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Abstract: In this paper, we study a kind of fractional differential system with impulsive effect and find the formula
of general solution for the impulsive fractional-order system by analysis of the limit case (as impulse tends to zero).
The obtained result shows that the deviation caused by impulses for fractional-order system is undetermined. An
example is also provided to illustrate the result.
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1 Introduction

Fractional calculus was utilized as a powerful tool to reveal the hidden aspects of the dynamics of the complex or
hypercomplex systems [1-3], and the subject of fractional differential equations is gaining much attention. For details
see [4-14] and the references therein.

Impulsive effects exist widely in many processes in which their states can be described by impulsive differential
equations. Moreover, in case of impulsive differential equations with Caputo fractional derivative there have
been numerous works about the subject [15-23], and impulsive fractional partial differential equations are widely
considered in [24-29].

Motivated by the above-mentioned works, we will study the following impulsive Cauchy problem with
Riemann-Liouville fractional derivative:

D2+u(t) = f(t,u@®)), te(@T]landt #t¢t; ( =1,2,...,m),
A (jalz:tq”)‘t=li = al~|_.q”(t,-+) —«7al_,__qu(f,'_) =A; (u@)), i=12..m, (1)
jal;qu(a) =u,, ugeC,

where ¢ € C and %(g) € (0,1), Dg 4 denotes left-sided Riemann-Liouville fractional derivative of order ¢ and
J al;q denotes left-sided Riemann-Liouville fractional integral of order 1 — ¢q. f : J x C — C is an appropriate
continuous function, anda =tg <] < ... <ty < tiy+1 = T.Here J;;qu(ti"') =lim,_, o+ J;;qu(ti + ¢) and

J J;qu(ti_) = limg—o- J, J;qu(t,- + ¢) represent the right and left limits of 7 a] _T_"u(t) att = t;, respectively.
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For impulsive system (1), we have

Dl u@) = f(t,u@), ¢qe€(1),1€@T]

lim {impulsive system (1)} = 2)
A1=0,A5—0, . Ay —0 ja‘;‘/u(a) =u,, ugcecC,
Therefore, it means that there exists a hidden condition
li the solution of impulsi tem (1)} = {the solution of system (2 3
A1—>0,A2—1>r8,~- ,Am—>0{ e solution of impulsive system (1)} = {the solution of system (2)} 3)

Therefore, the definition of solution for impulsive system (1) is provided as follows:

Definition 1.1. A function z(t) : [a,T] — C is said to be a solution of the fractional Cauchy problem (1) if
ja]_:qz(a) = Ug, the equation condition DZ+Z(I) = f(t,z(t)) for each t € (a,T] is verified, the impulsive

conditions A (jal_i__qz)‘ = A;(z(t;) (herei = 1,2, ..., m)are satisfied, the restriction of z(t) to the interval
[=t;

(tx s tic+1] (here k = 0,1,2,...,m) is continuous, and the condition (3) holds.

Therefore, we will consider impulsive system (1) and seek some solutions of impulsive system (1) according to
Definition 1.1.

The rest of this paper is organized as follows. In Section 2, some preliminaries are presented. In Section 3,
we give the formula of general solution for impulsive differential equations with Riemann-Liouville fractional
derivatives. In Section 4, an example is provided to expound the main result.

2 Preliminaries

Firstly, we recall some concepts of fractional calculus [2] and a property for nonlinear fractional differential
equations.

Definition 2.1. The left-sided Riemann-Liouville fractional integral of order o« € C (R () > 0) of function x(t) is
defined by

t
1
T4 x(t) = —— / (t =) x(s)ds, t>a.
ot T'(q)
a
where I is the gamma function.

Definition 2.2. The left-sided Riemann-Liouville fractional derivative of order ¢ € C (N (q) > 0) of function x(t)
is defined by

t
Dg+x(t) = F(%—q) (%) /(t —5)"" 9 x(s)ds, n=[R(g)]+1,t>a.

