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1 Motivation of the problem — introduction

Let g.n/ denote the maximum determinant of all n � n matrices with elements˙1. Here and throughout this paper,
for convenience, when we say determinant we mean the absolute value of the determinant. The question of finding
g.n/ for any integer n is an old one which remains unanswered in general. We ignore here the trivial cases n D 1; 2.
In 1893 Hadamard gave the bound nn=2 for g.n/. This bound can be attained only if n is a multiple of 4. A matrix
that attains it is called a Hadamard matrix, and it is an outstanding conjecture that one exists for any multiple of 4.
At the time of writing, the smallest order for which the existence of a Hadamard matrix is in question is 668. If n
is not a multiple of 4, g.n/ is not known in general, but tighter bounds exist. For n � 2 mod 4, Ehlich [9] and
independently Wojtas [19] proved that

g.n/ � .2n � 2/.n � 2/
1
2n�1: (1)

Moreover, in order for equality to hold, it is required that there exists a .�1; 1/-matrix M of order n such that

MMT D

 
L 0

0 L

!
, where L D .n � 2/I n

2
C 2J n

2
. Here, as usual, In denotes the identity matrix of order n, and

Jn denotes the n � n matrix all of whose entries are equal to one. In these circumstances, it may be proved that, in
addition, 2n� 2 is the sum of two squares, a condition which is believed to be sufficient (order 138 is the lowest for
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which the question has not been settled yet, [10]). The interested reader is addressed to [14] and the website [17] for
further information on what is known about maximal determinants.

There is a companion theory for matrices with 0’s on the main diagonal and ˙1 elsewhere. Let f .n/ denote
the maximum determinant of all n � n matrices with elements 0 on the main diagonal and ˙1 elsewhere. It is well-
known that f .n/ � .n � 1/n=2. This can be attained only when n is even, and a matrix C which does so is called a
conference matrix. For n odd the question has been hardly worked out [6].

A matrix M is symmetric if M D MT . A matrix is skew-symmetric (or skew) if M D �MT . The following
theorem analyzes the structure of the conference matrices [13, p. 307]:

Theorem 1.1. If C is an n � n conference matrix, then either n � 0 mod 4 and C is equivalent to a skew matrix,
or n � 2 mod 4 and C is equivalent to a symmetric matrix and such a matrix cannot exist unless n � 1 is the sum
of two squares: thus they cannot exist for orders 22; 34; 58; 70; 78; 94: The first values for which the existence of
symmetric conference matrices is unknown are n D 66; 86.

It is known that if C is a skew conference matrix then H D C C I is a Hadamard matrix, which is called a skew
type Hadamard matrix. Let us point out that, in this case, H CHT D 2I .

Skew conference and skew Hadamard matrices are of great interest because of their elegant structure, their
beautiful properties and their applications to Coding Theory, Combinatorial Designs and Cryptography.

Throughout the paper fk.n/ will denote the maximum determinant of all n � n skew matrices with elements 0
on the main diagonal and ˙1 elsewhere. Respectively, gk.n/ will denote the maximum determinant of all .�1; 1/
matrices of skew type of order n. Let us observe thatN is an n�n skew matrix with elements 0 on the main diagonal
and˙1 elsewhere if, and only if, N C I is a .�1; 1/-matrix of skew type with order n.

In what follows, we will deal with these two problems, originally posted by P. Cameron in his website [7] and
suggested by Dennis Lin:

1. Compute fk.n/ and gk.n/ for different integers n.
2. Let N be an n � n skew matrix with elements 0 on the main diagonal and˙1 elsewhere; decide whether or not

the following equivalence holds. It will be called “Lin’s correspondence".

detN D fk.n/” det.N C I / D gk.n/; n even:

For n � 0 mod 4, concerning the first question it is conjectured that fk.n/ D nn=2 and gk.n/ D .n � 1/n=2. The
first open order is n D 276. On the second question, it is known that C is a skew conference matrix if and only if
C C I is a skew Hadamard matrix. So the equivalence above holds.

