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1 Introduction and preliminaries

The problem of stability of functional equations was motivated by a question of S.M. Ulam asked in 1940: "When is
it true that the solution of an equation differing slightly from a given one, must of necessity be close to the solution
of the given equation? " The answer of D.H. Hyers, published in [1], initiates the theory of Ulam stability theory. In
this paper, we investigate the Ulam stability results by using the fixed point techniques. For further information and
results on the subject we refer the reader to [2—4].

First of all, we give a set of the tools in the context of fixed point theory that will be used for Ulam stability
results.

The concept of «-admissible mapping introduced by Samet et al. [5] in 2012 has been one of the most important
generalizations in fixed point theory in the recent years. It is a very general concept and can be used in various
abstract spaces. On the other hand, b-metric spaces received considerable interest recently and combined with «-
admissibility they also proved to be one of the attractive studies in fixed point theory. In their recent study, Bota et
al. [6] investigated @ — Y -contractive mapping of type-(b) in the framework of b-metric spaces. In another work,
Bilgili et al. [7] discussed o — v contractive mappings in the setting of quasi-metric spaces and proved the existence
and uniqueness of a fixed point of such mappings. Also very recently, Giilyaz [8] presented some results about
a-admissible mappings on quasi-b-metric like spaces.

In this work, a class of «-admissible contractive mappings of general types are considered in the context of a
quasi-b-metric like space and the existence and uniqueness of their fixed points are discussed.

First, we define some basic notions and concepts to be used in the sequel.

Metric-like spaces or, also known as dislocated spaces have been introduced by Amini-Harandi in [9].
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Definition 1.1. Let X be a nonempty set and let y : X x X — [0, +00) be a mapping satisfying the following
conditions forall x,y,z € X:

(ML1) y(x,y) =0=>x=y;

(ML2) y(x,y) = y(y,x);

(ML3) y(x,y) = y(x,2) + y(z, ).

Then the mapping y is called a metric-like and the pair (X, y) is called a metric-like space (dislocated space).

Clearly, the conditions of a metric-like on X coincide with the conditions of a metric except that y(x, x) does not
need to be 0 in general. Therefore, a metric space is always a metric-like space but a metric-like space is not metric
space in general. Alghamdi et al. [10] combined the concepts of h-metric space and metric-like space recently and
introduced the so-called b-metric-like spaces.

Definition 1.2 ([10]). Let X be a nonempty set and let yp : X x X — [0, 400) be a function such that for all
x,y,z € X and a constant s > 1, the following conditions are satisfied:

(BML1) yp(x,y) =0 = x = y;

(BML2) yp(x,y) = yp(y.x);

(BML3) yp(x.y) < slyp(x,2) + yp(z, )]

The map yp is called a b-metric-like and the pair (X, yp) is called a b-metric-like space with constant s.

Let (X, yp) be a b-metric-like space. Forany x € X andr > 0,the set B(x,7) ={y € X : |yp(x,y) —yp(x,x)| <
r} is called an open ball centered at x of radius r > 0.

Also very recently, Zhu et al.[11] defined the concept of quasi-metric-like spaces and proved some fixed point
theorems on quasi-metric-like spaces. The definition of quasi-metric-like is given next.

Definition 1.3 ([11]). Let X be a nonempty set. A mapping p : X x X — [0, +00) is called a quasi-metric-like if
forallx,y,z € X,

(OML1) p(x,y) =0= x = y;

(OML2) p(x,z) < p(x,y) + p(y, 2).

The pair (X, p) is called a quasi-metric-like space.

Remark 1.4. Since the symmetry condition is not required for quasi-metric-like spaces, whenever p(x,y) = 0 we
may have p(y, x) # 0. Therefore, instead of (QM L1) we use the condition given in [12],

(OMLY) p(x,y)=p(y,x) =0=x=y.

After their results on quasi-metric-like spaces, Zhu et al. [13] combined b-metric space and quasi-metric-like space
and introduced the concept of quasi-b-metric-like spaces. The authors also presented some fixed point results on
quasi-b-metric-like spaces. On the other hand, also very recently Klin-eam and Suanoom [12] studied cyclic Banach
and Kannan type contraction mappings on quasi-b-metric-like. We give next the definition of quasi-b-metric-like
spaces.

Definition 1.5 ([12]). A quasi-b-metric-like on a nonempty set X is a function pp : X x X — [0, +00) such that
forall x,y,z € X and a constant s > 1,
(OBMLI) pp(x.y) = pp(y.X) =0 = x = y;

(OBML2) pp(x,y) < slpp(x.2) + pp(z, y)]-
The pair (X, pp) is called a quasi-b-metric-like space with constant s.

Inspired by the work of Klin-eam and Suanoom [12] we present the following examples of quasi-b-metric-like.

Example 1.6. The function pp : R x R — [0, 00) defined as
pp(x,y) =[x = yI> +2x + y|?

forall x,y € R is a quasi-b-metric-like on R with constant s = 2.
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Example 1.7. The function pp : R x R — [0, 00) defined as
pp(x,y) = x = y[* + x> + 2[y

forall x,y € R is a quasi-b-metric-like on R with constant s = 8.
Some topological concepts on quasi-b-metric-like spaces are defined next.

Definition 1.8 ([13]). Let (X, pp) be a quasi-b-metric-like space.
1. A sequence {&,} C X is said to converge to a point £ € X if and only if

im pp(€,8n) = lim o5 (En,§) = pp (&, ).

2. A sequence {£,} C X is said to be a Cauchy sequence if lim;; n—s oo Pb (En, Em) and limy, n—oc Pp(Em, En)
exist and are finite.

