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Abstract: In this paper, we apply the Fractional Adams-Bashforth-Moulton Method for obtaining the numerical
solutions of some linear and nonlinear fractional ordinary differential equations. Then, we construct a table including
numerical results for both fractional differential equations. Then, we draw two dimensional surfaces of numerical
solutions and analytical solutions by considering the suitable values of parameters. Finally, we use the L> nodal
norm and L s, maximum nodal norm to evaluate the accuracy of method used in this paper.
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1 Introduction

Globally, a physical phenomenon can be expressed by the help of theory of derivatives and integrals with fractional
order. Therefore, fractional concepts have been seen as a tool in the fields such as physics, chemistry and engineering
in terms of representing physical phenomena. Thus, a lot of powerful methods, such as fractional linear multistep
methods, variational iteration, galerkin finite element, Sumudu transform, trial equation, Adomian’s decomposition,
extended trial equation, homotopy analysis, iteration, homotopy perturbation, modified homotopy perturbation,
generalized trigonometry functions, homotopy perturbation, Sumudu transform or modified trial equation method,
have been presented in literature [2—17, 26-28, 30]. Besides these methods some authors have investigated various
properties of fractional concepts [18, 19, 29, 32-34].

The organization of this paper is as follows: we give some definitions and properties of the fractional calculus
in Section 2. In Section 3, we introduce the general construction of Fractional Adams-Bashforth-Moulton Method
(FABMM) for time-fractional linear and nonlinear ordinary differential equations. In Section 4, we apply FABMM
to the linear time fractional ordinary differential equation (FODE) defined by [1],

I'/4
D?u(l)+u(l)=t3+°‘+¥t3,0<a51, (1)

where « is an arbitrary constant and a parameter describing the order of the fractional time-derivative. (1) have the
following exact solution in the closed manner [1];

u(t) =31, 2)
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Then, we consider the nonlinear time fractional ordinary differential equation described as following;

t
D%u(t) 4+ nu?(t) = F[5+a]t4+n(?)8+2“,1 <a <2, 3)

1
24T 4+
having the exact solution as:

u() = ()4, @

where 1 and T are arbitrary constants and not zero [1].

2 Preliminaries

In this part of the paper it would be useful to introduce some definitions and properties of the fractional calculus
theory. The Caputo fractional derivative of f () function is defined by [24, 25]:

t
CDYf(1)] = ﬁ/[(z —) Tl M ()den—1<a<nneZaeRT. 5)

In addition to this expression, some of the useful formulas such as f(x) = (x —a)? and g(x) = (b — x)# are given
by [1]

T
EDYf(x)] = %u —a)f,
€ DElg(x)] = #}%w _ b, ©

inwhichn —1<a<nneZaecRt.

3 Construction of FABMM

In this section of our study, an approach to the FODE will be given. The general form of FABMM used to obtain
numerical solutions of fractional differential equations (FODEs) given along with initial conditions can be considered
as the following form [20-24];

DEy(®] = f(t,y()).a > 0, (7
with initial conditions:
y®0) =y, ®)

where k = 0,1,2,3,---, [a] — 1, and DY].] an operator in the sense of Caputo defined by:
DIlz0)] = J"¥[D" [z (], ®

where 7 is bigger than o and smallest integer number, D is integer order derivative operator and J is an integral
operator defined in the following way in the sense of Riemann-Liouville integral operator:

¢
M — ; _ 1
JH[z()] = ) 0/[(t u) z(u)]du, u > 0. (10)

If we take the integral of (7) according to (10), it gives us a second order Volterra integral equation well known
[6,22,23,31]:

1

[U
=320y 0)— + ——
y() v=0Y""( )v! + T'[o]

t
[ [ — " f e, y))du. (1
(0]
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Before submitting the general structure of FABMM, we can set off by remembering the general form of Adams-
Bashforth-Moulton method for the integer order differential equations. Here, the general form of the integer order
differential equations is defined by:

Dy(®)] = f(z.y()). 12)
and initial condition is
y(0) = yo. (13)
The grid points of (12) for every single point by dividing N steps to the interval of [0, T'] can be written in the
following way [23, 24]:

T
h=N,t_;=jh,j=0,l,2,3,---,N, (14)

and
yi =y(t;),j=0,1,2,3,--- k, 15)

where y(#x41) approaches are defined as [22, 23]:

