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Abstract: Elastica and inextensible flows of curves play an important role in practical applications. In this paper, we
construct a new characterization of inextensible flows by using elastica in space. The inextensible flow is completely
determined for any space-like curve in de Sitter space S?. Finally, we give some characterizations for curvatures of
a space-like curve in de Sitter space S*? .
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1 Introduction

In mathematics and physics, a de Sitter space is the analogue in Minkowski space, or spacetime, of a sphere in
ordinary, Euclidean space. The n-dimensional de Sitter space, denoted d S, is the Lorentzian manifold analogue
of an n-sphere (with its canonical Riemannian metric). It is maximally symmetric, has constant positive curvature,
and is simply connected for # at least 3. More recently, it has been considered as the setting for special relativity
rather than using Minkowski space, since a group contraction reduces the isometry group of de Sitter space to the
Poincaré group, allowing a unification of the spacetime translation subgroup and Lorentz transformation subgroup
of the Poincaré group into a simple group rather than a semi-simple group. This alternate formulation of special
relativity is called de Sitter relativity, [1-6].

The elastica caught the attention of many of the brightest minds in the history of mathematics, including Galileo,
the Bernoullis, Euler, and others. It was present at the birth of many important fields, most notably the theory of
elasticity, the calculus of variations, and the theory of elliptic integrals. The path traced by this curve illuminates a
wide range of mathematical style, from the mechanics-based intuition of the early work, through a period of technical
virtuosity in mathematical technique, to the present day where computational techniques dominate [16-20].

The flow of a curve or surface is said to be inextensible if, in the former case, the arc-length is preserved, and
in the latter case, if the intrinsic curvature is preserved [7]. Physically, inextensible curve and surface flows are
characterized by the absence of any strain energy induced from the motion. In [15], Kwon investigated inextensible
flows of curves and developable surfaces in R3. Necessary and sufficient conditions for an inextensible curve flow
were first expressed as a partial differential equation involving the curvature and torsion. Then, they derived the
corresponding equations for the inextensible flow of a developable surface, and showed that it suffices to describe its
evolution in terms of two inextensible curve flows, [15]. Flows of curves of a given curve are also widely studied,
[8-14].
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This study is organised as follows: Firstly, we construct a new method for inextensible flows of space-like curves
in de Sitter space S%. Secondly, using the Frenet frame of the given curve, we present partial differential equations.
Finally, we give some characterizations for curvatures of a curve in de Sitter space Sf.

2 New geometry of space-like curves in Sil‘-space

It is well-known that the Lorentzian space form with a positive curvature, more precisely [1], a positive sectional
curvature is called de Sitter space S%. We define de Sitter 3-space by

S3z{xeR‘1‘|(x,x):1}.

It is well-known that to each unit speed space-like curve y : I —> Sf one can associate a pseudo-orthonormal
frame {y, T,N, B} . Denote by T, N, B the space-like tangent vector, the space-like principal normal vector, and the
time-like binomial vector, respectively. In this situation, the Frenet-Serret equations satisfied by the Frenet vectors
T, N, B formally given by

y' =T,
ViT = —y + kN, (1
ViN = «é(y)T+1B,
VTB = ‘EN,
where §(y) = —sign(N), and «, T are the curvature and the torsion of a curve y respectively and given by
=T +v]
§(y)

(s) det(y.y".y".y"").

R2
with R(s) # 0.
Let y (u, w) be a one parameter family of smooth space-like curves in S?.

dy
— = a1 T+mN+m3B
ow
Putting
d
W= W, = 5",
w
dy

V(u,w) = Pl v(u, w)T(u, w),

which gives

W(v)

v

W, T] = — T = gT.

Finally [18], we obtain that
W) =—-gv,g=—<ViW, T >.

d
Definition 2.1. The flow a—yin de Sitter space S% is said to be inextensible if
w

Jdo
—l=o. 2
o 0 (2)

9
Jw

a
Theorem 2.2. Let a—y be a smooth flow of y. The flow is inextensible if and only if
w

0
7121)/(8()/)4-ﬂ =0. 3
Ju



948 —— M. Yeneroglu DE GRUYTER OPEN

Now, assume that y is arc-length parametrized curve. Then, we have

Lemma 2.3.

ad ad
VuT =—m1y + [k + ]T3T+%]N + [m27 + %]B, 4)

where 11, w2, w3 are smooth functions of time and arc-length.