By Lemma 2.2 in [11], the initial value problem

Daq+u(t) = f(t,u(t)), qe€Cand R(g) <€ (0,1),1te€a,T], @

jal;qu(a) =ug, uq€C,

is equivalent to the following nonlinear Volterra integral equation of the second kind,
Uq

t
u(t) = ) (t—a)?' + %q)/(z —5)97 £ (s, u(s))ds. 5)




DE GRUYTER OPEN The general solution of impulsive systems with Riemann-Liouville fractional derivatives —— 1127

3 Main results

Define a piecewise function

t

u(r)—— Tl ¢ —n)? ‘+m (t — )71 f(s,u(s))ds

fort € (¢, tx41] (Where k =0,1,2, ...,m)

with Ja u(tk ) = T3 Tu(t;) + Ak (u(t)). By Definition 2.2, we have
t r -
1 d
DY) = s 4 [ =0 T (=07 /(n—s)q Uf(s,u(s))ds | dn

t
= ;i _ o 1—g—1 _ q— _ya—1
T T(-¢q)T(q) dt ;[([ m Ta it ud) (=1 +/(n $)?1 f(s.u(s))ds | dn

f(t7u([))|t€(tk,tk+l]

So, u(t) satisfies the condition of fractional derivative of (1), and it doesn’t satisfy the condition (3). Thus, we
assume that #(¢) is an approximate solution to seek the exact solution of impulsive system (1).

Theorem 3.1. Let £ be a constant. A function u(t) is a general solution of system (1) if and only if u(t) satisfies the
[fractional integral equation

t

+ b (t — )97V f(s,u(s))ds fort € (a,t1],

F( ) L))
I'M(Z) (t—ayl+ T(q) /( — )97 f(s,u(s))ds + Z F(())) (t —1;)7!
u(t) = i=1 o
Z F’Z(; ) Ug (t _a)q_l + / ([ _S)q_lf(S,u(s))ds

ti t
— | uqg + / f(s,u(s)ds | (¢t —t,-)q_1 — / (t —s)q_lf(s,u(s))ds fort € (tx, tx 411,
a ti

provided that the integral in (6) exists.

Proof. “Necessity”. First we can easily verify that Eq. (6) satisfies the hidden condition (3).
Next, Taking Riemann-Liouville fractional derivative to Eq. (6) for each ¢ € (tx,fx41] (where k =
0,1,2,...,m), we have

i (@)

Na—1
) (r—1;)7

DY u(r) =

/ (= S utsds + 3

i=1

D+ F() T

Z F?q(; ) Ug (t —a)?™! +/(I—S)q_1f(s,u(s))ds

ti t
i / Flsouls)ds | (¢ — )91 = / (t — )9 f(s,u(s))ds
a t
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k
= {f(f,u(f))tza & A (D) [f@u®)iza = fEu@)) 4]

i=1 }te(tk,tkﬂl

= f(, “(f))|te(tk,tk+1] :

So, Eq. (6) satisfies Riemann-Liouville fractional derivative of system (1). Using (6) for each tx (here k =
1,2,...,m), we get

.7 u(t )—J, u(tk)

1
B 1 g1 B 1 _ 1—g—1
—{m_q)a/(r D' u(n)dn} {m_q)a[(r D' u(n)dn}

t tk t
= Mg (u(rp)) — EAk (u(r) |:”a + / S (s u(s))ds — (ua + [ f(&M(S))dS) - / f(&M(S))dS}
a a 175

1=t t=1

t—>1
= Ay (u(tk_)) .

