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Abstract: We will discuss orthogonal models and error orthogonal models and their algebraic structure, using as
background, commutative Jordan algebras. The role of perfect families of symmetric matrices will be emphasized,
since they will play an important part in the construction of the estimators for the relevant parameters.

Perfect families of symmetric matrices form a basis for the commutative Jordan algebra they generate. When
normality is assumed, these perfect families of symmetric matrices will ensure that the models have complete and
sufficient statistics. This will lead to uniformly minimum variance unbiased estimators for the relevant parameters.
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1 Introduction

Orthogonal (ORT) and Error-Orthogonal (EO) models, are two important classes of mixed models, used in various
fields of science. See [13] and [14] for further reading.

In this work, we will discuss the algebraic structure of these models in the framework of commutative Jordan
Algebras (CJA). The methods herein will be applied to least squares estimators (LSE) that, for both classes of
models, are uniformly the best linear unbiased estimator (UBLUE), i.e., they are best linear unbiased estimators
(BLUE) regardless of the variance components, see [13].

Moreover, we will show the relevant factor part played by perfect families (PF) of symmetrical matrices ([3]),
in the algebraic structure of both classes of the models that we consider: ORT and EO. These perfect families are
constituted by symmetric matrices that commute and are a basis for the CJA they generate. We will use these families
to show that, when normality is assumed, we obtain uniformly minimum variance unbiased estimators (UMVUE).

In the next section we will focus on CJA, the foundations of the algebraic characterization for the models that we
will consider and lay down the necessary results for the proposed algebraic characterization, with special emphasis
on the existence of a principal basis.

In Section 3 we will consider UBLUE estimators in the context of mixed models where we will present the
conditions for the existence of UBLUE in mixed models with LSE, followed by a section in which we will address
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the issue of variance-covariance matrices and their relation with orthogonal models, error orthogonal models and the
role played by PF.

2 Commutative Jordan algebras

Commutative Jordan Algebras were introduced by Jordan in 1934 ([5]) in a reformulation of Quantum Mechanics.
They were rediscovered by Seely in 1970, who used them in linear statistical inference, see [8—11] and [12]. The
CJA of symmetric matrices are linear spaces defined by such matrices that commute and contain the squares of their
matrices. Seely called them quadratic spaces, [8], but for simplicity’s sake we will retain the previous designation.
This first use of quadratic subspaces in linear statistical inference led to the dissemination of several works where its
use plays a central part, see e.g., [2,4, 15] and [1].
The matrices [7], of a family
% ={Uy,...,Up}

of symmetric matrices commute if and only if they are diagonalizable by the same orthogonal matrix P. Then % is
contained in the family ¥ (P) of symmetric matrices diagonalized by P. It is easy to see that ¥'(P) is a CJA, thus the
matrices of a family of symmetric matrices belong to a CJA, if and only if they commute.

Since the intersection of a CJA is also a CJA given a family %/ of symmetric matrices that commute, the
intersection o7 (%) of all CJA that contains % will be the minimum CJA that contains %. We call it the CJA
generated by %. Any CJA has an unique basis [10], the principal basis of </, pb(&/), constituted by pairwise
orthogonal orthogonal projection matrices. If the set 2 = {Qq,...,Q,,} = pb(/ (%)), we have that:

h
Ul=Zbl,]Qj7 l=1,,h

Jj=1

and B = [b;_; | will be the transition matrix % |2.

A family % of symmetric matrices that commute is perfect [3], if it is a basis of .7 (%) and the transition matrix
|2, with 2 = pb(/ (%)) is invertible.

As mentioned above, if Uy, ..., Uy, commute, they are diagonalizable by the same orthogonal matrix P. The
row vectors a1, ..., o, of P are eigenvectors of the matrices Uy, ..., Uy. Writing

o; Ty

when «; and a¢ are associated to identical eigenvalues for all matrices Uy, ..., Uy, we establish an equivalence
relation between the row vectors of P.

A t equivalence class will be of first type if its vectors are associated to non null eigenvalues for at least one of
the matrices of %7 = {Uy, ..., Uy}

Besides type T equivalence classes, there may be a second type of equivalence class whose vectors are associated
to null eigenvalues for all matrices of 7. The eigenindex of % will be the number type 7 equivalence classes.

Let &1, ..., &4 be the sets of indices of the &1, . .., &, belonging to these classes and the matrices
KgZZOCjOC;-r, {=1,...,d
VASH

will be pairwise orthogonal orthogonal projection matrices, and

d
UiZZvi.gKg, i=1,...,h,
=1

where v; ¢ are the eigenvaluesof at;, j € £, £ =1,...,d,forU;,i =1,...,h.

Now, see [3], the K1, ..., K, constitute the ph(&) with & = /(% ). Then % is a PF if and only if h = d,
i.e., if the cardinal of % is equal to its eigenindex.

We now consider the following proposition:
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Proposition 2.1. If the symmetric matrix Ug commutes with the commuting symmetric matrices Uy, ... Uy, it will
commute with all matrices of &/ = o/ (%), with % = {Uy,...,Up}.