We shall here be concerned with the case n � 2 mod 4, n ¤ 2 and this will be implicitly assumed in what
follows.
– Concerning fk.n/ there exist the following upper [5] and lower [7] bounds,

fk.n/ � .2n � 3/.n � 3/
1
2n�1 (2)

and equality holds if and only if there exists a skew matrix N with

NNT D NTN D

"
L0 0

0 L0

#
; (3)

where L0 D .n � 3/I C 2J . Will Orrick noticed in [7] that equality in (2) can only hold if 2n � 3 D x2 where
x is an integer.

– Assuming that a conference matrix of order nC 2 exists,

fk.n/ � .nC 1/
1
2n�1:

For gk.n/, we have:
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– Elich-Wojtas’ upper bound (1). That is,

gk.n/ � .2n � 2/.n � 2/
1
2n�1: (4)

– An analogous lower bound was given by Cameron [7] under the hypothesis that a conference matrix of order
nC 2 exists

gk.n/ � 2.nC 2/
1
2n�1:

Moreover, the following result from [5] gives an affirmative answer to question 2,

Theorem 1.2. Let K be a .�1; 1/-matrix of skew type.

detK D .2n � 2/.n � 2/
1
2n�1 , det .K � I / D .2n � 3/.n � 3/

1
2n�1:

This result implies that equality in (4) can only hold if 2n�3 D x2 where x is an integer. Therefore, a .�1; 1/-matrix
of skew type reaching Ehlich-Wojtas’ bound cannot exist for orders 10, 18, 22, 30 and so on.

An alternative proof for the above lower bounds can be done using a corollary (posted in [15, Corollary 1]) of
the following result, originally proved by Szollosi.

Theorem 1.3 (Szollosi [18]). LetM D

"
X Y

Z W

#
be an n�n orthogonal matrix which is .l; n� l/-partitioned, i.e.,

X is l � l , W is .n � l/ � .n � l/, Y is l � .n � l/ and Z is .n � l/ � l for 1 � l � n � 1. Then detX D detW .

Considering C a skew conference matrix, CCT D .n�1/I , andH D CCI a skew Hadamard matrix,HH t D nI ,
in the place of orthogonal matrix,

Corollary 1.4. LetC D

"
X Y

Z W

#
be a .nC2/�.nC2/ skew conference matrix partitioned as above with l � n

2
C1.

Then the lower right .n � l/ � .n � l/, l � 1, minor of C is

detW D .nC 1/
n
2C1�l detX:

Taking H D C C I .Then the lower right .n � l/ � .n � l/, l � 1, minor of C C I is

det.W C I / D .nC 2/
n
2C1�l det.X C I /:

Remark 1.5. Let us point out that if l D 2, the corollary above provides a skew matrix C whose determinant is
.n C 1/

n
2�1 and a .�1; 1/-matrix of skew type, C C I , whose determinant is 2.n C 2/

n
2�1. Therefore, the lower

bounds for fk and gk are proved.

When a n � n determinant is found that attains the relevant one of the above upper bounds, it is immediate that
the maximal determinant for that order is just the bound itself. For instance, W. Orrick found .�1; 1/-matrices of
skew type whose determinants reach Ehilich-Wojtas’ bound for n D 6; 14; 26 and 42. Therefore, by means of Lin’s
correspondence (Theorem 1.2), fk.n/ so does too. Nevertheless when the upper bound is not attained, finding gk.n/
and fk.n/ can be exceedingly difficult. For n � 30, orders 18, 22, 30 are unresolved. The case n D 10 was solved
by Cameron, gk.10/ D 64000 and fk.10/ D 33489, using a random search and again Lin’s correspondence was
confirmed.

Two .�1; 1/-matrices M and N are said to be Hadamard equivalent or equivalent if one can be obtained from
the other by a sequence of the operations:
– interchange any pairs of rows and/or columns;
– multiply any rows and/or columns through by �1.

