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Abstract: This paper addresses the problem of robust fault-tolerant control design scheme for a class of Takagi-
Sugeno fuzzy systems subject to interval time-varying delay and external disturbances. First, by using improved
delay partitioning approach, a novel n-steps iterative learning fault estimation observer under Hs, constraint is
constructed to achieve estimation of actuator fault. Then, based on the online estimation information, a fuzzy
dynamic output feedback fault-tolerant controller considered interval time delay is designed to compensate for
the impact of actuator faults, while guaranteing that the closed-loop system is asymptotically stable with the
prescribed Hoo performance. Moreover, all the obtained less conservative sufficient conditions for the existence of
fault estimation observer and fault-tolerant controller are formulated in terms of linear matrix inequalities. Finally,
the numerical examples and simulation results are presented to show the effectiveness and merits of the proposed
methods.
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1 Introduction

In real world, most physical systems are nonlinear and many researchers have been seeking the effective approaches
to control nonlinear systems. Among these, there are growing interests in Takagi-Sugeno (T-S) fuzzy model based
control [1, 2]. It has been proved that T-S fuzzy models can be used to approximate a wider class of nonlinear
system, which are realized by piecewise smoothly connecting a family of local linear models with fuzzy membership
functions. This "blending" makes the subsystems of T-S fuzzy model similar to linear systems, and the fruitful results
of linear system theories can be directly applied for the stability analysis and synthesis of nonlinear systems [3-7].
A great repercussion of T-S fuzzy models can be verified in many practical fuzzy model based control systems (see,
for instance, [8—14] and references therein).
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Due to an increasing demand for higher performances, the random noises and uncertainties commonly exist in
practical control systems [15], where various system components such as actuators and sensors may be subjected to
unexpected failures during their operation. The effects caused by these failures require appropriate compensation to
ensure the system reliability and safety. For this purpose, research into fault estimation (FE) and fault-tolerant control
(FTC) for T-S fuzzy systems (T'SFSs) has been carried out for many years [16-20]. Since measuring all of the internal
states of physical systems may be difficult and costly, and only their outputs are available for control purpose, output
feedback T-S fuzzy controllers were preferred. Especially, in [17], an unknown input observer with disturbance-
decoupling ability is designed to perform actuator fault detection for discrete-time TSFSs. Bouarar et al. [19] study
the problem of FTC by trajectory tracking for uncertain nonlinear system described by Takagi-Sugeno models, where
the considered faults are constant, exponential or polynomial. In [20], a robust fault-tolerant controller based on static
output-feedback controller design approach is developed to solve the problem of a robust fault estimation and FTC
for vehicle lateral dynamics subject to external disturbance and unknown sensor faults. However, the robust FTC
based on dynamic output feedback for T-S fuzzy systems has not been studied adequately.

On the other hand, it is well known that time delays are frequently encountered in various engineering
and communication systems, and a time delay in dynamical system is often a primary source of instability and
performance degradation. Therefore, it is important to develop FE and FTC methods for TSFSs with time delays
[21-27]. More recently, in literature [21], a fuzzy descriptor learning observer is constructed to achieve simultaneous
reconstruction of system states and actuator faults for T-S fuzzy descriptor systems with time delays. By constructing
a virtual tracking model, [22] deals with the output tracking control problem for a class of continuous-time markovian
jump systems with time-varying delay and actuator faults. Based on the (k — 1)th fault estimation information, a
k-step fault estimation observer is proposed to estimate the actuator fault of time delay TSFSs in [23]. By utilizing
the input delay approach, literature [24] deals with the robust fault tolerant controller design of networked control
systems with state delay and stochastic actuator failures. In [25], based on a multiple Lyapunov functions and the
slack variables, fault tolerant saturated control problem for discrete-time T-S fuzzy systems with delay is studied.
In [27], the adaptive fault estimation problem is studied for a class of T-S fuzzy stochastic markovian jumping
systems with time delays and nonlinear parameters. It should be pointed out that the type of time delay considered
in all the aforementioned works is constant 7(f) = 7t or 0 < ©(¢) < t, the lower bound of delay is restricted
to 0, which is not more general. The interval time-varying delay, 0 < 71 < 7(¢) < 12, has been identified from
many practical systems, especially the networked control systems. However, the delay-dependent fault estimation
conditions proposed in [21-27] fail to give a feasible solution. Therefore, based on the above analysis and discussion,
by using dynamic output feedback control scheme to solve the problem of robust FTC for TSFSs with actuator faults
and interval time-varying delays is a meaningful research and motivates our study.

The aim of this paper is to develop a fault-tolerant controller design scheme for a class of TSFSs subject to
interval time delays and external disturbances. The basic idea is to construct a n-steps augmented system by taking
the fault as auxiliary disturbance vector, and design a fault estimation observer based on improved delay partitioning
approach. Then, utilizing the online fault estimation information, a fuzzy dynamic output feedback fault-tolerant
controller is designed to compensate for the impact of actuator faults. The main contribution of this paper lies in the
following aspects.

1. By using improved delay partitioning approach, a novel n-steps iterative learning fuzzy fault estimation observer
under Ho, performance constraint is constructed to achieve the estimation of actuator faults, and the less
conservative sufficient conditions for the existence of observer are explicitly provided.

2. A new type of fuzzy dynamic output feedback fault-tolerant controller considered interval time delay is designed
to guarantee that the closed-loop system is asymptotically stable with the prescribed Hoo performance.

3. All obtained sufficient conditions for the existence of observer and controller are formulated in terms of strictly
LMIs. Compared with the existing results, the proposed design schemes are with less conservative and wider
application range, simulation examples demonstrate the effectiveness of the proposed approaches.

The rest of this paper is organized as follows. The system description and problem formulations are presented in
Section 2. Section 3 presents the main results on robust fault estimation observer and fault-tolerant controller design



988 —— C.Sunetal DE GRUYTER OPEN

scheme. In Section 4, simulation results of numerical example are presented to demonstrate the effectiveness and
merits of the proposed methods. Finally, Section 5 concludes the paper.

Notations: Throughout the paper, R" denotes the n-dimensional real Euclidean space; I denotes the identity
matrix; the superscripts ”7” and ”-1” stand for the matrix transpose and inverse, respectively; notation X > 0(X >
0) means that matrix X is real symmetric positive definite (positive semi-definite); || - || is the spectral norm. If not
explicitly stated, all matrices are assumed to have compatible dimensions for algebraic operations. The symbol " * "
stands for matrix block induced by symmetry.