3. (X, pp) is said to be a complete quasi-b-metric-like space if and only if for every Cauchy sequence {£,,} in X
there exists some & € X such that

o€ En) = Hm pp(En.§) = pp(§.6) = Um _ ppEm.En) = 1im 05 (En.Em).
4. A sequence {£,} C X is said to be a 0-Cauchy sequence if
m}llgoo o En.bm) = m}én_l)oo obEm.§n) = 0.

5. (X, pp) is said to be a 0-complete quasi-b-metric-like space if for every 0-Cauchy sequence {£,,} in X there
exists a & € X such that

lim pp(§,60) = n]_i)moopb(énsé) =pp(£.8) = m}limoopb(émsén) = m,llimoopb(gn’ém)

n—oo

6. A mapping f : X — X is said to be continuous at £y € X if for every ¢ > 0, there exists § > 0 such that

f(B(§0.8)) C B(f(60).2).

The above definition makes it clear that in the quasi-b-metric like space (X, pp), every 0-Cauchy sequence is a
Cauchy sequence, and that very complete quasi-b-metric-like space is also 0-complete. Note, however, that the
converses of these statements may not be true.

Due to the fact that interchange symmetry condition is not necessary on quasi-metric type spaces, we need to
recall right- and left-Cauchy sequences and right- and left-completeness definitions.

Definition 1.9. Let (X, pp) be a quasi-b-metric-like space.
(1) A sequence {&,} in X is called a left-Cauchy sequence if and only if for every € > 0 there exists a positive

integer N = N(¢) such that pp(§,,,Em) < eforalln > m > N;

(ii) A sequence {&,,} in X is called a right-Cauchy sequence if and only if for every ¢ > 0O there exists a positive
integer N = N(¢) such that pp (&, Em) < eforallm >n > N;

(iii) A quasi-b-metric-like space is said to be left-complete if every left-Cauchy sequence {&,,} in X is convergent,

(iv) A quasi-b-metric-like space is said to be right-complete if every right-Cauchy sequence {&,} in X is convergent,

(v) A quasi-b-metric-like space is complete if and only if every Cauchy sequence in X is convergent.

Remark 1.10. [t is obvious from the Definition 1.9 that a sequence {&,} in a quasi-b-metric-like space is Cauchy
if and only if it is both left-Cauchy and right-Cauchy, and a quasi-b-metric-like space is complete if and only if it is
left-complete and right-complete.

In the following discussion we will employ the so-called comparison functions and their variants. These functions
have been introduced by Berinde [14] and Rus [15]. We give next the definitions of comparison, (c)-comparison
and (b)-comparison functions. It should be mentioned that Berinde [14] introduced the concept of (c)-comparison
functions in order to investigate convergence properties of iterative sequences generated by fixed point methods, and
(b)-comparison functions to be used on b-metric space (see [16, 17] for details).
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Definition 1.11. CF (See [14, 15]). Comparison function is an increasing mapping ¢ : [0,4+00) — [0, +00)
satisfying 9" (t) — 0, n — oo forany t € [0, o).
CCF(See [14]) A (c)-comparison function is a function ¢, : [0, +00) — [0, +00) satisfying
(c1)@c is increasing,
(c2)there existko € N, a € (0, 1) and a convergent series of nonnegative terms y_p—, vi such that gof'H (1) <
awf(t) ~+ vk, for k = ko and any t € [0, 00).
BCF(See [16, 17]) For a real number s > 1 (b)-comparison function is a function ¢p : [0, +00) — [0, +00)
satisfying the conditions
(b1)@p is increasing,
(ba)there exist ko € N, a € (0,1) and a convergent series of nonnegative terms Y pe, Vi such that
sk+1<p§+1(t) < askq)g (t) + vi, fork > ko and any t € [0, 00).

In the sequel, we denote the class of comparison functions by @, the class of (c¢)-comparison functions by ®. and the
class of (b)-comparison functions by ®,. Obviously, a (b)-comparison function reduces to (c¢)-comparison function
whenever s = 1. In addition, every (c)-comparison function is a comparison function.

We will need the following essential properties in our further discussion.

Lemma 1.12 (Berinde [14], Rus [15]). For a comparison function ¢ : [0, +00) — [0, +00) the following hold:
(1) each iterate * of ¢ k > 1, is also a comparison function;

(2) ¢ is continuous at 0;

(3) @) <t foranyt > 0.

Lemma 1.13 ([17]). For a (b)-comparison function ¢p, : [0, +00) — [0, +00) the following hold:

(1) the series Y z—y sk(plbc (t) converges for any t € [0, +00);

(2) the function bs : [0,4+00) — [0, +00) defined by bs(t) = Y ey sk<p,’f (t), t € [0,00) is increasing and
continuous at 0.

For more details on comparison functions and examples we refer the reader to [14, 15].
Finally, we recall the concept of «-admissible mappings introduced by Samet [5].

Definition 1.14. A mapping T : X — X is called a-admissible if for all £, n € X we have

a6.n) = 1= a(T§ Ty =1, ey

wherea : X X X — [0, 00) is a given function.

For recent results related with a-admissible mappings, see [18, 19]. In their work Samet et.al [5], studied o — -
contractive mappings and their fixed points.
Recently, Giilyaz [8] defined o — y-contractive mapping in the framework of quasi-b-metric-like spaces.

Definition 1.15. Let (X, pp) be a quasi-b-metric-like space and T : X — X be a given mapping. We say that T
is an o — -contractive mapping if there exist two functions o : X x X — [0,00) and ¥y € ®p such that for all
&, n € X, we have

a(&.mpp(TE.Tn) < ¥ (pp(§. 1)) (@)
Giilyaz [8] also proved the existence of fixed points for @ — y-contractive mapping on quasi-b-metric-like spaces.