Proof. From the definition of inextensible flow, we have

0 0 0
VuT = —m1y + [nzlc(S(yH—%]T + [m1k + 7T3‘C+%]N + [m2t + %]B.

Using Eq. (3), we obtain Eq. (4). This completes the proof. O

Now we give the characterization of evolution of first curvature as below:

d
Theorem 2.4. Let y be one parameter family curves in de Sitter space Sf f Bl is inextensible flow of space-like
w

y in de Sitter space S%, then the evolution of k is given by

oK ad 0m> o3 1 0my
— = —[mk +mr+——]+r[m2r + -]+ ——— + 72,
ow as as as Kk 0s

where w1, w2, 3 are smooth functions of time and arc-length.
Proof. A differentiation in Eq. (4) and the Frenet formulas give us that
amr am
VsVl = =Lyl — [miic + 37+ 2 ()T

0 d d
H—[m1k + ﬂ3r+—ﬂ2]+r[ﬂzt + s IIN
as as ds

)

d
J+tlrik + m3t+ 2B
as as

0
+[—[m2r +
as
Using the formula of the curvature, we write a relation

dy 9
Vi VsT — VsV, T = R(a%, £)T.

We immediately arrive at

dy 0
R, YT = 75 R(T,N)T+73 R(T, B)T.
ds dw
Another important fact is that the curvature operator R on de Sitter space Sf’ has a simple expression, i.e.,
R(X1,X2)X3 = g(X1,X3) X2 — g(X2, X3) X1.
Then,

R(T.N)T = g(T.T)N— g(N,T)T = N,
R(T.B)T = g(T,T)B — g(B.T)T = B.

From above equations, we get

dy d
R, VT — yN473B.
ds Jw
Then, we can write
dy 0
Vo VT = VoV T+ R(ZL, V)T,
ds dw

Thus it is easy to obtain that

0 0
Vuw VT = —%y—[m — [m16 + ny—i—%]l{S(y)]T
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d d d
a1k + T3T+ 2] 4 t[mat + 2] + 7N
as as as

il

a d
[m2T + ﬁ]—l—f[m/{ + 7T3‘L'—|—£]+7T3]B.
as as as

On the other hand, we have

K a
— = —g(V4T,N).
Jw awg( s )
Since, we express
dx
5 = 8 (VwVsT.N) +g (GT.VuN).

Moreover, by the definition of metric tensor, we have

g (N,VyuN) =0.
Then Lo
T
g (VsT,VyN) = —g (y,VyN) = ——.
Kk 0s
Combining these we have
oK ad 7> o3 1 0my
[mic + n3r+—]+r[nzr + —]+ —-—— + 1.
3w as as Kk 0s

Thus, we obtain the theorem. This completes the proof.

From the above theorem, we have

Theorem 2.5.
1 0mq o3
VuwN = —fa—y—l- [[7‘(1/( + n3r+—]fc8(y)]T+ [ [7121 —+ % ]+T[7T1K + w3+
where 11, o, w3 are smooth functions of time and arc-length.
Proof. Using Frenet equations, we have
d d
Vo VT =— <L 4 ZEN4.V,N,
ow  dw
Then,
o o
VN = ==Lyl + mat+ > Jed(y)]T
as s
oK d 37'[2 37‘[3
+—— + —[mik + w31+ —=]+7[m27 + ——] + 2m2]N
at  0s as ds
ad o o
+[=[m2T + 73]4‘1’[7‘(1/( + n3r+—2]+2n3]B.
as as ds
Therefore
g (N,VyN) =0.
From above equation we obtain
1 om
VoN= -y [[m et 2T
1. odk 8 o3
[+ = [7'[1/( + n3f+—]+r[n21 + —]+ 272N
k- 0t 0s as ds
1 0 o o
[t + —]4tlrik + m3T+ ] +273]B,
KOs as as

which completes the proof.