In other words, we say that M and N are equivalent if there exist .0; 1;�1/-monomial matrices P and Q such that
PMQT D N .
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In the early 90s, a surprising link between homological algebra and Hadamard matrices [11] led to the study of
cocyclic Hadamard matrices. Hadamard matrices of many types are revealed to be (equivalent to) cocyclic matrices
[12]. Among them, Sylvester Hadamard matrices, Williamson Hadamard matrices, Ito Hadamard matrices and Paley
Hadamard matrices. Furthermore, the cocyclic construction is the most uniform construction technique for Hadamard
matrices currently known, and cocyclic Hadamard matrices may consequently provide a uniform approach to the
famous Hadamard conjecture.

The main advantages of the cocyclic framework concerning Hadamard matrices may be summarized in the
following facts:
– The test to decide whether a cocyclic matrix is Hadamard runs in O.t2/ time, better than the O.t3/ algorithm

for usual (not necessarily cocyclic) matrices.
– The search space is reduced to the set of cocyclic matrices over a given group (that is, 2s matrices, provided that

a basis for cocycles over G consists of s generators), instead of the whole set of 216t
2

matrices of order 4t with
entries in f�1; 1g.

Let us point out that there is some evidence that searching for cocyclic Hadamard matrices, and in particular for
D4t -cocyclic Hadamard matrices (i.e., cocyclic Hadamard matrices over the dihedral group of 4t elements), makes
sense. Furthermore, in [1], we showed that the cocyclic technique can certainly be extended to handle the maximal
determinant problem (for matrices of order n with entries in f�1; 1g) at least when n � 2 mod 4. More concretely,
we focused on cocyclic matrices over the dihedral group D2t , with t odd. We provided some algorithms for con-
structing D2t -cocyclic matrices with large determinants and some explicit calculations up to t D 19.

In this paper, taking as a starting point the cocyclic matrices yielded by the algorithms from [1], we check
which of those matrices are equivalent to a .�1; 1/-matrix of skew type, M . In this way, we provide a method for
constructing .�1; 1/-matrices of skew type with large determinants. As far as we know, new records for n D 18 and
22 have been provided. Besides, we investigate the spectrum of the determinant function for these matrices M and
the relationship with the spectrum of the corresponding skew matrices M � I . In the light of these computations,
we conjecture that when detM moves in the range Œ2.n C 2/

1
2n�1; .2n � 2/.n � 2/

1
2n�1� then det.M � I / is a

monotonic increasing function in the range Œ.nC 1/
1
2n�1; .2n � 3/.n � 3/

1
2n�1�. This weighs heavily in favor of

Lin’s correspondence.

2 Cocyclic matrices and .�1; 1/-matrices with large determinants

Assume throughout that G D fg1 D 1; g2; : : : ; gng is a multiplicative group, not necessarily abelian. Functions
 WG �G ! h�1i Š Z2 which satisfy

 .gi ; gj / .gigj ; gk/ D  .gj ; gk/ .gi ; gjgk/; 8gi ; gj ; gk 2 G (5)

are called (binary) cocycles (over G) [16]. A cocycle is a coboundary @� if it is derived from a set mapping �WG !
h�1i by @�.a; b/ D �.a/�.b/�.ab/�1:

A cocycle  is naturally displayed as a cocyclic matrix (or G-matrix) M ; that is, the entry in the .i; j /th
position of the cocyclic matrix is  .gi ; gj /, for all 1 � i; j � n.

A cocycle  is normalized if  .1; gj / D  .gi ; 1/ D 1 for all gi ; gj 2 G. The cocyclic matrix coming from
a normalized cocycle is called normalized as well. Each unnormalized cocycle  determines a normalized one � ,
and vice versa. Therefore, we may reduce, without loss of generality, to the case of normalized cocycles.