Theorem 1.16. Let (X, pp) be a O-complete quasi-b-metric-like space with a constant s > 1. Suppose that T :
X — X is an o — y-contractive mapping. Suppose also that
(1) T is a-admissible;
(i) there exists &g € X such that a(T &g, E0) > 1 and a (&9, TEg) > 1;
(iii) T is continuous,
Then T has a fixed point.
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Theorem 1.17. Let (X, pp) be a 0-complete quasi-b-metric-like space with constant s > 1. Suppose that T : X —
X is an a — -contractive mapping. Suppose also that
(1) T is a-admissible;
(i) there exists £ € X such that a(T &g, o) > 1 and a (o, T o) > 1;
(iii) If {&n} is a sequence in X which converges to & and satisfies o(§p41,60) > 1 and a(§,,6p+1) = 1 forall n

then, there exists a subsequence {&,, (i)} of {6n} such that a(§, &, ) = 1 and a(§,(x). §) > 1 for all k.
Then T has a fixed point.

2 Existence and uniqueness theorems on complete
quasi-b-metric-like spaces

In this section we present our main results. We concentrate on existence and uniqueness of fixed points for a general
class of a-admissible contractive mappings.

Definition 2.1. Let (X, pp) be a quasi-b-metric-like space with a constants > 1 and let« : X x X — [0, 00) and
op € ©p be two functions.

(1) An o — @y contractive mapping T : X — X is of type (A) if
a €. mpp(TE Tn) < p (M(E. 1), forall §.n€ X, (©)
where |
M(E. 1) = max{pp €. m). pp(TE.§). pp(Tn.0). = lop(TE.0) + pp (T, )1}

(1) An o — ¢y contractive mapping T : X — X is of type (B) if

a5, mMpp(TE Tn) < @p (N(E.n), forall £,neX 4

where
N(E1) = max{op (€. 1), 5 [06(TE.6) + pu(Tn. ). - [on(TE.1) + pu (T,

(i) An o — ¢y contractive mapping T : X — X is of type (C) if

aE,mpp(TE Tn) < ¢p (K(E,n), forall £,ne X, (5)
where
K(&,n) = max{pp(&,n), pp (T, 8), pp (T, n)}.

Remark 2.2. Note that pp(§,n) < K(&,1n) < N(&,n) < M(&,n) forallE,n € X.

Our first theorem gives conditions for the existence of a fixed point for maps in class (A).

Theorem 2.3. Let (X, pp) be a 0-complete quasi-b-metric-like space with a constant s > 1. Suppose that T : X —
X is an a — @p contractive mapping of type (A) satisfying the following:
(i) T is a-admissible;
(i) there exists Eg € X such that a(T &g, o) > 1 and a(§o, TEo) > 1;
@iii) T is continuous;
Then T has a fixed point.

Proof. As usual, we take £y € X such that a(T &g, &) > 1 and a (g, T€o) > 1 and construct the sequence {£,} as

Eny1 =TE&, for n e N,
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Notice that if for some ng > 0 we have &,, = £,,+1 then the proof is done, i.e., &,,, is a fixed point of 7. Assume
that &, # &,41 for all n > 0. Because of the lack of symmetry condition in quasi-b-metric-like spaces, we will
show that the sequence {&,, } is both left- and right-Cauchy.

From the conditions (i) and (ii), we have

a(€1,é0) = a(Téo.60) = 1 = a(T§1.Téo) = a(é2.61) = 1, (6)
and
a(é0.61) = a(60.Té0) = 1 = a(Té0.T§1) = a(51.62) = 1, @)
or, in general
a(nt1.6n) = land a(§n, §n41) =2 1V e N ®)
Regarding (8), the contractive condition (3) with § = £, 41 and n = &, becomes
obEnt1.6n) = pp(Tén. Tén—1) = a(n. En—1)pp(T5n, TEn—1) =< op(M(§n.5n—1)). €))

where
MEn.én—1) = max{ppEn.En—1). o (TEn. &n). Po(TEn—1.5n—1).

= b(Tn 600 + o0 T )

=1 max {0y (En. En—1), o6 En+1,6n), pp(En. En—1),
E[Pb(én+lv En—1) + pp(En. éS:n)]}

Observe that for the last term in M (&, §,—1), by the triangle inequality we have

lon Gt Eao) + oo (En )
1

= Z[2pb(§n+1,5n) +ppGEnEn—1) + pp(En.bnt1)]
< max{ppn+1.8n), oo En.En—1), Po En. 6n+1)},

and hence, either M(§n,§n—1) = max{ppEn+1.6n). pp(En.En—1)} or M(En,En—1) < pp(€n.En+1). Now, we
will examine all three cases.

Case 1. Suppose that M (§,,,£,—1) = pp(§n+1.&n) for some n > 1. Since pp(§54-1,&n) > 0, from (9), we
have

o En+1.6n) < @p(M(En,6n—1)) = 0b(op En+1.50)) < pp(En+1,6n)
which is a contradiction. Hence, for alln > 1 either M (§,,, §n—1) = pp(En, En—1) ot M(En, En—1) < pp n, En+1)-
Case 2. Suppose that M (¢,,&,—1) = pp(En, En—1) for some n > 1. Regarding the properties of ¢p € 5 and
9), we get
PbEn+1.6n) = 0p(MEn.En—1)) < @b (ppEn.En—1)) < pp(En.En—1)

for all n > 1. Inductively, we obtain
o (Ent1.6n) = ¢ (op (51, £0)), foralln > 1. (11)
Applying repeatedly triangle inequality (Q BM L») and regarding (11), for all k > 1, we get

o6 Enti-n) =< slobEntr.En+1) + o6 En+1.En)]
< 5%[pp Enti- En+2) + 06 Ent2. Ent1)] + 50 Ent1. €n)