2 Problem formulation

Consider a nonlinear system which can be represented by the following extended T-S fuzzy time-delay model with
exogenous disturbance and actuator faults simultaneously.
Plant rule i: IF £ (¢) is M;; and ... and £, (¢) is M;, THEN

X(t) = Ajx(t) + A¢ix(t —t(t)) + Bi (u(t) + f(t)) + Bgid(t)
y(t) = Cix(t) + Cyix(t —t(t)) + Dg;d(t) (1
x(t) =¢;(t), ¥Vt € [-12,0], i =1,2,...,r.

where x(¢) € R" is the state vector, u(t) € RY denotes the input vector, y(t) € R’ stands for the system output
vector. d(t) € R™ is the exogenous disturbance input that belongs to L»[0, 00), f(¢) € R represents the possible
actuator fault. A;, A;, B;, Bgi, Ci, C; and Dg; are constant real matrices of appropriate dimensions. It is
assumed that the pairs (A4;, B;) are controllable, and the pairs (A;, C;) are observable, where i = 1,2,...,r.
£1(2),...,§p(t) are the premise variables, M;; (i = 1,2,...,r, j = 1,2,..., p) are fuzzy sets, ¢; () is a vector-
valued initial continuous function defined on the interval [—12, 0]. In this paper, it is also assumed that the premise
variables do not depend on the input variables u(¢), t(¢) is the time-varying delay and satisfies

O0<tp<t(t) <1, O0<i()=d @

where 71 and 75 are lower and upper bounds of state delay t(¢), respectively.
Through the use of fuzzy blending, the fuzzy system (1) can be inferred as follows:

X(1) = AW)x (1) + A ()x (1 — (1)) + B@)(u() + f(1)) + Ba (1)d (1)
y() = C0)x(1) + Cc()x(t — (1)) + Da(1)d (1) 3)
x(1) = (). 1 € [-12.0]

where

AW =Y i E@) AL Ac () = Y i (E@)Ai, B@) = Y pi(§()Bi, Da(t) = Y pi (1) Dai

i=1 i=1 i=1 i=1

Ct) =Y wiE@)Ci, Ce(t) = Y pi(EO))Cri, Ba(t) = Y pi(6(0))Bain(6) = Y i (E(@))pi (1)

i=1 i=1 i=1 i=1

Fuzzy basis functions are given by u; (§(1)) = B (§())/ Xj—1 B; (). Bi(€(1) = [17_; Mi; (£(1)) where
M;; (§;(¢)) represents the grade of membership of &; () in M; ;. It is easy to find that

Bi(§(1) =0, Bi(E1) > 0Vr, 1 (§(1) =0, ) i (E()) = 1 V1

Jj=1 Jj=1

Before proceeding further, we will introduce some lemmas to be needed in the development of main results
throughout this paper.
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X11 X12 X13
Lemma 2.1 ([28]). For any positive semi-definite matrices X = XIT2 X2 Xo3 | > 0, the following integral
T vT
Xi3 X23 X33
inequality holds:
£ z X11 X12 X13 x(1)
T . T T T T
- / X7 (s)X33x(s)ds < / " @) x" @ —T@) x" ()] | X{5, X2 Xoz | [x(t—7(t)) |ds
t—t(t) t—t (1) X1T3 X2T3 0 x(s)
Lemma 2.2 ([29]). For any constant matrix X € R"™ " X = X T > 0, scalar r > 0, and vector Sfunction

X : [-r, 0] = R” such that the following integration is well defined, then

0

. / Tt +5)Xx(t 4+ 9)ds < [xT () xT (¢t — )] [_; _);] [x();(i)r)]

—r

Remark 2.3. For T-S nonlinear system description (3), we can see that a general system is considered in this paper,
including possible state time delay, actuator fault and exogenous disturbance input simultaneously. If there is no
state delay, then (3) reduces to the existing one in [30]. Moreover, the lower bound of delay is not restricted to 0
as [23], which is even more applicable to networked control systems and other practical systems.

3 Main results

3.1 Actuator fault estimation

In order to estimate system faults, the n-steps iterative learning fault estimation observer is constructed as follows:

3n(t) =AWZn (1) + A (OFn(t — T(0) + BOW@) + fu(t) — Ly (@) Gn(0) — y(1))
In(t) =C(O)Xu(t) + Co()Xn (t — (1)) 4

Fa() = = Fa(@Gn(t) = y(©) + fnr (). n=1.2...N

where %, (t) € R” is the n-steps observer state, y,,(¢) € R’ is the observer output, and fn (t) € R4 is the nth step
estimate of fault f(¢), n = 1,2,..., N is the number of fault estimation steps. Then, the objective of estimating
actuator fault by observer (4) is to design the appropriate dimension gain matrices L, () € R"*!, F,(t) € R?*! in
the presence of disturbance and state time delay, where L, (1) = Y7 _; i (E(1))Lni, Fn(t) = Y7y i (E(t)) Fyi.

Let us define ex,(t) = Xa(1) — x(1), eyn(t) = Jn(@) — y (@), ern(t) = fa) = f(0), and el (1) =
el (), e;n 0], oF () = [dT (@), fT(t) — AnT_l(t)], then the error dynamic systems is deduced from (3) and
(4) as follows:

; én(t) =[A(t) = Ln()C ()]en(t) + [Ar (1) = Ln(1)Cr (D)]en (t — (1)) + [Ln (1) Da (1) — Ba (1)]wn (1)
eyn(t) =C(1)en(t) + Ce()en(t — T(1)) — Dg (t)wn (1)

where

&)

i |AOBO | o A0 5 o | Ba(t) 0| 5 = | Lu(0)
A(t)—[ 0 0 ]Ar(f)—[ 0 O]Bd(t)—[ 0 Iq]’L”(t)_[Fn(t)}

C) =[c@)0].Cct) =€) 0]. Da®) = [ Par) 0]
For simplicity, we introduce the following vectors:
traoy=tef @y el —ny---el(t—Nhyel (t —v1 —p8) el (t —2(t)) el (t — 12) 0l (1)]

T1(1) =[A@) = LE)C() 0 -+ 0 0 Ag(t) = L(0)Cr(t) 0 L(1)Dy(1) — Ba(1)]
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where h = 71 /n(n = 1,2, ..., N) is the length of each division, N is the number (a positive integer) of divisions of
the interval [—t7, 0] and is also the number of fault estimation steps in (4). The delay interval [t1, 7] is divided into
two subintervals with an unequal width as [t1, t1 + pd] and [t1 + p§, 12], where § = 72 — 171, 0 < p < 1. Then,
the state of error dynamics (5) can be rewritten as é,,(¢) = I'1 (¢){1 (¢). Therefore, the Hoo fault estimation observer
design problem to be addressed in this paper can be formulated as follows:

(i) The error dynamic system (5) with w, (¢) = 0 is asymptotically stable for any time-delay satisfying (2) when
n=1,2,..,.N;
(ii) For a given scalar y,,, the following Ho performance is satisfied:

L L
[||ef-n(z)||2dz < y,%/ lwn@O)?dt, n=1,2,...N (6)
0 0

forall L > 0 and wy (t) € L2[0, o) under zero initial conditions.