The set of cocycles forms an abelian group Z.G/ under pointwise multiplication, and the coboundaries form a
subgroupB.G/. A basis B for cocycles overG consists of some elementary coboundaries @i and some representative
cocycles, so that every cocyclic matrix admits a unique representation as a Hadamard (pointwise) product M D

M@i1 ı : : : ıM@iw ı R, in terms of some coboundary matrices M@ij and a matrix R formed from representative
cocycles.
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Recall that every elementary coboundary @d is constructed from the characteristic set map ıd WG ! f�1; 1g
associated with an element gd 2 G, so that

@d .gi ; gj / D ıd .gi /ıd .gj /ıd .gigj / for ıd .gi / D

(
�1 gd D gi ;

1 gd ¤ gi :

Lemma 1 (Lemma 1 [3]). In particular, for d ¤ 1, every row s … f1; dg in M@d contains precisely two �1s, which
are located at the positions .s; d/ and .s; e/, for ge D g�1s gd . Furthermore, the first row is always formed by 1s,
while the d -th row is formed all by �1s, excepting the positions .d; 1/ and .d; d/.

Although the elementary coboundaries generate the set of all coboundaries, they might not be linearly independent
(see [4] for details).

Let Gr .M/ (resp. Gc.M/) be the Gram matrix of the rows (resp. columns) of M ,

Gr .M/ DMMT ; .resp.Gc.M/ DMTM/:

The Gram matrices of a cocyclic matrix can be calculated as follows.

Proposition 2.1 (Lemma 6.6 [12]). Let M be a cocyclic matrix,

ŒGr .M /�ij D  .gig
�1
j ; gj /

X
g2G

 .gig
�1
j ; g/; (6)

ŒGc.M /�ij D  .gi ; g
�1
i gj /

X
g2G

 .g; g�1i gj /: (7)

If a cocyclic matrix M is Hadamard, the cocycle involved,  , is said to be orthogonal and M is a cocyclic
Hadamard matrix. The cocyclic Hadamard test asserts that a normalized cocyclic matrix is Hadamard if and only if
every row sum (apart from the first) is zero [12]. In fact, this is a straightforward consequence of Proposition 2.1.

Analyzing this relation from a new perspective, one could think of normalized cocyclic matrices meeting
Hadamard’s bound as normalized cocyclic matrices for which every row sum is zero. Could it be possible that
such a relation translates somehow to the case n � 2 mod 4? We proved in [1] that the answer to this question is
affirmative.

A natural way to measure if the rows of a normalized cocyclic matrix M D Œmij � are close to sum zero, is to
define an absolute row excess function RE, such that

RE.M/ D

nX
iD2

ˇ̌̌̌
ˇ̌ nX
jD1

mij

ˇ̌̌̌
ˇ̌ :

This is a natural extension of the usual notion of excess of a Hadamard matrix, E.H/, which consists of the summa-
tion of the entries of H .

With this definition at hand, it is evident that a cocyclic matrix M is Hadamard if and only if RE.M/ D 0.
That is, a cocyclic matrix M meets Hadamard’s bound if and only if RE.M/ is minimum. This condition may be
generalized to the case n � 2 mod 4.

For the remainder of the paper t denotes an odd positive integer.

Proposition 2.2 ([1]). Let M be a normalized cocyclic matrix over G of order n D 2t . Then RE.M/ � 2t � 2.

But we may go even further. Having the minimum possible value 2t�2 is a necessary condition for a cocyclic matrix
M to meet the bound .1/.

Proposition 2.3 ([1]). If a cocyclic matrix M of order n D 2t meets the bound (1), then RE.M/ D 2t � 2.

Unfortunately, although having minimum absolute row excess is a necessary and sufficient condition for meeting
Hadamard’s bound , it is just a necessary (but not sufficient, in general, see [1, Table 5] ) condition for meeting the
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bound (1). But there are some empirical evidences that matrices having minimum absolute row excess correspond
with matrices having large determinants, see [2, Table 2.1., page 11].