Skpb(§n+k, Enti—1) + 5 L op(Enti—1. Entr—2)

-t Pb(gn+2aén+l)+spb($n+l &n) (12)
skw;’*k ow (E1.80)) + S5 1o TN 2 (o (1. £0))

~1+ s (op(£1,60))

= <1 [ e s 81, 50))

N
L gk ke z(pb(gl £0) + ...+ 5" (op(E1. £0))]

+ A A
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Define
n
S, = Z sPof (pp(€1.80)) forn > 1. (13)
p=0
We obtain |
PoCntk-§n) = 7 [Snpk—1 = Spa]. n 2 Lk = L. (14)

Due to the assumption &, # §&,41 for all » € N and Lemma 1.13, we conclude that the series

Z;O=0 spgolf(pb(él,fo)) is convergent to some S > 0. Thus, im Pb(En+i.En) = 0 or, in other words, for
n o0

m > n,

limoopb(i‘_m»%—n) = 0. s)

m.,n—

Case 3. Suppose that M (§,,6,—1) < pp(n,En+1) for some n > 1. Using the fact that ¢, € ®; and the
inequality (9), we get

Pb(fn-l—bsn) <ep(M(¢n,8n-1)) < (Pb(Pb(Envgn-H)) < Pb(énvfn—f-l) (16)

for all n > 1. On the other hand, if we put § = &, and n = &,,4-1 in (3), taking into account (8), we find

Pb(g:n’gn-i—l) = pp(Tén—1.TEn) (17)
<an—1.6n)pp(TEn—1.TEn) < 0p(M(En—1.8n)).

where
MEp—1.60) = maX{Pb@:n—l 260), 00 (TEn—1,8n—1), oo (Tén. &n),

1
Is[Pb(TEn—LEn) + Pb(Ténsén—l)]}
= maX}Pb(Eu—lfn),Pb(én, En—1), b (En+1,6n),
1
I[Pb(i"nvgn} + Pb(fn—i—l»gn—l)]}
s
for all n > 1. Observe that, applying triangle inequality (Q BM L>) to the last term in M (§,—1, &) we have
1
g[:ob(én»sn) + pp(Ent1.6n—1)]
< —lopGnEn+1) + oo Ent1.860) + oo Ent1.86n) + oo En. En—1)] (18)

= Z[Pb(émén-ﬁ-l) +20pEnt1.8n) + pp(En. En—1)]
< max{ppEn,&n+1), 0o En+1.En). poEnsEn—1)} = po(EnsEnt1),

since we are in Case 3. On the other hand, from (16) we see that
05 Enn—1) < pp(En—1,8n), and pp(En+1,6n) < pp(En,én+1).

Therefore, either M (§n—1.6n) < pp(En. Ent1) or M(En—1.6n) = pp(En—1.&n).
It MEn—1,81) < pp(En,En+1) for some n € N, since pp(§,41, 1) > 0, the inequality (17) implies

o EnsEnt+1) < op(MEn—1.61)) < 0p(PpEn.6n+1)) < ppEn.bn+1).

which is a contradiction.
Thus, we should have M (§,,—1, &) = pp(En—1, &) for all n > 1. The inequality (17) becomes

b En-Ent1) < @b (M(En—1.51)) < @b (pp(En—1.6n)) < pp(En—1.6n)

for all n > 1, using the fact that g5, € ®y,.
By induction, we get
pbEn.En+1) < ¢p (pp (0. 1)), foralln > 1. (19)
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Hence, combining (16) and (19) we deduce

ob(En+1.£n) < @ (pp(E0.§1)). foralln > 1. (20)

Due to (QBM L), together with (20), for all k > 1, we get

o En+is6n) < slopEntkEnt1) + ppEnt1,6n)]
< 5%[pp Entk- En+2) + opEnt2. Ent1)] + 506 Ent1.€n)

5% b Entic. Engi—1) + 5V op Epngrx—1. Enr—2)
A 52 Ent2.Env1) + 505 Ent1.6n)

Sk(ﬂZJrk Yop (B0, £1)) + K1) TE 72 (0 (50, £1))
--1+ s (op (0. 61))

ot [T e T (w60, 61)

s
o §nk=2 ks 2(pb(§0 E1) + ...+ "@l (pp(§0.£1))]

A A

Define n
Qn =) 579} (pp(Eo, &1)) forn = 1. @1)

Then, employing (21), we get

1
PoGntr-§n) = 7 [Qntk—1 = Qna]. nz Lk = L.

o0
Using the fact that the series Z sP (pf (pp(£0,&1)) converges to some Q > 0, we deduce,
p=0
limy — o0 Pp(En+k, En) = 0, which means that for m > n,
o M 05 (Em . En) = 0. (22)

Therefore, in all possible cases, we conclude that the sequence {&,, } is a left Cauchy sequence.
To show that it is also right Cauchy, we proceed as follows.
Let & =&, and n = &,,41 in (3). Using (8), we get

oo En n+1) = pp(Tén—1,T&y)