Tk +1
Y =y + [ Gyed:. (16)
173
The integral of (16) can be rearranged as:
b
b—a
[g@naz ~ 2@ + o) a7

By applying trapezoidal rule, we get (18) for (16) as follows:

Ytk ) = Y00 + 217 0+ Fa ) 18)

If in (18) we represent equations of (15) as y(tx) = yx and y(tx+1) = Yk +1, We receive:

h
Vik+1 =yk+§[f(lk,yk+f(lk+1,yk+1)]~ (19)

As (19) has yx 41 on both sides, it may be very hard to directly obtain solution of this equation. Therefore, we have
to take predictor y ,f 1 for the first approach of yx 41 in the following way [22, 23]:

b
/ [g()]dz ~ (b — a)g(a). 20)

Then, by means of applying trapezoidal rule, we can obtain the construction known as Euler formula or one-step
Adams-Bashforth method getting [22, 23]:

y]f_H = yk + hf(tx, yi)- 21

When we rewrite (19) under the terms of (21), we can get the following equation:

h
Vit = Vi + 51 e yie + Sre1: 0] (22)

When we take into account both (21) and (22), we obtain the general form of one-step Adams-Bashforth-Moulton
method of finding numerical solution of (12), being the integer order differential equations, for which we will
investigate FABMM for solving FODEs numerically. The fundamental difference between (11) and (16) is the fact
of starting from zero at the lower bound of integral. Therefore, we have to set out by taking #x instead of zero as the
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lower boundary of integral to solve FODEs by using FABMM. When we apply trapezoidal rule according to weight
function (tx4+1—)%~! for (11), it gives us following equation:

tkt1 Tk+1
/ (k1 — 2 g(@)dz ~ / (st — 9% g (2)]dz. (23)
0 (0]

where g(z) is the piecewise linear interpolant and it has nodes gx +1,¢; = jh. Under the rules of standard quadrature
technique [22, 23], right side integral of (23) can be rewritten in the following way:

T k41
/ (k1 =2 " Gxp1(D]dz = Y ajxt18(), (24)
0 J=0

where a; i 41 is defined by:
ket —(k —a)(k + )%, j =0,

(k—j+2T 4 (k— ot —2(k—j+ D*tH 1< j <k, (25)
1,j=k+1,

o
UKL= ST D)
By substituting (23), (24) and (25) in (11), we form the corrector formula for one-step FABMM as follows [22, 23];

ot 1 &
— k+1
Vi1 = Ej?:})y(J)(O)TJ: + m[z aj k+1ft,yi) + k1 k1 1, v )l (26)
! =

Then, y,f +1 predictor under the constructions of Adams-Moulton method can be rewritten in the following form
[22, 23]:

Tk41 k
[ s =27 @0z = 3 s @)
0 J=0
where b; x 41 is defined by:
h* . .
bjk+r=—-lk+1 =D = k= )] (28)

Then, the predictor y ,f 1 is the same as the one defined above for the Adams-Moulton method [22, 23]:

Y |k
— k+1
Yo =Z12hy” Jf * T 2 b1 Sl (29)
’ Jj=0

When we consider both (26) and (29), we obtain the general form of FABMM to solve numerically (7).

4 Applications

In this section, we applied FABMM to the linear and nonlinear time fractional differential equations as follows.

Example 1. Firstly, we consider (1) linear fractional differential equation along with exact solution (2). We can

rearrange (1), in a way similar to (7);

I'4+ o] 3
6

If we apply FABMM to (30) by taking 0 < t < 1, step size n = 300 and initial condition u(0) = 0, we can obtain a

numerical solution for (30) for the first ten term and error accounts. Next, to determine the accuracy of the technique,

D%u(r) = f(t.u(r)) = —u(t) + 1“3 + (30)

we use Lo nodal norm defined by:

M
L, = ”UAnalytlcal — Uy “2 ~ |n Z |U;1nalytzcal _ (UM)j|2, (31)
Jj=0
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and L oo maximum nodal norm defined by:

j Analytical
Loo = ”UAnalytzcal — Uy ”oo ~ maxj|Uj nalytical (UM)j|'

(32)

Table 1. The exact solution, numerical solution of (1) and the numerical errors for « = 0.25 obtained by using FABMM

= © 0O NO O H WN =3

o

t_n

0.0033333
0.0066667
0.0100000
0.0133333
0.0166667
0.0200000
0.0233333
0.0266667
0.0300000
0.0333333

u_Exact

8.8930153E-09
8.4664901E-08
3.1622776E-07
8.0547292E-07
1.6634449E-06
3.0084824E-06
4.9650605E-06
7.6629921E-06
1.1236836E-05
1.5825444E-05

u_Num.