From now on, we fix G D D2t as the dihedral group with presentation ha; bW at D b2 D .ab/2 D 1i, with
ordering f1; a; : : : ; at�1; b; ab; : : : ; at�1bg and indexed as f1; : : : ; 2tg for t an odd positive integer. A basis for
cocycles over D2t consists of (see [1, 3]):

B D f@2; : : : ; @2t�1; ˇg:

Here @i denotes the coboundary associated with the i th-element of D2t , that is ai�1 .mod t/bb
i�1
t c. And ˇ is the

representative cocycle in cohomology, i.e. the cocyclic matrix coming from inflation isMˇ D

"
1 1

1 �

#
˝Jt . We use

A˝ B for denoting the usual Kronecker product of matrices, that is, the block matrix whose blocks are aijB .
Summarizing, the D2t -matrices of the form M D M@i1 ı : : : ıM@iw ıMˇ with RE.M/ D 2t � 2 yield a

potential source of matrices with large determinant. In [1, 2] we have performed exhaustive searches for the set of
D2t -matrices with large determinant, for 3 � t � 11. In the sequel, we will use these matrices for our purpose of
looking for matrices of skew type with large determinants.

3 Finding equivalent matrices of skew type

We perform a backtracking search to decide whether or not a .�1; 1/-matrixM of size n (given as input) is equivalent
to a matrix of skew type. If so, a skew-matrix K equivalent to M is provided. Starting from the 1 � 1 matrix, Œ1�,
the candidate matrix is built up by “skew-symmetrically” appending one row and column at a time, until size n
is reached or no continuation is possible. At this stage, the algorithm returns to the most recent sub-matrix from
which there is a possible continuation that has not yet been tried, and resumes the search from there. Proceeding
exhaustively in this manner, until either the candidate matrix has size n or the entire search tree has been explored,
the algorithm terminates stating whether or not M is equivalent to a skew type. If so, providing K.

Naturally, the search tree is vast, and various methods must be used to prune it. The value .nŠ/2 bounds the space
we need to explore (in the worst case). Proposition 3.1 provides a criterion for removing branches of the search tree
reducing it to nŠ. In our observation, most of the branches of the search tree are removed at an early stage. So it
seems that our algorithm works efficiently for the values of n that we have worked on in this manuscript. A deeper
study of the time-complexity of this algorithm and efforts to try to improve it are underway.

Proposition 3.1. LetM be a .�1; 1/-matrix andK be a .�1; 1/-matrix of skew type. IfM andK are equivalent then
a .�1; 1; 0/-monomial matrix Q exists such that QTKQ can be obtained from M by a sequence of row operations
(interchanges and negations).

Proof. IfK andM are equivalent then there exist .�1; 1; 0/-monomial matrices P andQ such that PMQT D K. If
K is of skew type thenQTKQ is so too. Let us observe thatQTKQ D QTPM andQTP is a .�1; 1; 0/-monomial
matrix.

Algorithm. Search for matrices of skew type equivalent to M .

Input: a .�1; 1/-matrix M of order n.
Output: a matrix K of skew type equivalent to M , if such a matrix K exists.

ri denotes the i -th row of M for 1 � i � n.
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1. Initialize variables.
s D 1 order of the current sub-matrix

K0
1
D Œ1� the initial sub-matrix

F 0
1
D fr1g a list of rows of M or �M which take part in the sub-matrix

NF 0
1
D fr2; : : : ; rng a list of rows of M which do not belong to F 0

1

2. Iteration l C 1
Kls D Œr

l
ij
�1�i;j�s

F ls D fr
l
1
; r l
2
; : : : ; r lsg

NF ls D fr
l
i1
; : : : ; r l

ik
g � fr l

sC1
; : : : ; r lng

2.1. If s D n then the Output is K D Ks and EndAlgorithm.
2.2. If 0 � s < n then

2.2.1.If NF ls is not empty (i.e., k > 0) then,

r lC1
i1
D

(
r l
i1

if ri1 sC1 D 1
�r l
i1

if ri1 sC1 D �1

2.2.1.1.If
r lC1
i1;j
D �r lj;sC1 8j D 1; : : : ; sI (8)