Therefore, Eq. (6) satisfies impulsive conditions of (1). Then, Eq. (6) satisfies the conditions of system (1).
“Sufficiency”. We prove that the solutions of system (1) satisfy Eq. (6) by mathematical induction. By Definition
2.1, the solution of (1) satisfies

_ _Ya q—=1_, _° q—1
u(t) = @) t—a) + T'(q )/(t )17 f(s,u(s))ds fort € (a,tq]. @)
By (7), we have J. u(t+) u(t )+ Ay (uy )) = uqg + A (u(tl_)) + f;l f(s,u(s))ds, and the

approximate solutlon u(t) (fort € (t1 tz]) is given by

i(t) = m u(t+)(t —1)? !+ m / (t — )47V f(s,u(s))ds
_ug + A (u(t)) + /él f(s,u(s))ds 1 1 _1 ®
= o =)'t s / (t )7~ £, u(s))ds

fort € (t1,12],

with ey (#) = u(t) —u(¢) fort € (¢1,12]. By

Al(ul(ir?))eou(t) = r(q) (t—a)? ! + r(q) / (t — )97 f(s,u(s))ds (for t € (11,12]),

we get
a0 avgutiy o M T
1 Ug +f;' f(s,u(s))ds _1
- fa +m/("”q Fs.u(s))ds — H IS e

_ 41
F( )[(t s) f(s,u(s))ds.
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Then, we assume

a0 =0 (M) m ()

_ t 1
_ "(A‘F((”;()’l”) [u (—a)' + / (t — )9 f(s.u(s))ds — (u + f f(w(s))ds) (t —11)4~!

t
_/ @ —S)"_‘f(s,u(s))ds} .
31

where function ¢ (.) is an undetermined function with ¢ (0) = 1. Thus,

u(t) = ii(t) + e (¢)

F(){ (A1) {u t-a)”! [(r 977 1 u(s))ds} + ML) @ —m)

+[1=0o (A1 (u()] |:(”a +/f(s,u(S))dS) - '+ / (r —S)"_lf(s,u(S))dS}}
a n

fort € (t1,12].

&)

Using (9), we getj u(t y=J) Thu(ty)+ Az (u(ty)) = ua+ A (uty))+ A2 (u(tz_))—l—fé2 f(s,u(s))ds.
Therefore, the approx1mate solution 1(z) (for ¢ € (22, t3])is given by

1

i) = 5 (T7 ) =) % (=577 f(s u(s))ds
a4 Ay (D) + Ao (@) + [ f (s uls)ds ) . (10)
- o (- 4 s / (1 =54 (5, us))ds

fort € (12, 3]

with ex () = u(t) — u(t) for t € (¢2, t3]. Moreover, by (9), the exact solution u(¢) of (1) satisfies

Al(u(ltilrin))ﬁoy u(t) = r”(‘;) (t—a)? ' + r( )/(t—s)q V(s u(s))ds fort € (t2,13],
Ao (u(t3))—0
Al(ul(itrlg))—>0u(l)

=T {o(Az(u(rz ) [u t—a)?! / t—s) 1 £, u(s))ds} + Ao (u(ty)) (t — )77

[ = o (An))] Ku + / £6. u(s))ds) (- 1)1 + / (t — )91 £Gs, u(s))ds} }
a 12}

fort € (12, 3],
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u(t)

lim
Ax(u(ty )—0

!
= %q) {0’ (Al(u(tl_))) |:ua (t —a)"_l +a/([ —s)q_lf(s,u(s))ds:| + Al(u([l—)) ([ _tl)q—l

151 t
+[1=0 (A1 (@))] |:(ua —l—/f(s,u(s))ds) (t—11)97! +/(z—s)q—1f(s,u(s))ds}}
a 131

fort € (t2,13].