Theorem 3.1. For the given scalars 11, 12, 1, yn and 0 < p < 1, the error dynamic system (5) is asymptotically
stable with wy, (t) = 0 while satisfying a prescribed Ho performance (6), if there exist matrices P > 0, Q, > 0,
Y11 Y12 i3
W, >0n =12,..,N),S1 >0, 85 >0,S3 >0 R >0, Ry >0, Y = Ylg Yoo Yo3| =0, Z =
Y 17; ng Y33
Z11 Z12 Z13
ZlT2 Zy Zo3 | =0and Yy, (i = 1,2,...,r), such that the following inequalities hold
zI 71 Z33

Hii<0 i:1,2,...,r (7)
; +;; <0 1<i<j=<r 3)
and
Ry —Y33>0, Ry—Z33>0 ©
where
1 &2 7
®;; @i T
M; = * cpfj J
x =P +n2(Cn) B2 W + pSRy + (1— p)Ry) |
with o .. .. _
i ij ij
oYy Wi o 0 0 0Dy n43 0PV nys)
1 % ®op o 0 i 00 0 0 0
@ = T Py =
* ok e Dy Wn O 0 0 0 |
SN+DHN+1D) PN+DH(N+2) PV +D(NV+3) 0 0
, * S N+2)(N+2) PNv+2)(N+3) Pv+2y(v+4) O
;= * * Pv+3v+3) Py v+ 0
* * * dv+aN+a 0
* * * * —y2I

O = (PA; = YniCj) + (PA; = Yi C))" + Q1 = Wi + Iy
q)ilj;N-l—3) =PA,; — Ym-(:‘tj7 qDﬁN-}-S) = Ynide — PBy;
Ppun=—-0n-1-Wn1+0n—Wy, n=2,3,...N, I_qT =10 Iq] (1o
ON+1H(V+1) = —ON — WN + S1 + S2 4 p8Y11 + Y13 + Y

DN42)N+2) = S3— S2 4+ p8Y22 — Yoz = Y5 + (1= p)8Z11 + Z13 + Z{5
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SN +ayN+4) = —S3 + (1 = p)8Z22 — Z23 — 73, (11
Tiij = [(PA; —=YniCj) 0 -+ 0 0 (PAr; —YpiCrj) O (YniDaj — PByai)
Case 1: whent1 < 1(t) <11 + pé

PN +1)(N+3) = p8Y12 — Vi3 + Vs,

PN +2)(N+3) = p8Y (5 — Y5 + Ya3

PN +2yN+a) = (1 = p)8Z12 — Z13 + Z33, (12)
PN+3)(N+4) = Pv DV +2) =0

O N43N+3) = —(1—d)S1 + pSYi1 + Y13 + Y5 + p8Yar — Yoz — V5,

Case 2: when t1 + p6 < t(t) < 12

DN+ (N+2) = p8Y12 — Y13 + V.5,
O N42)(N+4) = Pv+D(N+3) =0 (13)
PN42N+3) = Pvayv+a = (1 —p)8Z12 — Z13 + Z1;

SNty N+3) = —(1=d)S1 + (1= p)8(Z11 + Z22) + Z13 + Z{3 — Za3 — Z33,
Then the observer gain matrices can be obtained as follows:

L .
Lpi = [Fm-] =P %, (n=1,2,..,N)
ni

Proof. The following novel Lyapunov-Krasovskii functional candidate is constructed to prove system (5) is
asymptotically stable with Hoo performance.

V(xe ) = Vi(xe t) + Va(xe, 1) + Va(xy, 1), (14)
where

Vi(xe,t) =el (t)Pen(t),

N I[—(n—Dh t—11
Ban=Y [ d00aoist [ dosieods
n=l ; hp t—t(t)
t—1 t—11—p08
+ / enT(s)Szen (s)ds + / eZ(S)S3en (s)ds,
t—t1—p8 t—12
N —(=Dn 1 -7 z
Va(xr.) =Y / / e ()W én (s)dsdb + / / ¢T(s)R1én(s)dsdb
n=l _,n (16 —T1—p8 t+6
—T1—p8 t
+ f /énT (5)R26, (s)dsd,
-T2 (46

where the unknown matrices P > 0, S > 0, S > 0,83 >0, R; >0, R, >0, Q;, > 0and W, > O0(n =
1,2, ..., N) are to be determined.
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Then, the time derivatives of V' (x;, t) along the trajectories of the argument systems (5) satisfy

Vi(x 1) =el (O[P(A®) — Ln()C (1)) + (At) — Ly (1)C (1))T Plen(t) + 2¢1 (1) P(A: (1)
— Lo Cr(t))en(t — (1)) + 2eL (1) P(Ln(t) Dy (t) — By (t))wn ()

N N
Va(xr,t) =) ey (1 —(n = Dh)Quen(t — (n— Dh) = Y ef (t —nh)Qnen(t —nh) + e (t —11)S1en(t — 1)

n=1 n=1
—(L=t@)ef (1 =) S1ea(t —T(1)) + €;) (t = T1)S2en(t —T1) —€,) (t — T1 — p8)Saen(t — 71 — pb)
+el(t — 11 — p8)Szen(t — 1 — p8) — e} (t — 12)Szen(t — 12)
N N t—(n—1)h
Va(xr t) = D e (O Waén(6) = > / el ($)hWyén (s)ds + éL (t)pSR1é, (1)

n=1 n=1 t—nh
—11 t—11—p08
- / ¢L()R1én(s)ds + ¢L (1) (1 — p)SRaén () — / ¢L () Raén (s)ds
t—t1—p08 t—12
N