then

KlC1
sC1
D

266664 Kls

r l
1;sC1

:::

r l
s;sC1

r lC1
i1;1

: : : r lC1
i1;s

1

377775
r lC1
j
D r l

j
81 � j � n and j ¤ s C 1

r lC1
sC1
D r lC1

i1

F lC1
sC1
D fr lC1

1
; : : : ; r lC1

sC1
g

NF lC1
sC1
D fr lC1

sC2
; : : : ; r lC1n g

NF lC1s D NF ls ;
NF lC1
s�1
D NF l

s�1
; : : : ; NF lC1

1
D NF l

1

s D s C 1; l D l C 1 and go to 2.
2.2.1.2.If identity (8) does not hold then

F lC1s D F ls
NF lC1s D NF ls n fr

l
i1
g

ih D ihC1; 1 � h � k � 1

r lC1
i
D r l

i
; 1 � i � n

KlC1s D Kls
l D l C 1 and go to 2.2.

2.2.2.If NF ls is empty (i.e., k D 0) then,
2.2.2.1If s > 0 then

F lC1
s�1
D F ls n fr

l
sg

r lC1
i
D r l

i
; 1 � i � n

KlC1
s�1
D Œr lC1

i;j
�1�i;j�s�1

NF lC1
s�1
D NF l

s�1
n fr lsg

s D s � 1; l D l C 1 and go to 2.
2.2.2.2.If s D 0 then, EndAlgorithm and M is not equivalent to a matrix K of skew type.

The following result states an independency of the representative of skew type chosen in the same equivalence class
with respect to the function h.K/ D det.K � I /. It will play an essential role to study Lin’s correspondence in the
next section.
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Proposition 3.2. LetK1 andK2 be .�1; 1/-matrices of skew type. IfK1 andK2 are equivalent then det.K1�I / D
det.K2 � I /:

Proof. If K1 and K2 are equivalent then there exist .�1; 1; 0/-monomial matrices P and Q such that QTK1Q D
QTPK2 (see the proof of Proposition 3.1). Let us point out that QTK1Q is of skew type. Due to the fact that
QTPK2 and K2 are of skew type, it follows QTP D I and hence K2 D QTK1Q. Now, by a simple inspection,
we have K2 � I D QT .K1 � I /Q and from here, the desired result.

4 Explicit calculations

The problem of the spectrum (or range) of the determinant function was studied by Craigen [8] who asked for the
complete list of integers, d , such that d is the determinant of some .0; 1/-matrix of size n�1, or equivalently, 2n�1d
is the determinant of some .�1; 1/-matrix of size n. We are focusing here on D2t -matrices.

We have performed an exhaustive search to determine the complete range of the determinant function for D2t -
matrices, for 3 � t � 11 odd. For each value of the range 22t�1d , we have checked if there is a .�1; 1/-matrix of
skew typeK equivalent toM , aD2t -matrix with determinant equal to 22t�1d . If so, we have computed det.K�I /.
RM andRK denote the ratios detM

.2n�2/.n�2/
1
2
n�1

and det.K�I/

.2n�3/.n�3/
1
2
n�1

, respectively. For convenience, we will treat

only the values 2n�1d in Œ2.nC 2/
1
2n�1; .2n � 2/.n � 2/

1
2n�1� in this discussion.

Looking at Table 1, we observe a regularity in the growth of the functions detK and det.K � I /. As a con-
sequence, the largest value of det.K � I / corresponds to K where the largest value of det.K/ is reached and vice
versa. This weighs heavily in favor of Lin’s correspondence. For values of the determinant, 2n�1d , lesser than
2.nC 2/

1
2n�1 no regularity is observed.