S2]+27T3]B,
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d
Theorem 2.6. Let y be one parameter family curves in de Sitter space Sf f a—y is inextensible flow of space-like
w

y in de Sitter space S3, then

VuB = b)) + 5 [ o ek + e 2l
+1[—n2+ L+ n3r+8—]x8( W i
T as as as
el e+ et 2B+l o + 3”3]
T K as as

9 I
e+ 7{3r+%]+2n3]] — 18y ik + n31+¥]]N,

where 11, w2, w3 are smooth functions of time and arc-length.

d
Proof. Assume that e be inextensible flow of y.

ow
187‘[1
Ve VuN = [ g+ et 2 sy
T ek + e 2 sty )11—183%]T

+[K[*[[T[1K + N3r+—]/<8(y)]]+r[l[i[n27:
K as K 0s

9 9
+?]+r[nlx n n3r+£]—|—2n3]]]N

3[i[i[ T + 7]-!-1[711/( + 7r3r+7]+27r3]]B

Under the assumption of space-like curve, we have

ad o o Jat
VuwVsN = —m1ké(y)y + EKS()/)T + k8(y) w16 + n3r+a—sz]N+[/<8(y)[nzt + T;]—i-g]B—f—rVwB.
Using the formula of the curvature, we write a relation

dy 9
Vi VN — V, VN = R(—y —V)N

Thus, it is seen that

dy
R(l —Z))N = 715 R(T,N)N+73R(T, B)N.

By using formula of curvature, we have

R(T.N)N = g (T.N)N—g (N.N)T = — T,
R(T,B)N = g (T,N)B—g (B,N) T =0.

Arranging the last equations, we obtain

R(a—y 8—V)N = —m,T.
Therefore, we can easily see that
10 amy
£VuB = [rakb() + ol o] [[m + m+a—]x8(y)my
d 1
Hemat o [ llmk + ﬂ3f+ ]K5( - T *KS(V)]T

el [ + n3r+%1w(y)n+r[l (oot + 32]

0
+lmic + N3t+%]+2n3]] —k8(y)[m1k + n3r+¥]]N
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d 10 o amw
o[- [ lm2t + == [+ tlmie + w3t ——]+273]]
0s Kk 0s as as
oms. 01
—[ké(y)[m2r + —=1+--1IB.
as ot
By this way, we conclude
g (B1,VyBy) =0.
Thus, we obtain the theorem. The proof of theorem is completed. O

Now we give the characterization of evolution of second curvature as below:

a
Theorem 2.7. Let y be one parameter family curves in de Sitter space S? f a—)t/ is inextensible flow of space-like y

in de Sitter space S3, then the evolution of T is given by

ad d. 1 9 0 ad ad
L= Lo ot + o2l + w22 2m3]] — k() [maT + o],
Jw ds Kk s as as as

where 11, w2, 3 are smooth functions of time and arc-length.
Proof. 1t is obvious from Theorem 2.6. This completes the proof. O
Since y(¢) is an immersed curve, it has velocity vector V = v'T and squared geodesic curvature
K2 +1=||VeT|?.
Theorem 2.8 (Main Theorem).
Wk? +1) =2 < VgVsW, VT > +4g(k? + 1) + 2 < ROW, T)T, VT >,

where g = — < VW, T > .
Proof. From Euler equations, we easily have

W(K2 +1)=2<VViW, V(T > +2 < R(W,T)T, V4T > +4g < VT, V,T > . O

Corollary 2.9.
W(K? 4+ 1) = W(k?)
In what follows, y : [0, 1] = M is a curve of length L. Now for fixed constant A let

