Abstract
Northwestern Argentina (NWA) is a region characterized by a complex geomorphology, and encompasses six ecoregions in a relatively small area. The environmental heterogeneity of NWA and the sensitivity of small mammals towards environmental and landscape changes constitute a good scenario to assess the factors that influence small mammal diversity patterns in the region. We studied small mammal communities obtained from pellet samples in 24 localities of NWA. We identified 50 non-volant small mammal species and obtained topographic, climate and land cover variables. Our results show that small mammal communities respond to environmental factors at a regional scale. Such variations were explained in different proportions by the geographic position of the collecting sites, landscape and climate. Furthermore, the combined effect of these factors was the main determinant of species abundance patterns. Our results support the need of large-scale approaches to study communities, since the explanations of the observed patterns are simpler and more general. We emphasize the importance of considering the combined effect of different environmental predictors, which allows determining the amount of species variation that is spatially structured, and within that, the amount of variation related to the influence of the measured environmental variables.
Funding source: Agencia de Promoción Científica y Tecnológica
Award Identifier / Grant number: PICT 2012-0050
Funding source: Universidad Nacional de Chilecito
Award Identifier / Grant number: Ficyt 2013-2014
Acknowledgments
We thank A. Cocimano, M. Vera, S. Nanni, D. García López, F. Barbière, and V. Torres Carro for their fieldwork assistance. M. Maroli and M. Almeida facilitated the entry to El Rey national park, and provided the pellets. We thank E. Aráoz for providing critical reviews and suggestions that improved previous drafts of the manuscript. We thank S. Nanni for the revision of the English.
-
Author contributions: Sofía d’ Hiriart, Pablo Jayat and Pablo Ortiz did the fieldwork and performed the identifications of the individuals collected. Pablo Jayat and Pablo Ortiz supervised the study. Sofía d’Hiriart acquired the environmental variables, digitized the satellite images and prepared figures and/or tables. Gerardo Cueto designed and carried out the statistical analyzes and joint with Pablo Teta and Sofía d’Hiriart analyzed the results. All authors took part on the preparation of the manuscript.
-
Research funding: This study was carried out with the institutional support of instituto de Ambientes de Montañas y Regiones Áridas, Universidad Nacional de Chilecito (UNdeC), Instituto Superior de Correlación Geológica (UNT-CONICET), Cátedra de Paleontología de la Universidad Nacional de Tucumán, and Instituto de Ecología Regional (UNT-CONICET). Support was provided by a CONICET doctoral fellowship to Sofía d’Hiriart, and part of the surveys were carried out with the financial support of Agencia de Promoción Científica y Tecnológica (PICT 2012-0050) and Universidad Nacional de Chilecito (Ficyt 2013-2014).
-
Conflict of interest statement: The authors declare that they have no conflict of interests regarding this article.
References
Andrews, P. (1990). Owls, caves, and fossils: predation, preservation, and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westburysub-Mendip. Somerset, UK: University of Chicago Press.Search in Google Scholar
Avery, D.M., Avery, D., and Roberts, A. (2002). A contribution from barn owl pellets to known micromammalian distributions in KwaZulu-Natal, South Africa. Afr. Zool. 37: 131–140, https://doi.org/10.1080/15627020.2002.11657168.Search in Google Scholar
Bianchi, A. and Yañez, C. (1992). Las precipitaciones en el Noroeste Argentino, 2nd ed. INTA. Estación Experimental Agropecuaria Salta.Search in Google Scholar
Bilney, R., Cooke, R., and White, J. (2010). Underestimated and severe: small mammal decline from the forests of south-eastern Australia since European settlement, as revealed by a top-order predator. Biol. Conserv. 143: 52–59, https://doi.org/10.1016/j.biocon.2009.09.002.Search in Google Scholar