5 Conclusions

We have approached the problem of the maximal determinant for .�1; 1/-matrices of skew type using D2t -cocyclic
matrices for t D 3; 5; 7; 9 and 11. As an intermediate needed step, we have designed a procedure to decide whether
or not a .�1; 1/-matrix M (given as an input) is equivalent to a matrix of skew type. If so, it provides such a matrix
of skew type, K. Furthermore, we have also computed det.K � I /.

Let gc
k
.2t/ denote the maximum determinant of all the .�1; 1/-matrices of skew type equivalent to a D2t -

cocyclic matrix. Respectively, let f c
k
.2t/ denote the maximum determinant ofK�I , all skew matrices with elements

0 on the diagonal and ˙1 elsewhere such that K is equivalent to a D2t -cocyclic matrix. Our empirical data suggest
that if K is a .�1; 1/-matrix of skew type equivalent to a D2t -cocyclic matrix, then

detK D gck.2t/” det.K � I / D f ck .2t/:

This weighs heavily in favor of Lin’s correspondence. By definition, we have gc
k
.2t/ � gk.2t/ and f c

k
.2t/ �

fk.2t/.
Table 2 shows the greatest values for the determinant of .�1; 1/-matrices of skew type that we have computed

using our cocyclic approach as well as the greatest values for the determinants of skew matrices K � I . For the
cases where gk.n/ and fk.n/ is known, n D 6; 10; 14 and 26, we have got gc

k
.n/ D gk.n/ and f c

k
.n/ D fk.n/,

respectively. For n D 18 and n D 22, we believe that they are new records.
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Table 1. Range for Dn-matrices with n D 6; 10; 14; 18 and 22 in the interval Œ2.nC 2/
1
2n�1; .2n� 2/.n� 2/

1
2n�1�.

det.M/=2n�1 RM Skew det.K � I/ RK

n=6
2 5 1 Yes 81 1
1 4 0.8 Yes 49 0.605

n=10
6 144 1 No
5 125 0.868 Yes 33489 0.82
4 81 0.563 Yes 14641 0.359

n=14
15 9477 1 Yes 44289025 1
14 8405 0.887 Yes 38155329 0.862
13 7569 0.799 No
12 4096 0.432 Yes 11390625 0.257

n=18
74 1114112 1 No
73 1003520 0.901 No
72 998001 0.896 No
71 950480 0.853 Yes 70084620225 0.829
70 912925 0.819 Yes 66721473025 0.789
69 842724 0.756 No
68 812500 0.729 Yes 57631204225 0.681
67 426320 0.383 Yes 28067976225 0.332
66 411892 0.370 Yes 27048736225 0.320
65 390625 0.351 Yes 16983563041 0.201

n=22
195 184769649 0.901 No
194 179802493 0.877 Yes 216409254831025 0.861
193 173102177 0.844 No
192 164795405 0.804 Yes 195146846433009 0.776
191 158835609 0.775 No
190 149309173 0.728 Yes 173517785938225 0.690
189 109098025 0.532 Yes 125239219607089 0.498
188 97726205 0.477 Yes 110427668520849 0.439
187 95262037 0.465 Yes 107496564483025 0.428
186 90792257 0.443 No
185 90269001 0.440 No
184 80120045 0.391 Yes 87838151584401 0.349
183 74701449 0.364 No
182 72999936 0.356 No
181 71233553 0.347 No
180 70725605 0.345 Yes 75040101679761 0.299
179 69900605 0.341 Yes 74857259736081 0.298
178 68865749 0.336 No
177 68204153 0.333 No
176 66810757 0.326 Yes 69917274339025 0.278
175 62693405 0.306 Yes 64974062301201 0.258
174 60466176 0.295 Yes 41426511213649 0.165
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Table 2. Values of gc
k

.n/ and f c
k

.n/ up to n D 26.

n gc
k

.n/=2n�1 f c
k

.n/

6 5 81
10 125 33489
14 9477 44289025
18 950480 70084620225
22 179802493 216409254831025
26 54419558400 1073816597168995729
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