Therefore,
Al(u(ltilr_n))—m, e2lt) = Al(u(llil_m))—>0, () — )
Az (u(t5))—0 Ao (u(t5))—0
t [5)
= F(lq) |:ua (t — a)q_1 + / (t =) f(s,u(s))ds — (ua + / f(s,u(s))ds) (t — tz)q_1 (11)
) a a
—/ (r —S)q_lf(s,u(S))dS} ,
%)
ALEED)—0 )=, D)o tu(t) — (@)
B t
- 2(Ea06)) {u ()" [ (t =)™ Fs.u(s)ds .
15) t
— | ua + f(&M(S))dS) - = [« —S)”_lf(S»M(S))dS} )
[ /
Az(u}it?))eo e2(t) = Az(u%iz?))ﬁo{”(t) — )
B t
= %q) {a (At (u(ty))) | ua (t —a)? 1 4 / (t —s)q_lf(s,u(s))ds:|
+ A () (=) = A (= 12)7 7
_ . ) (13)
+ [1 — U(A](u(tl_)))] (ua + / f(s,u(s))ds) (t—m)? '+ / (t — )71 f(s, u(s))dsi|
L a 151

153 t
_ (ua + A1 (u(ty)) + / f(s,u(s))ds) (t —12)‘1—1 _ f (t —s)‘l—lf(s,u(s))ds} .
a 15
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Then, by (11) — (13), we obtain

t
ea(t) = % {[o (A1) + 0 (A2l ) — 1] [u ((—a) '+ / t —s)"—‘f(s,u(s»ds}

+ A D) (=) = A ) ¢ —12) 97!

1 t
+ [1 —O(Al(u(tl_))] |:(ua + / f(s,u(s))ds) (t—t)9 1+ / (t —S)q_]f(s,u(s))ds:|
a 31

%) t
-0 (Az(u(tz_))) |:(ua + / f(s,u(s))ds) (t — tz)q_1 + / (t —S)"_lf(s,u(s))ds:| } .
a 12

u(t) =u(t) +ex(t)

(14)

Thus,

_ L
- T(g)

+ AL =)+ Ao u(t3)) (1 — 1) !

1 t
+ [1 —G(Al(u(tl_))] |:(ua + / f(s,u(s))ds) (t—1)9 1+ / (t —s)q_lf(s,u(s))ds:| (1)
a 5]

%) t
1= o (A )] {(n + / 1. u(s))ds) (=) 4 / (t — )7 £, u(s))ds} }
a 15

fort € (t2,13].

t
{[o (Al(u(tl_))) +o (Az(u(tz_))) - 1] |:ua (t —a)q_1 + / (t —S)q_lf(s,u(s))ds:|

Moreover, letting t» — 1, we have
DZ u(t) = f(t,u()), g € Cand ‘R(q) €(0,1), t € (a,t3]and t # t1 and t # 17,
. 1—q 1—q
Jim A7) = T ) = T = M), k=12 (16)

jal_l’_ u(a) =1uUqg, Uug €C,

Dg+u(t) = f(t,u(t)) q € Cand ‘Yi(q) € (0,1), t € (a,t3] and ¢ ;é t1,
A(j;;qu)’tztl = T} ) = TG + T ) - 7))

= A1) + Ao (u(ty)),
ja];qu(a) =ug, ug €C,

an

Using (9) and (15), we have 1 — (A1 + Az) = 1 —0(A1) + 1 — 0(A»). Letting p(z) = 1 — o(z), we get
p(z + w) = p(z) + p(w) for Vz,w € C. So, p(z) = &£z, here £ is a constant. Thus,

u(t) = 165 (=) 1*%/“ 971 (s,ue))ds + 1?’(2;_)) (=)™
- %q(;l_” {u (t—a)’'+ / (t =971 f(s,u(s)ds (18)

131 t
- (ua +/f(S7M(S))ds) (t—11)471 —/(t—s)q_lf(s,u(s))ds:| fort € (11, 12).
a 1
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and

t

Ar(u(ty))

u(t) = m (t—a)? '+ % (t =) f(s,u(s))ds + T (t —11)4"!
— _ t
DD p0-t_ EAIOGT) [ e
15} ¢
) (” +f 1 (S’"@)ds) O K —s)q_lf(S,u(s))dS:| (19)
a i

¢
(i) et e
7I‘(q) |:ua (t—a) + a/ (t—ys) f(s,u(s))ds

15) t
- (ua + / f(s,u(s))ds) (t—1)? 1 = / (t —s)"_lf(s,u(s))ds:| fort € (t2.13].