1.2733339E-08
1.0586060E-07
3.7064679E-07
9.0951855E-07
1.8339278E-06
3.2655390E-06
5.3201650E-06
8.1368311E-06
1.1847341E-05
1.6590751E-05

u_Exact—u_Num.

-3.8340377E-09
-2.1195501E-08
-5.4419030E-08
-1.0404572E-07
-1.7048289E-07
-2.5407143E-07
-3.5510443E-07
-4.7383897E-07
-6.1050410E-07
-7.6530645E-07

Using L, nodal norm algorithms for measuring the accuracy of the technique used for solving (1) by taking n = 300

and a = 0.25, we obtain the following L, sum of numerical error:

0.000440091.

Similarly, when we use L o maximum nodal norm algorithms for measuring the accuracy of the technique used for

solving (1) by taking n = 300 and o« = 0.25, we obtain the following L o maximum numerical errors:

0.000998594.

Fig. 1. The two-dimensional surfaces of the numerical solution, analytical solution and absolute errors of (1) obtained by using FABMM

for0 <t <1,0=0.25
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n t_n u_Exact u_Num. u_Exact—u_Num.
1 0.0033333 5.1380141E-10  8.8752788E-10 -3.7372647E-10
2 0.0066667 6.9128602E-09 8.3108958E-09  -1.3980355E-09
3 0.0100000 3.1622776E-08 3.4595664E-08 -2.9728881E-09
4 0.0133333  9.3007990E-08 9.8076290E-08 -5.0682993E-09
5 0.0166667 2.1474982E-07 2.2242107E-07 -7.6712350E-09
6 0.0200000 4.2546367E-07  4.3624009E-07 -1.0776420E-08
7 0.0233333  7.5842553E-07  7.7280824E-07 -1.4382715E-08
8 0.0266667 1.2513613E-06 1.2698530E-06 -1.8491667E-08
9 0.0300000 1.9462772E-06 1.9693837E-06 -2.3106527E-08
10 0.0333333 2.8893176E-06 2.9175494E-06 -2.8231731E-08
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Table 2. The exact solution, numerical solution of (1) and the numerical errors for « = 0.75 obtained by using FABMM

Using L> nodal norm algorithms for measuring the accuracy of the technique used for solving (1) by taking n = 300
and o = 0.75, we obtain the following L> sum of numerical errors:
0.0000190654.

Similarly, when we use Lo maximum nodal norm algorithms for measuring the accuracy of the technique used for
solving (1) by taking n = 300 and a = 0.75, we obtain the following L o maximum numerical error:
0.0000455084.

Fig. 2. The two-dimensional surfaces of the numerical solution, analytical solution and absolute errors of (1) obtained by using FABMM
for0<t <1, =0.75
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Example 2. Secondly, let’s consider (3) nonlinear fractional ordinary differential equation along with exact solution
of (4). We can rearrange (3);

I'l5+ «]
24T4+a
where a,n, T are constants and not zero. When we rewrite (33) by substituting n = T = 1, it gives us the following

t
D%u(r) = —nu?(1) + * + n(?)“z“, l<a<2, (33)

differential equation [1]:

r'5
[ +a]t4+t8+2a,
24

D%u(t) = f(t,u(t)) = —u>(t) + (34)
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with the exact solution [1];

u(t) = 14+, (35)

If we apply FABMM to (34) by getting o 1.25, 1.75,0 < t < 1, step size n 300 and initial condition
u(0) = 0, one can obtain a numerical solution for (34) for the first ten terms and error accounts. Next, to measure

to the accuracy of the technique, we will use L> nodal norm and L oo maximum nodal norm.