L

1

1 1

Fry) = E/Kz +1+ads =2 /(||VST||2 + Mv(r)dr.
0 0

For a variation y,, with variation field W, we compute

1 1
dig*(yw) %/ W(k? + Do + (k> + 1+ HW()dt = %/W(Kz + 1) — &%+ 1+ A)gds
w
0 0

1
= / < VsVsW, VT > +2g(k? + 1)+ < R(W.T)T, V,T > —%(KZ + 1+ A)gds.
0
This condition implies that
1
%{S’}‘(yw) = f < VsVgW, VT > — < VoW, 2(k% + DT > +
0
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1
+ < ROTTTW >+ < VW, k2 +1+ )T > ds

L
_ / <E.W>ds+ [< VsW.ViT > + < W, —(V5)?T + AT >

0

where
E = (V4)’T — V4(AT) + R(VsT,T)T,g = — < VW, T >
and
A A—3K? — 4
2

Thus, we can state the following.

a
Lemma 2.10. Let y be one parameter family curves in de Sitter space S?. If a—y is inextensible flow of space-like y
w
in de Sitter space S%, then

0
g=—<V,W.T>= 712168()/)4-%,
s

where 11, wo are smooth functions of time and arc-length.

d
Theorem 2.11. Let y be one parameter family curves in de Sitter space S?. If a—y is inextensible flow of space-like
w

. . 3
y in de Sitter space S3, then

0 b 0 b
W(/cz) = 2—m + k[—[m1Kk + n3r+—ﬂ2]+r[nzr + 7713]] + 4g(/<2 + 1) + mak,
as as as os

where 11, w2, w3 are smooth functions of time and arc-length.

Proof. Firstly, we obtain

9 9
VoV T = =Ly [y — i + mat+ 2 2Jed()]T
os os
9 d 9
+H[=—[m1k + n3t+£]+t[ﬂzr + 2]]N
os as as
o3

d d
(27 + 22 )tk + T+ 22 ]B.
as as as

Since, we immediately arrive at

dy dy

Therefore,

W(K?) =2 < VrVrW,VrT > +4g(k> + 1) +2 < RW, T)T.V7T >
am a am am
=2—14 kK[=—[m1k + 7{31:—}——2]4—1:[7121 + —3]] +4g(k*> + 1) + mok. O
as as as as
Now, we can obtain following equation in terms of flows.

Lemma 2.12.

aA

25T

E=(-«%(y)+ A)y+[3g—':/c8(y) -

2
+(87K — K+ k38(y)+kT? — KA — K)N + (28—KT+K8—r)B.
ds2 as ds
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d
Theorem 2.13. Let y be one parameter family curves in de Sitter space S?. If 8l is inextensible flow of space-like
w

y in de Sitter space S3, then

VuE = o (1=k28() + A)-m 3o ks) — o LI K ) e
w K ds ~as
A =)+ ) () + —[—1@] [l + w22y
oA ¥
(1= €250) + A+ [39x8() — LTk + w3t + 2SI s~
+138(p) k1 — KA — k) + l[—zzz—i-i[l[[m/c + 713r+a£]/<8( )]]—laﬂ
—EKS()/)](Z— +K—)]T + [r2(1 = €28(y) + M)+[mix + 7r3r+—][3— 8(y)
2
83A B o S TN RC LRSI LY AR )
N s 9"t Kk as

9 9 9
+T[7[—[n21' + D3tk + m3t+ 224 2m3]] — k8(0) [k + w314+ D2 N
K 0s as as as

0 A d 1 92
+[n3(1 7)) HBGRS) — S llmaT + (s e+ k5 e — kA

it+Kl)]B.
as

a 3
—K)[ [nzr—i— ﬂ3]+t[mlc+n3r+£]+2ﬂ3]+—(2
as as Jw  Js

Example 2.14. The time-helix is parametrized by
y (s,w) = (A (w)cos(s),A(w)sin(s), B (w)s,0),

where A, B are functions only of time.
Projection of y at xyz-plane:

Fig. 1. Time-helix is illustrated using colours Magenta, Cyan, Green atthetime ¢t = 1.2, t = 1.8, t = 2.2, respectively.

B N
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Fig. 2. Time-helix is illustrated using colours Magenta, Cyan, Green atthetimet = 1.2, t = 1.8, ¢t = 2.2, respectively.

B
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