=T ()Y W2Wy + pSRy + (1 — p)SR2)én (1)

n=1
N t—(n—1)h t—11
=Y [ demnand- [ do® - s
=l un t—t1—p8
t—11 t—11—p08
- / 6T (5)Y33én (s)ds — [ 6T (5)(Ra — Z33)én(s)ds
t—11—p8 =12
t—11—p38
- / 6T (5)Z336n (5)ds

1—12

15)
Case 1. When 71 < 7(¢) < 11 + pé, the following equations are true:

t—11 t—11—p38

- / é;(S)Y33én(S)dS - / é;(S)Z33é‘n(S)ds

t—t1—p8 t—12 (16)

t—t (1) 1—711 t—11—p8
—— [ domaeds- [ dovaeds- [ d6zaeds
t—t1—p8 t—t (1) 1—12
Using Lemma 2.1 and the Leibniz-Newton formula, we have
(—7(0)
- f é (5)Y33én (s)ds
t—11—p8
A Yi1 Yi2 Y13 en(t — (1))
< / el (t—t@) el (t —t1—=p8) ¢f (N | Y5 Yoz Ya3 | |en(t — 11 —pd) | ds
1—t1—p8 Y Y5 0 én(s)
<ey (t —()[p8Y11 + Y13 + Y5len(t — T(1)) + 2¢; (1 — T(1))[p8Y12 — Y13 + Y55]
X en(t — 11— pd) + e} (t — 71 — p8)[p8Y22 — Ya3 — Ylen(t — 11 — pb)

amn
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Similarly, we obtain
1—11
T .
- [ dorasas
t—1(1)
T T T T
<e, (t —t)[péY11 + Y13 + Y13]en(t —11) + 2e, (t —t1)[pdY12 — Y13 + Y23]
t—11—p8 (18)
X en(t — (1)) + e} (t — T(1)[p8Y22 — Y23 — Yo5]len(t — (1)) — / ér (5)Z33én(s)ds
1—12
<ep (t —11 = p8)[(1 = P)SZ11 + Z13 + Z{3len(t — 11 — pd) + 2e,) (t — 11 — p&)
x[(1=p)8Z12— Z13 + ZHlen(t — 12) + €] (t — ©2)[(1 — p)§Z22 — Z23 — Z23]en(t — 12)

Substituting (16)-(18) into (15), a straightforward computation gives
V(t)+e),(ern(t) = viol (o t) = V() + el () IgI] en(t) — yior (Dwa ()

N
=T (@@ + T OCY W Wa + p8R1 + (1 = pSRIT1(1))510)

=l (19)
t—11 1—11—p08

- / 6T (5)(R1 — Y33)én(s)ds — / 6T (5)(Rz — Z33)én(s)ds

t—11—p8 =12

When R; — Y33 >0, Rp — Z33 > 0,and 11 < 7(¢) < 11 + pd, the last two terms in (19) are all less than 0. Then,
for any scalar 7 > 0, it follows from the fact —PR™!P < —2nP + n?R and Schur complement theorem, we can
see if the following inequalities hold

o | @0 rl@p
0= [ £ =P 4PN W+ pSRa + (1 —p)6R3>] = 0

one has V(1) + e/fn (Dern(t) — y2ol (t)o,(t) < 0. By noticing V(L) > 0 and V(0) = 0 under zero initial
conditions, we can conclude that (6) holds for all L > 0 and any nonzero w;,(t) € L2[0,00). Hence, with the
changes of variables as Y, (f) = P L, (t), we have

r r r
Ei() = ) piEO) i + Y Y Oy @) + 1) <0
i=1 i=li<j
which imply that the error dynamics (5) satisfies the prescribed Hoo performance (6).
In addition, by choosing the same Lyapunov function as (14) and following the similar line in the earlier
deduction under conditions (7)-(9), we can easily obtain that the time derivative of V(x;,¢) along the solution of
error dynamics (5) with w,, (f) = 0 satisfies V' (t) < 0, which indicates the asymptotic stability of systems (5).

Case 2. When 7] + p§ < t(¢t) < 12, the following equations are true:

-1 t—11—p8
- / ¢l (5)Y336n (s)ds — / ¢L(5)Z33én(s)ds
t—t1—p08 1—12
—11 t—t(1) t—11—p08
—— [ domaeis- [ dozmaeis- [ doznin0d
1—11—p8 =12 t—1(1)

The proof can be completed in a similar formulation to Case 1 and is omitted here for simplification. This completes
the proof of Theorem 3.1. O
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In order to compare our results with the existing ones, based on the improved delay-decomposing approach of
Theorem 3.1, we suggest to develop a delay-dependent stability condition for the nominal unforced fuzzy system
of (3), which can be written as

X(t)=AW)x(@)+ Az ()x(t — () + Ba(t)d(t)
(@) = C(0)x(1) + Cc(t)x(t — (1)) + Da()d(1) 2D
x(t) = ¢(1), t € [-12,0]

Corollary 3.2. For the given scalars t1, 12, d and 0 < p < 1, the system (21) with d(t) = 0 is asymptotically stable
for any time-varying delay t(t) satisfying (2), if there exist matrices P > 0, Q,, > 0, W, > 0(n = 1,2,...,N),

Y11 Y12 Y13 Z11 Z12 Z13
$1>0,8>08>0R >0 R >0Y =|YL Yo Yo3|>0,Z=|ZL, Zs5 Zr3 | =0, such that the
YL YL Va3 zZI 71 Z33

following set of inequalities hold:

_ |91 6
@,_|:* @g:|<0

and
Ry —Y33>0, Ry—Z33>0
where ' )
(H)’” wy .- 0 0 0®1(N+3)0®11(N+5)
) * Pop -0 0 0 0 0 0 0
0 = .0 =
* * oo Dyy Wn O 0 0 0
S N+DHN+D) Pv+DH(N+2) PV +D(V+3) 0 0
s Pv+(N+2) Pov+y v+ Pavtyv+a O
0; = * * PN+3IN+3) PN+HN+4 Oy 13y (W +5)
k k X q>(N+4)(N+4) 0
* * * * O +5/(N+5)
) ) ) N
11 =PAi + A] P+ Q1 = Wi, Oy 13, = PAci, O (yys)=A] (D IPWy + pSR1 + (1 — p)3R2)
n=1
) N N
Oty 13y (vas) = AL (O kW + pSR1 + (1= p)SR2). Ov45(v+s) = —(D_ h*Wy + pSR1 + (1 — p)SR2)
n=1 n=1

and other elements of the matrix ®; in Case 1 and 2 are defined in (10)-(13).