Table 3. The exact solution, numerical solution of (34) and the numerical errors for @ = 1.25 obtained by using FABMM

n tn u_Exact u_Num. u_Exact—u_Num.
1 0.0033333 9.8881128E-14 2.9876778E-13  -1.9988665E-13
2 0.0066667 3.7628845E-12 5.6039360E-12  -1.8410515E-12
3 0.0100000 3.1622776E-11  3.8373813E-11  -6.7510365E-12
4 0.0133333  1.4319551E-10  1.6022741E-10  -1.7032249E-11
5 0.0166667 4.6206804E-10 4.9704561E-10  -3.4977573E-11
6 0.0200000 1.2033929E-09 1.2664240E-09 -6.3031050E-11
7 0.0233333 2.7031996E-09 2.8069634E-09 -1.0376375E-10
8 0.0266667 5.4492388E-09 5.6090960E-09 -1.5985717E-10
9 0.0300000 1.0113153E-08 1.0347244E-08 -2.3409097E-10
10 0.0333333 1.7583827E-08 1.7913160E-08 -3.2933348E-10

Using L» nodal norm algorithms for measuring the accuracy of the technique used for solving (34) by taking n
300 and o« = 1.25, we obtain the following Lo sum of numerical errors:
0.00000000809849.

Similarly, when we use L oo maximum nodal norm algorithms for measuring the accuracy of the technique used for
solving (34) by taking n = 300 and o = 1.25, we obtain the following L ~o maximum numerical errors:
0.0000225821.

Fig. 3. The two-dimensional surfaces of the numerical solution, analytical solution and absolute errors of (34) obtained by using
FABMMfor0 <t <1, = 1.25
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n t_n u_Exact u_Num. u_Exact—u_Num.
1 0.0033333 5.7089045E-15 2.4363196E-14 -1.8654291E-14
2 0.0066667 3.0723823E-13  5.0498014E-13  -1.9774191E-13
3 0.0100000 3.1622776E-12 4.0125200E-12  -8.5024240E-13
4 0.0133333  1.6534753E-11  1.8974819E-11  -2.4400657E-12
5 0.0166667 5.9652728E-11  6.5218503E-11  -5.5657757E-12
6 0.0200000 1.7018546E-10 1.8113626E-10 -1.0950080E-11
7 0.0233333  4.1292056E-10  4.3235707E-10  -1.9436511E-11
8 0.0266667 8.8985697E-10 9.2183378E-10 -3.1976810E-11
9 0.0300000 1.7516495E-09 1.8012834E-09 -4.9633889E-11
10 0.0333333 3.2103529E-09  3.2839275E-09 -7.3574614E-11

DE GRUYTER OPEN

Table 4. The exact solution, numerical solution of (34) and the numerical errors for « = 1.75 obtained by using FABMM

Using L> nodal norm algorithms for measuring the accuracy of the technique used for solving (34) by taking n =
300 and o = 1.75, we obtain the following Lo sum of numerical errors:
0.00000000863107.

Similarly, when we use Lo maximum nodal norm algorithms for measuring the accuracy of the technique used for
solving (34) by taking n = 300 and a = 1.75, we obtain the following L oo maximum numerical error:
0.0000247177.

Fig. 4. The two-dimensional surfaces of the numerical solution, analytical solution and absolute errors of (34) obtained by using
FABMM for0 <t < 1,0 = 1.75

10F T T T =] T T T T T T

0.8 1

0.6 - 104¢F B

0.4 - B

0.2 4

0.0 . . oo
0.0 02 04 06 08 0 00 0.2 0.4 0.6 0.8 1.0

a : Numerical solution b : Analytical solution

0.000025 Fr

0.00002

0.000015

0.00001

5.x107°

ok

c : Absolute error

5 Remark

The numerical results for Example 1 and Example 2 have been obtained by using the programming language
Wolfram Mathematica 9. To the best of our knowledge, these numerical solutions have not been published previously,
and these results are new numerical solutions for (1) and (34).
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6 Conclusions

In this paper, we have successfully applied FABMM for obtaining the numerical solutions of some linear and
nonlinear FODEs. We have constructed a table including numerical results for both fractional differential equations.
Next, we have drawn two dimensional surfaces of numerical solutions and analytical solutions by using Wolfram
Mathematica 9. Applying suitable values of parameters before we use Lo nodal norm and L, maximum nodal
norm to evaluate the validity of the method used in this paper. It can be seen that this method is a powerful tool
for obtaining the numerical solutions of such FODEs, taking into account the numerical errors obtained by using
L> nodal norm and L oo maximum nodal norm for the numerical errors of (1) and (34). We think that the proposed
method can also be applied to other fractional differential equations.
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