23
< 1. En)05 (Ten_1. TEn) < op(M(En_1.E0)) @9
where
MEn—1.6n) = max{pp(En—1.&n). o (TEn—1.8n—1) P (Tn. &n) »
1
g[ﬁb(Tén—h &) + pu(Tén, En—l)]}
< max{pb(sn_1 60, 05 En En—1), P Gt 1 En),
R ACR |
\)
Regarding the inequality (18), we have
10 (En &)+ PGt t, En )] = maxton G En ) oo Gt 1. En). oo En),
and hence, either
M(En—1.81) = max{op(En—1.8n). o (En. En—1), pp(Ent1.6n)} . (24)

or M(§n—1.61) < pp(n.En41) forall n > 1. We will discuss separately these four cases.
Case I. Suppose that M (§,,—1,&,) < pp(£n,En+1) for some n > 1. Then the inequality (23) implies

b En En+1) < 0p(M(En—1.8n)) < 0 (06 (En+1.8n)) < pp(En.En+1) (25)
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which is a contradiction because pp (¢, £741) > 0.
Case II. If for some n > 1 we have M(§,—1,&,) = pp(En+1,En), then the inequality (23) becomes

o EnsEnt+1) < op(MEn—1.61)) < 0p(Pp(En+1.81)) < pp(En+1.8n). (26)

Recalling (9) and (10), that is,
o En+1,6n) < 0o (M(En,n—1)) 27)

where
My, En—1) < max{ppEn.En—1). ppEn+1.8n). PoEns En+1)}

and since by the assumption
max {pp (En—1.6n). Po(En. §n—1). Po Ent1.6n)} = Po(Ent1.8n) = pp(n. Ent1),
then, inequalities (26) and (27) yield

P (EnsEnt1) < pp(Ent1.6n) < Pp(M(En.En—1)) < @b (ppEnt1.6n)) < Pp(En+1.8n)

due to the properties of ¢, . This is clearly impossible since pp (£,,4-1, &1) > 0 and we end up with a contradiction.
Case III. Assume that M (§,,—1,&1) = pp(En—1, &) for some n > 1. Since pp (§,—1, 1) > 0, from (9), we get

P En.bnt+1) < op(M(En—1.8n)) < 0p(op(En—1.8n)) < pp(En—1.8n)

for all n > 1. Recursively, we derive

pbEn.En+1) < ¢p (pp(0.61)), Yn > 1. (28)

Applying repeatedly triangle inequality (Q BM L>) and regarding (28), we get for all £ > 0,

o EnsEnti) < slepEn.bn+1) + oo Ent1.5n1i)]

IAN ---

s (pp (€0, £1)) + 5200 T (05 (B0, £1))+
T 7 2y 6o, sl))+sk =1 (o (E0. £1)) (29)

e pb(so D)
g2, n+k 2 (o (o gl))+s”+k Lop T oy 0.61) |

_|_

Recalling (21), we see that

—1—9Qn—1],n>1Lk=>1

opEn,

As aresult, we have, limy,, o0 pp (§n, En4x) = O or, in other words for m > n,

lim  pp(n.&m) = 0.

m.,n—oo

Case IV. Suppose that M (§,—1,&,) = pp(En, En—1) for some n > 1. Then, (23) gives

P En.ént+1) < op(M(En—1.8n)) < 0p(op(En.bn—1)) < pp(En.En—1) (30)

for all n > 1. Now, rewriting (9) and (10) for n — 1 we have

o5 Ensén—1) = pp(TEn—1,TEn—2)

31
< (1 En—2)pp(Ten—1. Tén—2) < oo (M(En—1.En—2)) G

where

M(En—1,En—2) <max{pp(n,En=1), pp En—1,6n—2), pp (En—1,&n)},

where obviously, the maximum can be either pp (&, En—1) or pp (En—1,En—2).
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The first possibility, that is, if M (&,,—1,&,—2) < pp(én, En—1) for some n > 1, results in

P Enn—1) < op(MEn—1.61—2) < 0p(pp(En.6n—1)) < pp(En.én—1),

which is a contradiction. Therefore, we should have M (§,—1,&,—2) < pp(En—1,En—2) for all n > 1. Then the
inequality (31) yields

o (EnsEn—1) < @p(M(En—1.5n—2) < 0 (pp(En—1.8n—2)) < pp(En—1,8n—2) (32)

for all n > 1. Thus, we deduce

b (En.En—1) < @)l (pp(&1.60)). forall n > 1. (33)

If we combine the inequalities (30) with (33), we derive

06 Ens Ent1) < ppEnEn—1) < o (pon (1. £0)), (34)

for all n > 1. As done in Case 2, when applying triangle inequality repeatedly for every k > 1, we get

o EnsEntx) < slopEn.bn+1) + ppEn+1.6n+1)]
< 506 En. Ent1) + 52 (oo Ent1. Ent2) + ppEnta. Enti)]

506 Ens Ent1) + 52pp (Eng1.Eng2)+

o+ Sy k=2 Entk—1) + K 0p Entrk—1. Entic)
soi " op (E1.£0)) + s20) (pp (51, 60))+
A/ o 1. £0)) + 5Ky K2 oy (61, 0))

1
= I GR-)ES
S;1+k—3(p2l+k 3(pb(gl,.§0))+s”+k 2o 2 (pp 61 Eo))]

1
) [Sntk—2—Sn—2], n>1k>1,

IN + N+ AN -

+

IA

where S, is defined in (13). Therefore, we end up with limy, — oo pp (€1, €141 )=0, or, equivalently, for m > n,

lim  pp(§n,&m) = 0.

m.,.n—o0

We conclude that {&,} is a right-Cauchy sequence, and hence, a Cauchy sequence. Moreover, it is a 0-Cauchy
sequence in 0-complete quasi b-metric like space (X, pp). Thus, there exists £ € X such that for m > n we have

limy— 00 pp (En. §) = limy— oo pp(§.8n) = pp(£,.5) =0
= limy, n—co erEm.&n) = limy, n— oo P En.Em).

By the continuity of 7', we obtain
f= lim €41 = lim T& =T lim & =T¢,
that is, £ is a fixed point of T'. O

Theorem 2.4. Adding the condition
(U) For every pair € and n of fixed points of T, a(€,n) > 1 and a(n, §) > 1.
to the statement of Theorem 2.3 we obtain the uniqueness of the fixed point.