Remark 3.3. 7o constrain the effect of input disturbance from f (t), different from the existing fault estimation
observer design result in [14, 21, 26, 27], [30, 31], the mformation of fn—1(t) is considered in the design scheme of
fault estimation observer (4), in which f(t) is converted to f(t) — fn_l (). Since fn_l (¢) is the estimate of f (1),

then - fn_l (t) can increasingly weaken the effect intensity of input disturbance from f (t) in the error dynamics.
Therefore, when the delay partitioning procedure change from one to N, we can see that FE observer based on the
N-steps time delay partitioning approach not only reduces the conservativeness of result, but also better depicts the
size and shape of faults with the increase of steps number N. The simulation examples illustrate the effectiveness
and merits of the design method.

Remark 3.4. Motivated by the delay partitioning approach in [32, 33], we divide the constant part of time-varying
delay [0, 1] into N segments, that is, [0, - ~ Tl [N 71, /%, 7], -, [% 71, T1], in which different energy functions
correspond to different segments. Moreover, the interval [t1, 12] is divided into two unequal variable subintervals
[t1,71 + pd] and [t1 + pS,12] (0 < p < 1,8 = 12 — 11) in which p is a tunable parameter. It is clear that both
the information of delayed state e, (t — 4y 11)(n = 1,2,3,...N) and e, (t — 11 — p8)(0 < p < 1) can be taken into
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account, the Lyapunov-Krasovskii functional defined in Theorem 3.1 is more general than the one in [4-7], [34-37].
Therefore, the result of fault estimation of Theorem 3.1 and the stability criterion of Corollary 3.2 can further reduce
the analysis and synthesis conservatism.

Remark 3.5. Based on such variable decomposition method, the improved FE observer (4) may increase the
maximum allowable upper bounds on 1> for fixed lower bound t1 while giving fault estimation, if one can set a
suitable dividing point with relation to p. For seeking an appropriate p, an algorithm is given as follows:

Step 1: For given d, choose upper bound on § satisfying (7)-(9), select this upper bound as initial value ¢ of 6.
Step 2: Set appropriate step lengths, 8step and psiep for 8 and p, respectively. Set k as a counter and choose k = 1.
Meanwhile, let § = 8¢ + 8step and the initial value po of p equals pstep.

Step 3: Let p = kpstep, if (1)-(9) are feasible, go to Step 4; otherwise, go to Step 5.

Step 4: Let 6o = 8, po = p, k = 1 and § = 80 + bstep, go to Step 3.

Step 5: Letk =k + 1, ifkpgsrep < 1, then go to Step 3. otherwise, stop.

3.2 Fault tolerant controller design

On the basis of the obtained online fault estimation information, we design a fault tolerant controller considering
interval time delay to guarantee stability in the presence of system faults. Since the state x(¢) is unmeasurable, we
use the fuzzy dynamical output feedback controller scheme [38] as follows:

Xe(t) = Ae(t,0)xc(t) + Aze(t, 1)xc(t — (1)) + Be(t)y(1)
u(t) = Ce(O)xe(t) + Cre(t)xe(t — T(t)) + Dey(@®) — £ (1) (22)
xc(t) = ¢(1), Vi € [-12,0]
where x.(t) is the state vector, A¢(f,1) € R™", Ao(t,1) € R B.(t) € R C.(t) € RI*", Cre(t) €
R9*" D, € R?*! are the designed controller matrices, and A (t,¢) = > ;_, Z;=1 wi (@) (E@)Acij,
Be(t) = Yioq mi(§(0)Beiy Ave(t,t) = Yi—q 25—y i GOy EW) Arcij, Cet) = Yi—g i (€@))Coi,

Crelt) = Yi—y i (E(1)Crei. Denote 7 (1) = (xT(1). xT (1)), es (1) = f(0) = f(1). &7 (1) = (dT (t). e} (1)),
then one can obtain the closed-loop systems

$() = At )T @) + A (1, 0)F( — 1(t)) + B (1, 1)@ () (23)
y(t) = C(OF() + Co(O)F(t — (1)) + Do ()3 (1)
where
- _ Ao+ B@oDCO) BOC)| - [Ac@) + BO)DCo(t) B()Cre()
A@.1) _[ B.(1)C(t) Ac(t.1) } Actt0) _[ Be(1Cr (1) Are(t.1) ]
. _ | BODeDq(t) + Ba(t) =B(1) |~ .\ _ SL() = Do (1) =

For simplicity, we introduce the following vectors:
do ="y @¢—h - 3T =Nh) Tt —1(0) Tt —w) &7 ()]
Ta(t, ) = [A(t,1) 0 -+ 00 Ac(t,1) 0 By (t,1)], T3(t) =[C(#) 0 --- 00 Cr(t) 0 Dyp(t)]
Then, the closed-loop argument systems (23) can be rewritten as

X(1) = Ta(t, 1)4a(t)
y(1) = T3(1)¢2(t)

So far, the problem of robust dynamic output feedback control for the closed-loop fuzzy system is to design the gain
matrices of (22) such that:

(24)
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(i) The closed-loop fuzzy system (23) with @(z) = 0 is asymptotically stable for any time-delay satisfying (2);
(i) For a given scalar y, > 0, the following Hs performance is satisfied:

L L
f ly)IPdt < 72 / ()2 25)
(0] (0]

for all L > 0 and @(t) € L>[0, 0o) under zero initial conditions.
In what follows, a useful lemma is needed, which is given here for completeness of the next theorem.