Next, for ¢t € (¢, t+1], suppose

1 (u(t)) e
u(t) = (q) + m/(r—s)q fGs, u(s))ds+lzgﬁ(l—t,)q
1
Z rz(461(; {u“ O +a/(’ — )27 f(s,u(s))ds 20)

!
— |:ua + / f(s,u(s))ds:| (t—t)? 1 = / (t —s)q_lf(s,u(s))ds} fort € (ty, th+1].
a t:

Using (20),we have
In+1

j u(tn_H) = u(tn_H) + Ap1(uty4q)) = ua + Z A (u(t;)) + / f(s,u(s))ds

Thus, the approximate solution % (¢) for t € (t; 41, tn+2] is given by
i) = = (TG D) € =g+ / (=7 S5, u6))ds
- F(q) a+ n+1 n+1 F( )
In+1
g+ YIE A @) + [ f(su(s))ds 1 1 1)
- o (=t 4 mt / (t=9)7" flsu(s)ds
n+1

fort € (tn+1.tn+2]

with e,,4-1(¢) = u(t) —u(t) fort € (ty+1,tn+2]. By (20), the exact solution u(¢) of (1) satisfies

li =
Al(u(ll_;gn—>0, ult) I'(q)

t
+ F(lq)/ (t = )77 f(s.u(s)ds fort € (tny1.tatal,

'An+1 (u(t;+]))—>0
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lim u(t)
Aj(u(t;)—0,
1<j=n+1
1o Aj (u(;))
Ua -1 -1 4 A g—1
= (t—a)?" + = | ¢ =97 f(s,u(s))ds + (t—1)
I'(q) T'(q) 1<i§n:+l T'(9) ’
a =l= .
and I 7% J

_ t
> gAil“(?q(;i)) {”a t—a)?™! +/(t—S)"_1f(S,M(S))dS

1<i<n+1,
and [ #J

t; t
- |:Ma + / f(s,u(s))ds:| (t—1)77 1 = f (t —s)q_lf(s,u(s))ds} for € (tn+1.tn+2].
a ti

Therefore,
Al(u(tl_lgn—)O, en+l(l) - A](u(tl_lgn—>0. {M(l) - M(I)}
:An—H (u(t;+1))—>0 :An+1 (u(t;+1))—>0
14 In+1
= F(lq) |:ua (t —a)‘l—l + a/ (t — )97 f(s,u(s))ds — (ua + E[ f(s,u(s))ds) (t —[n_H)q—l (22)
t

- [ =9 punas |.

th41
Aj (u(l;ffn))eo, ent1() = A,,(u(lgfrrl))ao, () —u@®);
l1</j=<n+1 1<j=<n+1

t
= % - 1<i§z+l EA; (u(1])) {ua (t—a)?! +/(l—s)"_lf(s,u(s))ds:|
and i % a
+ D A (@) =)
1<i<n+1
and I 7]
L t 23)
Y A ) Ku +f f(w(s))ds) -0+ [ —s)q—lf(s,u(s))ds}
1<i<n+1 a i
and I F# ]
In+1
S D G R O e
lﬁi.in.—i-l a
and 1 #J

t
- / (t—s5)471 f(s,u(s))ds} )

n+1
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By (22) and (23), we obtain

t
a1 == 1= 5 8 D) [ |wa =+ [ =90 Funds

@) l<i<n+l1
+ Y A E) =TT = Y A () = tar )T
l<i<n+1 l<i<n+1
i t (24)