Proof. By Theorem 2.3 we know that the mapping 7 has at least one fixed point. To show the uniqueness, we
assume that 7 is another fixed point of 7', such that § # 7. From the condition (U) we have, « (&, n) > 1, hence, the
contractive condition for the fixed points £ and 7, that is,

op(E.n) = pTETn) <a nNoep(TE Tn) < pp(M(E, 1)),
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where,
1
M (&, n) = max{pp (&, n), pp(T&,£), pp(Tn,n), E[Pb(va n + pp(Tn, 51} = pp(, 7).
This yields
pp (€. 1) < op(pp(§, 1) < pp(£, 1),

which implies pp (¢, 7) = 0. In a similar way, by changing the roles of £ and 7 in the contractive condition we get

pp(,8) = p(Tn, TE) < a(n,§)pp(Tn, TE) < op(M(n,§)),

where,
M. 8) = max{on (1.8, oo (T1.1). o (TE.£). 3 0w (T1.6) + p (TE )1} = o (1.5).
and thus,
P (1,§) < ¢ (pp (1,6)) < pp(n.§).
Therefore, we deduce py (17, §) = 0 and hence, § = 7. This completes the uniqueness proof of the Theorem. O

Regarding Remark 2.2, we can state the following result as an immediate consequence.

Corollary 2.5. Let (X, pp) be a 0-complete quasi-b-metric-like space with a constant s > 1. Suppose that T : X —
X is an a — @p contractive mapping of type (B) or type (C) satisfying the following:
(i) T is a-admissible;
(i) there exists £ € X such that a(T &g, o) > 1 and a (o, TEo) > 1;
(ii1) T is continuous;
(iv) For every pair & and n of fixed points of T, a(&,1) > 1 and a(n, &) > 1.
Then T has a unique fixed point.

We also state another consequence of the main result obtained by taking the function «(x, y) = 1.

Corollary 2.6. Let (X, pp) be a 0-complete quasi-b-metric-like space with a constant s > 1. Suppose that T : X —
X is a continuous mapping satisfying

pp(TE.Tn) < ¢p (M(&. 7)), forall §.n€ X, (35)

where |
M(&,n) = max{pp(§,n), pp(TE. ), pp(Tn, 1), ;S[pb(TE, n + pp(Tn, §)]}.

Then T has a unique fixed point.

Corollary 2.7. Let (X, pp) be a 0-complete quasi-b-metric-like space with a constant s > 1. Suppose that T : X —
X is a continuous mapping satisfying

ep(TE,Tn) < @p (N, 7)), forall £,ne X (36)
where . .
N, n) = max{pp (£, 1), E[pb(Té, &)+ pp(Tn, )], E[Pb(TE» m + pp(Tn, 8]}
or
op(TE, Tn) < gp (K, 1)), forall £,n€ X, (37
where

K(&,n) = max{pp(§,n), pp(T§, ), pp (T, n)}.

Then T has a unique fixed point.

We also point out that the main result of Giilyaz [8], that is the Theorem 1.16, follows from our main Theorem 2.3.
In addition, by taking «(x, y) = 1, we deduce another corollary.
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Corollary 2.8. Ler (X, pp) be a 0-complete quasi-b-metric-like space with a constant s > 1. Suppose that T : X —
X is a continuous mapping satisfying

po(TE.Tn) < ¢p (pp(§.1)) . forall §.n€ X, (38)
where ¢, € ©p. Then T has a unique fixed point.
It has been shown in some recent studies that by a suitable choice of the function «, the fixed point results on partially
ordered spaces and fixed point results of cyclic contraction mappings can be concluded from the fixed point results
of a-admissible mappings (see [19] for details). Using the idea of these studies we present some theorems and their
consequences below.

We recall the definition of cyclic contraction mappings on quasi b-metric-like spaces introduced originally by
Kirk et.al. [20].

Definition 2.9. Let X be nonempty set and let A and B be nonempty subsets of X. A mapping T : AUB — AUB
is cyclic if T(A) C B and T(B) C A.

We define generalized cyclic contraction of type as follows.

Definition 2.10. Let (X, pp) be a quasi-b-metric-like space with a constant s > 1 and let ¢p € Pp be a given
function. A generalized cyclic contractive mapping T : AU B — A U B is a cyclic mapping satisfying

pp(T§,Tn) < @p (K&, 1)), forall§ € A,n€ B, (39)

where
K&, n) = max{pp (&, 1), pp(TE. &), pp(Tn, M)}

A fixed point theorem for the generalized cyclic contractions defined above is given next.

Theorem 2.11. Let (X, pp) be a 0-complete quasi-b-metric-like space with a constant s > 1. Suppose that T :
AU B — AU B is a generalized cyclic contractive mapping. Then T has a unique fixed point in A N B.

Proof. Define« : X — X as follows.

1if EeAdneB
0 otherwise

a,n) =

Then all conditions of Corollary 2.5 are satisfied and 7" has a unique fixed point. O

Finally, we observe that the main result (Theorem 2.9) in [12] is a consequence of Theorem 2.11. Indeed, by

k
choosing ¢, (t) = —t and noticing that pp (&, 7) < M (&, n), the main result of Klin-eam and Suanoom [12] follows
s
immediately from Theorem2.11.
We end this section with illustrative examples.

Example 2.12. Let X = [—1, 1] and pp (£, 1) = |&€ — n|?> + |2 + n|%. Then pp is a quasi-b-metric like on X with a

constant s = 2. Define T§ = T Then we see that

po(re 1) = |5 -1

1 2 1 2
=_—|¢- —2
g =2 + 126 + )

= 16 &M = ep(pp(E.1).

