(0)) = (1, 1), (2,2), (0.2, 3) and (7, 4), respectively.

a

»(r) 2 \‘ AN

Example 5.3.
6 + sin(4¢
x(t) = x(2 — M —2x — 0.1xy)7
14+ 0.1x + 0.1y 64)
. ) B+ %cos(4z))x
t) =y(10— (2.3 +0.3sin(47))y - —=————).
50y = »(10- (23 +0.35in(40)y 1+O.1y+0.1x)
Corresponding to system (1), one has
1
ra(t) = 10, ax(t) = 2.3+ 0.3sin(2t), bo(t) =3 + 3 cos(21),
ri(@t) =2, a1(t) =2, b1(t) = 6+ sin(2¢), c1(t) = 0.1.
da(t) = di(t) = 1, e1(t) = e2(t) = f1(t) = f(t) = 0.1
And so, . .
My ="M =g oMy =22 5, (65)
air azy,
Consequently
"m 1 125 biL

- < = s
rar 5 104 acp(dip + et My + fim M>)

v 1 aipdxyy 4
p— < [ —

1533 5 by 7
Hence, all the conditions of Theorem 3.9 hold. It follows from Theorem 3.9 that the first species of the system (64)
will be driven to extinction, and the second species is globally attractive, numeric simulations (Fig. 5, 6) also support
this findings.
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Fig. 5. Dynamic behavior of the first component x (¢) of the solution (x(¢), y(¢)) of system (64) with the initial conditions
(x(0), y(0)) = (1,1), (2,2), (0.2, 3) and (7, 4), respectively.

~

6

)
— -

x(2) \
\

NN

—_— ~—

0.2 0.4 0.6 0.8 1

N
7

(<]

Fig. 6. Dynamic behavior of the second component y (¢) of the solution (x(¢), y(¢)) of system (64) with the initial conditions
(x(0),y(0)) = (1,1), (2,2), (0.2, 3) and (7, 4), respectively.

6 Discussion

During the last decade, many scholars paid attention to the extinction property of the competition system, in their
series work, Li and Chen [3-7], Chen et al [8, 9] studied the extinction property of the competition system with toxic
substance. He et al [31], Chen et al [34, 35] studied the extinction property of the Gilpin-Ayala competition model.
Recently, Yue [1] proposed a competitive system with both toxic substance and nonlinear inter-inhibition terms, i.e.,
system (9), she also investigated the extinction property of the system. Noting that the functional response used in
[1] is of Holling II type, in this paper, we consider a more plausible one, i.e., the Beddington-DeAngelis functional
response. By constructing some suitable Lyapunov type extinction function, several set of sufficient conditions which
ensure the extinction of a species are obtained. Our results generalize the main result of Li and Chen [6].

We mention here that in system (1) and (2), we did not consider the influence of delay, we leave this for future
investigation.
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