Lemma 3.6. For the positive scalars t1, T2 and Yy, the closed-loop system (23) with &@(t) = 0 is asymptotically
stable, and the prescribed Hso performance (25) is satisfied under zero initial condition for any nonzero &(t) €
L>[0, 00), if there exist appropriately dimensional matrices P > 0, Q, > 0, W, > 0(n = 1,2,..., N), S1 > 0,
S>>0, R >0, Ac(t,1), Azc(t,t), Be(t), Co(t), Cre(t), D¢ such that

D@y D@ 1) @i 1) vH(r)

N
U(t,t) = 2=t Wi 0 0 <0 (26)
* —R 0
* * * -1
where
(W (t,t) Wy -+ 0 0 PA(1,1) 0 PBy(t.1)]
* Wy co- 0 0 0 0 0
\Ij(l)(t’t) — * * BRSNS Wn 0 0 0
* * * \IJ(N+1)(N+1) R 0 0
* * * * YN +2)(N+2) R 0
* * * * * ‘I/(N+3)(N+3) 0
* * * * * * —)/21 i

Wii(t,1) = PAC )+ ATt 0OP + Q1+ S — W1 Upp = —-0pn1 —Wyu1 + On — Wy, n =2,3,..,N
YN+DWN+1) = —ON —WN + 851 = R ¥ nviywv+2) = —(1 —=d)S1 —2R, Y (n+3)(v+3) = —S2— R
N
V(1) =TS (6,1) Y Wa, ¥ (t,0) = (2 — )13 (1, 0OR, ¥ (1) =TT (1)
n=1

Proof. This proof refers to Theorem 3.1 and is omitted here for simplification. O
Theorem 3.7. For the positive scalars t1, 12, yn and 1, the closed-loop system (23) with &(t) = 0 is asymptotically
stable, and the prescribed Hso performance (25) is satisfied under zero initial condition for any nonzero &(t) €

L>[0, 00), if there exist appropriately dimensional matrices X, Y, M, N, Qn >0, W, > 0(n = 1,2,....N),
S‘l > 0, §2 > 0, R >0, Al‘j, /i”'j, éi, él‘, éri and D such that

Ei,‘<0 i=l,2,...,r (27)
Bij+&8;; <0 1<i<j<r (28)
where o o o “
N2 v v v v,
S| T2e (= Wa) o 0
1) * % _277¢+T]2R 0

* * * -1
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with
U Wy 0
* \1122 0
oD — | x ok Uy
ij
* *
* ok *
* ok *
| * % *

Wy

YN LDV R

*
*
*

VY =1+ DT+ 01+ 85+,

L(N+4) =

G liiﬁde + Bai —Bi
B;Dy; +YByi —YB;

i AiX—i-Biéj Ai—i-BiDACj
11 Aij YA; + B, C;

}’\/P

i|»\ilrm = —Qn—l - I/f/n—l + Qn - Wn, n=273.,N

Robust dynamic output feedback fault-tolerant control = 997

~ s

vt
0

0

A

1(N+2)

Yiv+aw+2)

*
*

ij —
I(N+2) —

0 VYN +a)
0 0
0 0
0 0
R 0
V(N +3)(N+3) 0
* —y21 i

~

Ari X + Biéfj A + BiDACTj:|

Acij

U vty =—0ON —Wn + 81— R V(v ioyv42) = —(1 —d)S1 — 2R,

\f 3 5 2
YN +3)v+3) = =52 — R, qllfj’ =h

Ao oii ij _
Iaij = [‘1’11 0 0Wy(y400 ‘I’l(N+4)]*¢ = { I

~

f~T

2ij

X

@ r
U =[ICX G100 [CaiX Co] 0 [Da 0]

1
Y

3 T
qj;j) = (1.’2 — ‘L’])rzl-j,

I

YA;; + éjC,i

Then, the gain matrices of the dynamic output feedback fault tolerant controller are given by

)

D¢ =D, Bei = N"Y(B; = YB; D), Coi = (C; = DC;X)M™ T, Cprpoi = (Cri = DCri X)M™T,
Acij =N"VA;; — (YA; — B;C)X)M~T + N71YB; C,.;,

Azcij =N YWAyij — (YAzi — BiCo ) X)M™T + N71YB; Cyej,

where M, N satisfy MNT =1 — XY

Proof. For any scalar > 0, by the Schur complement theorem and the fact ()R—P)R™ ' (yR—P) that —PR™' P <
—27P + %R, we can conclude that (26) holds if the following inequality hold:

v, 1)

— E3
Ea(t,t) =

*

el )P

—20P + P (Ch=y Wa)

*
*

—2nP + n°R

0

*

0
0
-1

(2 — )L (t.0)P TT (1)

<0

Then, we partition the symmetric positive definite matrix P and its inverse matrix P! into components

Since PP~ ! = I, where NT X + WMT =0, YM + NZ = 0, we denote F; = [

it follows that PF| = F5.

Let
(N+4)

.

YN
* W

B

XM
x Z

|

X I
MT 0

o]

I
oNT

(29)

Y i| then

Y = diag{F, F] ... F],Fl F[, F[l' I}, then, pre and post multiplying (29) by diag{Y! FI FI I}.
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(29) can be expressed as

e WY (1,1) (-l @) T
N
- o 2o+ 2= W) 0 0
uz(t,t) = 25 < 0
* —2n¢ +n°R 0
* * * —1
where
[D11(1.0) YIA/l e 0 0 Uy vy (1) 0 Uiy 44y (1. 1)]
* Yoy «oo 0 0 0 0 0
\i](l): * * ---\,I\JNN WN 0 0 0
* * * Yw+pw+n R 0 0
* * * * “IJ(N+2)(N+2) A R 0
* * * * * W(N+3)(N+3) 0
| * * * * * * —y2I |

qjll([vl) = “ijll([v[) + \ilrl(t’t) + Ql + SAZ + I/f/la"i’nn = _Qn—l - I’f/n—l + Qn - Wn, n=273,..,N
Ynvtnyv+n =—On —Wn + 81 = R U nvtav42) = —(1 —d)S1 —2R, Wy 3v+3) = —S2 — R
Da(t,1) = [‘i/n(l,l) 0--0Wyn42)(t,1)0 ®1(N+4)(t,l)],

B50) = [[COX €Ol 0+ 0 [C:()X C:)] 0 [Da(0) 0]]

with
AOX + BOC@)  At) + B(t)ﬁC(z)}

Vig(t,0) = |: fi(l,l) YA([)+I§C(Z)

¥ 1) = A ()X + B(1)Cr (1) A (t) + B(1)DCy (1)
N+ 1) = Ar(t.1) YAL(t) + BC, (1) |
UiVt 1) = |:B(Z)DDd(I) + By (t) —B(1) i| .

B(t)Dy4(1) + YB4(t) —YB(t)

Then, E»(#,¢) < 0 can be rewritten as

Ea(t.t) =Y pFEO)Eii + Y > i E@)j E@)(Eij + Bji) <0

i=1 i=1i<j

Therefore, by Lemma 3.6, the closed-loop fuzzy system (23) with time-varying state delay is asymptotically stable
(with @(¢) = 0) while satisfying a prescribed Hoo performance (25). This completes the proof. O

Remark 3.8. Asin [30], from ¢ = FIT PF{ > 0, wecan obtainY > Qand X —Y ~' < 0 which imply that I — XY
is nonsingular. Therefore, we can always find nonsingular matrices M and N satisfying MNT = I — XY, and they
can be calculated by the QR function of Matlab toolbox.