Proof. The matrices of % = {Up, Uy, ..., Uy} commute if and only there is a CJA, %, that contains both Ug
and the matrices of .« and this completes the proof. O

3 Uniformly best linear unbiased estimators

The mixed model

w
y=Y_ XiB; e
i=0
where B is fixed and the 8, B85, ..., B, are independent with null mean vectors and variance-covariance matrices
011, ..., Opl.,, will have mean vector
n =XoBo

and the family of its variance-covariance matrices will be

¥ =

V(()):ZGiMi:0>0§,

i=1

where M; = XinT,i =1,...,w.
Now a necessary and sufficient condition [13] for the LSE of the model in (1) to be UBLUE, is that

VO >0 (XJXO)_ XJ V()T = 04 )
where (-) indicates a generalized inverse and T¢ = I, — T with
T=Xo(XJXo) X

is the orthogonal projection matrix on the space spanned by the mean vector, f.
We now consider another proposition:

Proposition 3.1. The mixed model has LSE that are UBLUE if any if the following equivalent conditions holds:
(@) YO >0:TV(0)TC = 0,xn;

(b) VO >0:TV(0)=V()T;

c© TM; =M; T,i=1,...,m;

@TQ; =Q; T, j=1,...,m with2 = pb(«/(M)).

Proof. Since TXo = Xo, the expression (2) may be rewritten as
VO >0 (XJXO)_ X TV(0)TC = 04 .
When this conditions holds, we will have
Vo > 0:Xo (XJ xo)_ X TV(0)TC = TTV(0)T¢ = TV(6)T = 0,,,.

which implies expression (2). Thus conditions (2) and (a) are equivalent.
Now, T¢ = I,, — T so we may rewrite (2) as

VO >0:TV(@)—-TV()T = 0,,xn

and also
Vo >0:TV(0) =TV()T
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and TV(0)T is symmetric, we will have
Vo >0:TV() =V()T,
so (a) implies (b). Now if (b) holds, since T is idempotent, we will have
Vo >0:TV(0) =TV(0)T,

thus (b) implies (a) and so according to (2), (a) and (b) are equivalent.
Moreover, §; is a vector with all components null except the i — th which is 1, so we have

M; =V +8;)—V(), i=1,...,m,
thus T, since it commutes with V(6 + §;) and V(0) also commutes with M;, i = 1,..., w. Conversely, if T
commutes with M;, i = 1,..., w, it commutes with V(#), whatever 8 > 0, thus (c) is equivalent to (b) and to (2)

and (a).
Lastly if (c) holds, T commutes, according to Proposition 1, with all matrices in </ (.#), and therefore also

m
Qq,....Q,;,. Conversely if T commutes with the Qq,...,Q,,, it commutes with the My = be,jQ;, € =
Jj=1
1,...,m,so (c) and (d) are equivalent and the proof is complete. O

Let us put
M;? = TM; T, i=1,...,w

M =TM;TC, i=1.... w
when the model is UBLUE we have TM; = M; T and also T°M; = M; T¢ so, it follows that
M; = M + M, i=1....w
since
MOMS = MSM = 0,55, i # 0.

We may now establish the following proposition,

Proposition 3.2. If the model has LSE that are UBLUE, we have MMy =M¢M;, if and only if M?Mj =M;M?
and M{M§ =M{M¢. Thus the matrices in A = {My,... My} commute if and only if the matrices in
M° ={MS,... My} and #¢ = {MY,... M} commute.

Proof. Since
M; M, = (M7 + M;) (M7 + Mp) = (M7Mp) + (M7M()

so if M{ My = MyM; and M{ M7 = M{M; we have that M; M, = M¢M;.
Now if M; M, = M¢M; we would have

MM + MEMG = MM + MM

so that
MM — MM = MMy — My M

and we have only to point out that the range space of the left [right] side of this matrices equation lies in the range
space of T[T¢]. Thus this equality holds only if

MSMS — MSMS = MOMS — MSMES = 0,5,

ie., it MMy = MyM? and M{M§ = M{M; . The rest of the proof is straightforward. O
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4 Variance-covariance matrices

We start by assuming that .# is perfect. Then w = m and

m
M; = b ;Q;. i=1,...,w,
j=1
thus
m m
V)= 6M; =Y y,Q; =V,
i=1 j=1
with
y=BToerl
where
r=B"0

contains non-empty open sets since B is invertible. Thus ([13]) the model is ORT whenever its LSE are UBLUE.
In addition, the matrices in .# must be linearly independent so that V(1) = V(6#>) implies #; = 65 and
0 identifies V(@), then w < m, since My, ..., My, belong to o/ (.#) which is a linear space with dimension m.
Moreover if w < m, I will be contained in the range space of BT, R(BT), which will have dimension w < n and
so I' cannot contain non-empty open sets.
Since . is PF if and only if w = m, we turn to the following proposition

Proposition 4.1. The mixed model in (1) is ORT if and only if T commutes with .#, that is a PF.

Moreover, if normality is assumed, since I" contains open sets, the ORT models will have completely sufficient
statistics, see [6]. Thus the estimators we obtain for estimable vectors and variance-covariance components will be
UMVUE.

In the case of EO models, the requirements for these models are ([13]):
—  their LSE are UBLUE
— the variance-covariance matrix of y¢ = Ty can be written as

m¢
C _ cNC
Ve = ) 505
Jj=1
with Q; =TQ,;T, j =1,...,m, where the Qf, ..., Q},c are known pairwise orthogonal orthogonal pro-
jection matrices and y¢ belongs to I'“ that contains non void open sets.
Putting
M{§ = T°M; T¢, i=1,..,w,
we have for y¢, the variance-covariance matrices
w
VEO) = > 6,MS, 0 € O.
=1

We can reason as above to establish the following proposition:
Proposition 4.2. The model in (1) is EO if and only if T commutes with .# and #€ is perfect.

If one considers ORT models in the case of normality, the estimators for the variance components are UMVUE in
the family of the estimators obtained from y*.
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5 Final comments

In order not to have linear restrictions for y{, ..., y,,, the matrix B must be invertible, and this is a condition which
holds if and only if ./ is a perfect family.

Thus, .# being a perfect family is a necessary and sufficient condition, once normality is assumed, for having
complete and sufficient statistics.
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