2 S n2
+ 2§ + 4]

1 1
where ¢p,(t) = kt with T6 <k < 5 is clearly a (b)-comparison function. By the Corollary 2.8 T has a unique
fixed point which is £ = 0.
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Example 2.13. Let X = [0,1] and pp(£, 1) = |E — n|> + 2|€|%> + [n|?. Then pp is a quasi-b-metric like on X
1
with a constant s = 2. Define T¢ = géze_sz. Without loss of generality assume that & > 1. Then we have

e~ <e ™ < 1in[0,1].

2
1 1 2 2
po(TE.Tn) = |82 —2oPe™ | +2[462e8 |+ |4n2e ™

8

I 5 _,2 2 1 _g2 1 2
< ne_2,—n712 4~ (£2,—E52 .~ 1,2,—n72
< I P GO e
_ Vi o Liop g2 b o0 20

18— PRI 4 PR 4 Rl

IA

1 2 2 1 2112 1 21,12
gfls ~1E 0 SR+ g
e 2 E2 L 2
—le =l + 516 + Inl

1 1
< o8 =1 + 2062 + 10?) = Tpw(En).

IA

1 1
Choosing a (b)-comparison function ¢p(t) = kt where T6 <k < 3 we see that the mapping T satisfies the
conditions of the Corollary 2.8. Hence, T has a unique fixed point which is §¢ = 0.

3 Ulam-Hyers stability

In this section we apply our main results to Ulam-Hyers stability problems. We first recall the classical definition of
Ulam-Hyers stability on metric space.

Definition 3.1. Let (X, d) be a metric space and T : X — X be an operator. The fixed point equation
x=Tx,xeX 40)

is called generalized Ulam-Hyers stable if and only if there exists an increasing function ¢p : [0,00) — [0, 00),
continuous at 0 and ¢p(0) = 0 such that for each ¢ > 0 and for each e-solution of the fixed point equation (40), that
is, for each £* € X, satisfying the inequality

d(TE*.§%) <e. (41)
there exists a solution x* € X of (40) such that
d(x*, &) < ep(e), (42)
If op(t) := ct forallt € [0, 00), where ¢ > 0, the fixed point equation (40) is said to be Ulam-Hyers stable.

We refer the reader to Bota-Boriceanu, Petrusel [21], Lazdr [22], and Rus [23],[24] for some Ulam-Hyers stability
results in the case of fixed point problems.
In the framework of quasi-b-metric like spaces the above definition can be stated as follows.

Definition 3.2. Let (X, pp) be a quasi-b-metric-like space and T : X — X be an operator. The fixed point equation

x=Tx,xeX (43)

is called generalized Ulam-Hyers stable if and only if there exists an increasing function ¢p : [0,00) — [0, 00),
continuous at 0 and ¢p(0) = 0 such that for each ¢ > 0 and for each e-solution of the fixed point equation (43), that
is, £* € X, satisfying the inequalities

pp(TE*,E%) < eand pp(E*, TE™) < ¢ (44)
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there exists a solution x* € X of (43) such that

pp(x™, &%) < @p(e) and pp(E*,x™) < @p(e) (45)

If p(t) := ct forall t € [0, 00), where ¢ > 0, the fixed point equation (43) is said to be Ulam- Hyers stable.

In fact, the nature of the quasi-b-metric like space makes it possible to introduce two types of stability, namely, right
and left stability. We define these new concepts in the following.

Definition 3.3. Ler (X, pp) be a quasi-b-metric-like space and T : X — X be an operator. The fixed point equation
(43) is called generalized right Ulam-Hyers stable if and only if there exists an increasing function ¢y : [0, 00) —
[0, 00), continuous at 0 and ¢p (0) = 0 such that for each € > 0 and for each §*, satisfying the inequality

Pr(E*.TET) <& (40)

there exists a solution x* € X of (43) such that

pp(E*.x™) < @p(e). (47)

If p(t) := ct forallt € [0,00), where ¢ > 0, the fixed point equation (43) is said to be right Ulam- Hyers stable.
Similarly, the fixed point equation (43) is called generalized left Ulam-Hyers stable if and only if there exists an
increasing function @y, : [0, 00) — [0, 00), continuous at 0 and ¢p(0) = 0 such that for each ¢ > 0 and for each &*,
satisfying the inequality
op(TE*,E%) <& (48)

there exists a solution x* € X of (43) such that
Pp(X*,E%) < @p (). (49)

If p(t) := ct forall t € [0,00), where ¢ > 0, the fixed point equation (43) is said to be left Ulam- Hyers stable.

Clearly, if the fixed point equation (43) is both generalized right and left Ulam-Hyers stable, then it is generalized
Ulam-Hyers stable.
We also recall the definition of well posed fixed point problems and apply it to quasi-b-metric-like spaces.

Definition 3.4. Let (X, pp) be a quasi-b-metric-like space and T : X — X be a mapping. The fixed point problem
(43) for T is said to be well-posed if it satisfies the following conditions:

(i) T has a unique fixed point x* in X ;

(ii) for any sequence {&,} in X such that

ngmoo ppEn, TEn) = ngmoo po(TEy.6,) =0,
one has

. EINET * _
Lm pp(Ep, x7) = lim pp(x7, €p) = 0.

Inspired by the Ulam-Hyers stability problem and the ideas given in Petru et al. [25] we state and prove the following
results.

Lemma 3.5. Let (X, pp) be a 0-complete quasi-b-metric-like space with a constant s > 1 and T : X — X be a
mapping. Let the function B : [0,00) — [0,00), B(r) := r — s@p(r) be strictly increasing and onto. Suppose that
all the hypotheses of Corollary 2.8 are satisfied. Then the fixed point equation (43) is generalized right Ulam-Hyers
stable.