Remark 3.9. Note that (27)-(28) are LMIs. This indicates that it can be included as an optimization variable, which
can be exploited to reduce the attenuation level bound. Then, the minimum attenuation level of Ho performance can
be obtained by solving a convex optimization problem P: min ¥ subject to (27)-(28) with ¥ = yz. Different from the
existing results, the main advantage of the proposed design method is the reduction of conservatism by presenting a
delay-dependent result. Also, an interval time-varying delay has been considered in the design scheme.
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4 Numerical example
In this section, three examples are provided to demonstrate the effectiveness of the proposed approaches.

Example 4.1. Consider the following time-delayed nonlinear system:
x1(1) =0.5(1 = sin(6(1)))x2(t) — x1 (1 — (1)) = (1 + sin®(0())x1 (1)
£2(0) =sgn(19(1)] = 5)(0.9¢05> (1)) = D1 (t = 7(1)) = x2(t = (1))
— (0.9 4 0.1cos%(0(1)))x2(t)
which can be exactly expressed as a nominal T-S delayed system with the following rules [4-7], [37]:
Rulel : if6(t)is + %,then 2(t) = A1x(t) + Aerx(t — (1))
Rule2 :if0(t)is 0,then x(t) = Axx(t) + Ar2x(t — (1))

The membership functions for above rules 1, 2 are 1 (x1(t)) = sin?(x1(t)), pa(x1(t)) = cos?(x1(t)), where

2 0 1 0 -1 05 1 0
A = A = Ay = Aoy —
! [o —0.9]’ ol [—1 —1]’ 2 [0 —1]’ w2 [0.1 —1}

The purpose here is to find the allowable maximum time-delay value 1> under which the fuzzy system is stable.
Considering interval time-varying delay, the upper delay bounds v derived from [4-7], [37] and the method
proposed in this paper are tabulated in Table 1 under different values of t1. It is seen from Table 1 that the results
obtained from Corollary 3.2 (d is unknown, set S1 = 0) of this paper are significantly better than those obtained
from the other methods.

Table 1. Example 4.1 — maximum allowable delay bounds 7 under different values of T with d unknown

Methods \ 7 0 0.4 0.8 1.0 1.2

[4] Corollary 3.2 - 1.2647 1.3032 1.3528 1.4214
[5] Theorem 3.1 12780 1.3030 1.3160 1.3610 1.4250
[7] Corollary4 - 1.2836 1.3394 1.4009 1.4815
[6] Theorem 3.1 1.3800 1.3900 1.4300 - 1.5700
[37] Theorem4 - 1.5274 1.5361 1.5762 1.6340

Corollary 3.2 (N=1,0=0.7) 1.6057 1.9012 2.1775 2.3142 2.4522

Example 4.2. Consider a two rule T-S fuzzy system borrowed from [4, 7], [34-36]:

Rulel :if x1is Wi, then x(t) = A1x(t) + Az1x(t — (1))
Rule2:if x1is Wa,then x(t) = Axx(t) + Arax(t — t(2))

2 0 10 15 1 1 0
! {0 —0.9] ol {—1 —1}’ 2 [ 0 —0.75] v2 [1 —0.85:|

To compare with the existing results, the improvement of this paper is shown in Table 2. It can be concluded that

where

the obtained results in this paper are less conservative than those of [4, 7], [34-36]. Moreover, if we assume time-
varying delay t(t) satisfies (2), the delay-dependent fault estimation conditions proposed in [21-25], [27] fail to give
a feasible solution. However, by using LMI toolbox in matlab, a feasible solution of Theorem 3.1 can be obtained for
t(t) = 14+ 0.1lsint(r; = 0.9, 70 = 1.1) and other cases. In order to further illustrate the effectiveness of proposed
approach, the problem of FTC for T-S fuzzy systems with interval time delay is considered in the next example.
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Table 2. Example 4.2 — maximum allowable delay bounds > under different values of T| with d unknown

Methods \ 7y 0.2 0.4 0.6 0.8

[34] 0.6870 0.8500 0.9460 1.0480
[35] Corollary 3.2 0.7945 0.8487 0.9316  1.0325
[36] Corollary5 0.9119 0.9793 1.0639 1.1662
[4] Corollary 3.2 1.1410 1.1500 1.1720  1.2090
[7] Corollary4 1.1639 1.1734 1.1994 1.2532

Corollary 3.2 (N=1,0=0.7) 1.7126 1.8638 2.0020 2.1330

Example 4.3. We apply the above analysis technique to design robust fault estimation observer and dynamic output
feedback fault-tolerant controller for a computer simulated truck-trailer system borrowed from [39]. The time delay
model with actuator fault f(t) and disturbance d(t) is given by T-S fuzzy systems as follows

2
X(0) = ) piEO)Ax (@) + Arix(t — (1)) + B (u(t) + (1)) + Baid(1)]

i=1

2
Y(6) =Y i E@O)Cix(t) + Crix(t — (1) + Daid(1)]

i=1

2
xX(0) =Y pi ()i (1)1 € [-7,0]

i=1

where x(t) = [x1(t) x2(t) x3(t)]T and

r r 7]
—az; 00 —(1—a)gz; 00 %
Al = ai)—t’% 00|, 4m1=| (-a)f- 00|, Bi=|0 [,Ci=C=[-2 005 —0.15]
23 7 2;2
ang[() IZ% 0 (1 _a) ;Llo 00 0 .
7 7 7
—ap; 00 —(I—a)gz; 00 %
Ax = ati 0 0|, A= (I1—a)p 00], Bo=| 0 [,Cri=(-a)C1, Cro=(1-a)C2
dv2t?  dvt dv3t?
2sz0 % 0 (1-a vato 00 0 _

where x1(t) is the angle difference between the truck and the trailer, x> (t) is the angle of the trailer, x3(t) is the
vertical position of the rear end of the trailer, u(t) is the steering angle. The constant a is the retarded coefficient,
which satisfies the conditions: a € [0, 1]. The limits 1 and 0 correspond to no delay term and to a completed delay
term, respectively. In this example, the model parameters is givenasa = 0.7,1 = 2.8, L =5.5,v = —1.0,f = 2.0,
to = 0.5.