+ Y EA () | | na + / flsu(e)ds | (¢ —1)?7 " + [ (t — )7 f(s,uls))ds
I<i<n+1 p g

th+1
— /f(v u(s))ds (t—t,hul)q1 /(t )94~ lf(s u(s))ds

a th+1

Thus,

u(t) = u(t) +en+1(1)

n+1 u(t ))

/(r—s)q e u(s))ds+2 F =)

r() *m

n+1
Z F:lq(; D da-ar s / (t — 591 £(s, u(s))ds

ti t
~|wa+ [ ssutonds | @ =0 = [ @ =97 fouteNds | fort € Gtz

So, the solution of system (1) satisfies Eq. (6). So, impulsive system (1) is equivalent to the integral equation (6).
The proof is now completed. O

4 Example

For system (1) it is difficult to get the analytical solution when f is a nonlinear function in (1). So, a linear example

is given to illustrate the obtained result.

Example 4.1. Let us consider the general solution of the impulsive fractional system

1
D2 u(t)=t, te(1.3]andt #2,
—1 1 —1
A(j1+2u) =714 2u@T) -7, 2u@7) =8 R, (25)
=2
1

1
Ty 2u(l) =uo €R,
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By Theorem 3.1, the general solution of impulsive system (25) is obtained as follows

, fort € (1,2],
r) / (1.2]
(t—) 2+—/(t—s) 2sds+ (t—2) 2
u(t) = (26)
1 1 z

— S—‘i up(t—1"2 +/(t —5) 2sds — | uo +/Sds t—-2)"2 —/(t —5) 2sds

')

1 2
fort € (2,3].
Next, it is verified that Eq. (26) satisfies the condition of system (25). Taking Riemann-Liouville fractional derivative

to the both sides of Eq. (26), we have

(i) fort € (1,2]
t n
3w = +i[<r—n>1“ —(n—1>%‘1++/(n—s>%‘lsds dn _
rd) 9 rd) rd) re.2l
1 te(1,2]
(ii) for t € (2,3]
1 A .
DZu) = e [e—n2 ™ ) z+—/(n—s) Bads + b g2 - o
1 2
te(2.3]

2
1 ; 1 F
x|luo(m—1) 2 +/(n—s)_§sds— uo—i—/sds (n—2)_§—/(n—s) 2sds | ¢ dn
1 2

={tl;> — &8

t 1 2 1

d 5—1 -3

X 4t < t—mn)2 u sds -2)" 2 — —s) 2sds |d
li>1— rd >r<>d /( n) o+/ (n—2) /(n ) n

2 1 2 te(2,3]

={tly=1 —&8[1t];1 — l|122]}ze(2,3]

= 1lie2.3]
So, Eq. (26) satisfies Riemann-Liouville fractional derivative condition of system (25). By Definition 2.1, we obtain

1 1
j1+2“(2+)_s71+2u(2_)
t . t .
=J_ 1 | g_—m27! d _ 1 /t— 7—1 d
e ][ U e o L O
— t — 2 —1 2
1 )[( 02~ o (1= 1)

¢
1 1
s >—1 5—1
—_— t—n)2 -2)27'd
o [T -2 ey
t—2+
f 1 : 1
/(n—s) 25ds — u0+/sds (n—2)_§—/(n—s) 2sds | dn
2 t—2+

1
t

t 2

=6—£&§5 uo—}-/sds— uo—}-/sds —/sds
1 2 t—2+

1

=4.
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That is, Eq. (26) satisfies impulsive condition in system (25).

Finally, it is obvious that the Eq. (26) satisfies the following limit case

1
DEu@)=t, te(1.3andt #2,

1 1 1
1—5 1—5 1—5
li A 2 — 2 2+ _ 2 27) = R
520 (j1+ u Jip Tu@T) =T Tu@T) =5 €R,
t=2
-1
jH_Zu(l):uoe]R,

1
D2 u@)=t, te(1,3],
_ 1+l 27)

1_7
j1+2u(1) =up € R,

So, Eq. (26) is the general solution of system (25).
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