Proof. According to the Corollary 2.8, there is a unique x* € X such that x* = T'x™, that is, x* € X is a solution
of the fixed point equation (43). Let ¢ > 0 and let §* € X satisfy

Pr(E*.TET) <e.
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Using the contractive condition (38) with x = £* and y = x™, and triangle inequality we obtain

P (™. x™) = slpp(§*. TE™) + pp(TE", x™)]
slop (§*. TE™) + pp(TE*. Tx™)]

sle + op(pE™. x™))].

[ IA

IA

Then recalling the definition of 8 we have

pp(E* . Xx™) —spp(pE™. x™)) = Blpp(§*,x™)) < se,

or,
pp(E*,x*) < BT (s¢),

and since § is continuous, strictly increasing and onto, then, 87! is also increasing and continuous with =1 (0) = 0.
Hence, the fixed equation (43) is generalized left Ulam-Hyers stable. O

The following Lemma regarding right Ulam-Hyers stability can be proved in a similar way, so we give the statement
only without proof.

Lemma 3.6. Let (X, pp) be a 0-complete quasi-b-metric-like space with a constants > 1 and T : X — X be a
mapping. Let the function 8 : [0,00) — [0,00), B(r) := r — spp(r) be strictly increasing and onto. Suppose that
all the hypotheses of Corollary 2.8 are satisfied. Then the fixed point equation (43) is generalized left Ulam-Hyers
stable.

Using the above lemmas, we can prove the following theorem.

Theorem 3.7. Let (X, pp) be a 0-complete quasi-b-metric-like space with a constant s > 1 and T : X — X be a
mapping. Let the function § : [0,00) — [0,00), B(r) := r — spp (1) be strictly increasing and onto. Suppose that
all the hypotheses of Corollary 2.8 are satisfied. Then the following hold.

(a) The fixed point equation (43) is generalized Ulam-Hyers stable.

(b) If {&,} is a sequence in X such that limy,— oo pp (§n, TEy) = limy— 0o pp(TEn, E) = 0 and x* is a fixed
point of T, then the fixed point problem (43) is well-posed.
(©) If G : X — X is a mapping such that there exists n > 0 with

op(TE,GE) <n, and pp(GE,TE) <n VEe X, (50)

then for any fixed point y* of G we have
pp(x*, y*) < B (sm). (51)

Proof. (a) By Lemma 3.5 and Lemma 3.6 the fixed point equation (43) is generalized right and left Ulam-Hyers
stable. Therefore, it is generalized Ulam-Hyers stable.

(b) Let {&,} be a sequence in X such that lim,— oo pp (§n, TEn) = limy— oo pp(Tén, En) = 0 and let x™ be
the unique fixed point of 7. Employing the contractive condition and triangle inequality we get

b (En, x™) < slop(En. TEn) + pp(Tén, x™))
= 5[pp(&n. TEn) + pp(TEn, Tx™)]
< slopEn. TEn) + @5 (b (En. x™))],

for all n € N. Thus, we have,

BlopEn,x™)) = pp(En,x™) — s¢p(op (En, x™))
< spp(n.Tén)

for all n € N. Since lim;;— o0 pp (€1, TE,) = 0, we obtain

Jim_ B(on (0. x*)) = 0.
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Therefore
lim pp(£,.x*) = 0. (52)
n—oo

On the other hand, the contractive condition with £ = x™ and n = &, and triangle inequality yields

P (x*,En) < slpp(x™, Tén) + pp(T&n, &n)l
= s[op(Tx*, TE) + pp(TEn. En)]
slon (pp (X*.60)) + pp(Tén, n)].

IA

for all n € N. Thus,
Blop(x*.60)) = pp(x™,En) — 50 (06 (x™, &n))
< spp(Tén,n).

for all n € N and regarding lim,;— o0 pp (T, 1) = 0, we get
. * _
Jlim_ By (x*. &) = 0.

Consequently,
lim pp(x*, &) = 0. (53)
n—oo

As a result, the limits in (52) and (53) show that the fixed point problem (43) is well-posed.
(c) To show the last part of the Theorem we assume that G : X — X is a mapping such that there exists n > 0
with
pp(TE.G§) < n. and pp(GE.T§) <n VE € X, (54)

and let y* be a fixed point of G. Then, by the triangle inequality, we have

pp(x*,y*) = pp(Tx*, Gy™) < s[pp(Tx*,Ty*) + pp(Ty™, Gy™)]
< slep (pp (x*, ™)) + pp(Ty™, Gy™)].
Then we have
Blop (x™, y™)) = pp(x™, y™) = s9p (pp (x™*, y™)) < 50p(Ty*, Gy™) < 51,
and hence
pp(x*.y*) < B~ (sn). (55)

In a similar way, by changing the roles of x* and y™ in the discussion above we obtain

pp(¥*, x*) < B (s, (56)

which completes the proof. O

4 Conclusion

The main contribution of this study to fixed point theory is the existence-uniqueness result given in Theorem 2.3.
This theorem provides the existence and uniqueness conditions for a very large class of contractive mappings on
various abstract spaces. In fact, the quasi-b-metric-like spaces cover the b-metric spaces, quasi-b-metric spaces,
b-metric-like spaces as well as b-metric, usual quasi-metric and metric spaces.

However, the most significant part of the study is the definition of right and left Ulam-Hyers stability to get some
new Ulam-Hyers stability results. These results have applications in many areas of applied mathematics, especially
in differential and integral equations. A study related particularly to the applications of the present results in the
theory of ordinary differential equations is currently in progress.
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