Here, it is supposed that the disturbance distribution matrices are Bg1 = Bg> = [0.01 0.01 0.01]7, D4y =
Dg> = 0.001 and the delay t(t) satisfies (2), where t(t) = 1+ 0.1sin(¢) (thus Ty = 0.9, 72 = 1.1, d = 0.1).
Meanwhile, in order to facilitate simulation, we choose membership functions for Rules 1 and 2 are py(£(t)) =
1/(1 + exp(x1(t) + 0.5)), u2(£(t)) = 1 — 1 (E(2)) with initial condition [0.5m 0.757 — 5|7, d = 10 % to/7.
It is also assumed that d(t) is band-limited white noise with power 0.1 and sampling time 0.01s. When using the
inequality —PR™' P < —2nP + 1> R to give main results, we can consider different 1) to find the minimum index y.
Then, setting n = 2, p = 0.7 and computing matrix inequalities (7)-(9) in Theorem 3.1 based on the mincx function
of Matlab toolbox, one obtains the feasible solution in Table 3.

Then, using the obtained observer gain matrix, a constant fault and a time-varying fault are respectively created

0<t<5 0 0=t

<
1) = , ) =
4 30(1 — e 030=3)) 5 <1 <20 : 30sin(t/2) 5<1<20

Fig. 1-2 illustrates the simulation result of the improved n-steps fault estimation with N = 1,2,3. Therein, the
actual fault is depicted by dashed line, and the fault estimation is represented by the solid one. As shown in Fig.
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Table 3. Example 4.3 — the feasible solution of fault estimation observer gain matrix with d = 0.1

The gain matrix L(z) The gain matrix F(t)
[—140.71437] [[—141.2645]

N=1 L,=| 78890 |[,L,=| 79583 F; =150.8112, F, = 151.2707
| 62.7727 | | 60.0092 |
[—136.7264] [—137.3991

N=2 L,=| 8.1540 |,L,=| 8.2402 F; =145.9467, F, = 146.5154
| 59.9273 | | 571751 |
[—134.8046 | —135.5113]

N=3 L,=| 81321 |,L,=| 8.2239 F; =143.4600, F, = 144.0539
| 58.7985 | 56.0464 |

1-2, it’s obvious that the robust fault estimation observer is insensitive to the exogenous disturbance and has a good
performance to estimate the constant and time-varying fault f(t) when the positive integers N change from one to
three. Meanwhile, it follows from Fig. 3 that the error states are also stable.

Fig. 1. Fault estimation result using robust FE observer in f7 (¢)
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Fig. 2. Fault estimation result using robust FE observer in f>()
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Fig. 3. Response curves of error dynamic states e (¢), e2(t), e3(), es ()
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As comparison, fault estimation using the conventional adaptive fault estimation (CAFE) algorithm in [26] are
depicted in Figs. 4 and 5. It is observed that, compared with CAFE, although there is initial estimation error, the
n-steps estimation approach not only provides better rapidity of fault estimation but also achieves more accurate
estimation of actuator fault by increasing steps N. Moreover, improved delay partitioning approach is employed to
deal with interval time delay for increasing the maximum allowable delay bounds, while the approach in [21, 23, 27],
[26] fail to give a feasible estimation. All of these make it meaningful for the approach to be implemented in practice.

Fig. 4. Fault estimation result of a constant fault using conventional fault estimation approach and Theorem 3.1 (N = 3)
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Then, by solving the conditions in Theorem 3.7, we design a fault-tolerant controller (N = 1) with the minimum
attenuation value y = 0.1419 on the basis of the obtained fault-estimation as follows:

Ac11 =

Ac12

Ac21

—3.9738 —0.7761 —1.2933 |
209.8643 —7.0311 17.3469
—359.8673 11.9056 —29.4078

[ —6.6191 —0.9376 —1.3707 |
338.2784 1.8191 21.6169

—573.4481 —2.7994 —36.5021

[ —4.2682 —0.7884 —1.2054
2158110 —11.9498 13.5066

—371.6297 19.3324 —24.6910

[ —0.6069 —0.1076 —0.0132 |
JArern = | 47.4608 —6.9120 —2.6111
—82.9240 11.7618 4.3041

[ —1.9678 —0.3040 —0.2188]
 Are1n = | 1062766 —0.3122 4.9951
—180.8551 0.7413 —8.3818

—0.6259 —0.1096 —0.0249
JAze21 = | 47.1583 —8.9702 —3.2539
—83.6416 14.5442 4.9061
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Fig. 5. Fault estimation result of a time-varying fault using conventional fault estimation approach and Theorem 3.1 (N = 3)
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Bl = [—0.0574 —13.0855 22.7614], Bl = [ 0.1346 —22.3452 38.1632], Do = —68.0204

Simulation results for the stability of the closed-loop systems and the systems output response are shown in Fig. 6
and Fig. 7-8. It can be seen that although the open-loop systems are unstable, the proposed design still achieves
the performance under actuator faults, and the stability of closed-loop systems is guaranteed while satisfying the
prescribed Hoo performance. As indicated by the simulation result graph, we can see that whether the interval
time delay fuzzy systems are considered with constant fault or time-varying fault, the fuzzy n-steps fault estimation
observer can almost realize accurate fault estimation, and the fuzzy dynamic output feedback control strategy can
effective accommodate the effect of actuator faults on system performance.

Fig. 6. State response curves of the closed-loop argument system with fuzzy dynamic output feedback fault-tolerant control
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Fig. 7. System output response y (¢) with fuzzy dynamic output feedback fault-tolerant control using fault information shown in Fig. 1
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Fig. 8. System output response y (¢) with fuzzy dynamic output feedback fault-tolerant control using fault information shown in Fig. 2
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5 Conclusion

In this paper, by using improved delay partitioning approach, a novel n-steps robust fault estimation observer has been
constructed for a class of T-S fuzzy model with interval time-varying delay and external disturbances. Then, utilizing
realtime information on estimated faults, a fuzzy dynamic output feedback fault-tolerant controller considering
interval time delay is proposed to accommodate the effect of actuator faults while satisfying the prescribed Hoo
performance. An advantage of the proposed approach is that with the increase of steps n, not only the approach
can give a better performance of FE and FTC, but also the maximum allowable delay bounds of fuzzy systems is
increased. Finally, some examples have clearly verified the effectiveness of the proposed method for FE and FTC.
This paper focus on robust FTC for T-S fuzzy systems with actuator fault and does not consider sensor fault. The
consideration of the system with actuator and sensor fault simultaneously will be studied in our future work.
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