Bivand, R., Altman, M., Anselin, L., Assunção, R., Berke, O., Bernat, A., and Blanchet, G. (2015). Package ‘spdep’. Available at: <ftp://garr.tucows.com/mirrors/CRAN/web/packages/spdep/spdep.pdf>.Search in Google Scholar
Blanchet, F.G., Legendre, P., and Borcard, D. (2008). Forward selection of explanatory variables. Ecology 89: 2623–2632, https://doi.org/10.1890/07-0986.1.Search in Google Scholar
Bobba, M.E. and Hernández, C.M. (2005). Aspectos geológicos del noroeste argentino. In: Minetti, J.L. (Ed.). El clima del noroeste argentino. Laboratorio Climatológico Sudamericano: Tucumán, Ediciones Magna, pp. 9–25.Search in Google Scholar
Borcard, D., Gillet, F., and Legendre, P. (2018). Canonical ordination. In: Numerical ecology with R. Use R! Springer, Cham.10.1007/978-3-319-71404-2_6Search in Google Scholar
Borcard, D., and Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153: 51–68, https://doi.org/10.1016/s0304-3800(01)00501-4.Search in Google Scholar
Borcard, D., Legendre, P., Avois-Jacquet, C., and Tuomisto, H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832, https://doi.org/10.1890/03-3111.Search in Google Scholar
Bowman, J., Forbes, G.J., and Dilworth, T.G. (2001). The spatial component of variation in small-mammal abundance measured at three scales. Can. J. Zool. 79: 137–144, https://doi.org/10.1139/z00-188.Search in Google Scholar
Brown, A., Martínez Ortiz, U., Acerbi, M., and Corcuera, J.F. (2006). La situación ambiental Argentina 2005. Buenos Aires, Argentina: Fundación Vida Silvestre.Search in Google Scholar
Brown, J.H. (1984). On the relationship between abundance and distribution of species. Am. Nat. 124: 255–279, https://doi.org/10.1086/284267.Search in Google Scholar
Brown, J.H. (1995). Macroecology, 1st ed. Chicago: University of Chicago Press.Search in Google Scholar
Brown, J.H. and Lomolino, M.V. (1998). Biogeography, 2nd ed. Sunderland, Massachusetts: Sinauer Associates, Inc.Search in Google Scholar
Brown, J.H., and Maurer, A. (1989). Macroecology: the division of food and space among species on continents. Science 243: 1145–1150, https://doi.org/10.1126/science.243.4895.1145.Search in Google Scholar PubMed
Brown, J.H., Davidson, D.W., Munger, J.C., and Inouye, R.S. (1986). Experimental community ecology: the desert granivore system. In: Diamond, J., and Case, T.J. (Eds.). Community ecology. New York, USA: Harper & Row, pp. 41–61.Search in Google Scholar
Casagranda, M.E. (2014). Análisis retrospectivo: relación entre cambios de uso de la tierra y cobertura y brote de leishmaniasis cutánea en Vinalito, provincia de Jujuy, Master’s thesis. Córdoba, Argentina, Universidad Nacional de Córdoba.Search in Google Scholar
Chessel, D., Dufour, A., Dray, S., Jombart, T., Lobry, J., Ollier, S., and Thioulouse, J. (2013). The ADE4 R package version 1.5–2: analysis of ecological data. Exploratory and Euclidean methods in environmental sciences.Search in Google Scholar
Cotgreave, P., and Stockley, P. (1994). Body size, insectivory and abundance in assemblages of small mammals. Oikos 1: 89–96, https://doi.org/10.2307/3546175.Search in Google Scholar
Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8: 1175–1182, https://doi.org/10.1111/j.1461-0248.2005.00820.x.Search in Google Scholar PubMed
Dale, V.H., Brown, S., Haeuber, R.A., Hobbs, N.T., Huntly, N., Naiman, R.J., Riebsame, W.E., Turner, M.G., and Valone, T.J. (2000). Ecological principles and guidelines for managing the use of land. Ecol. Appl. 10: 639–670, https://doi.org/10.1890/1051-0761(2000)010[0639:epagfm]2.0.co;2.10.5822/978-1-61091-491-8_25Search in Google Scholar
De la Sancha, N. (2014). Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia 78: 437–449, https://doi.org/10.1515/mammalia-2013-0100.Search in Google Scholar
del Hoyo, J., Elliott, A., and Sargatal, J. (1999). Barn-owls to hummingbirds. In: Handbook of the birds of the world, Vol. 5. Barcelona: Lynx Ed.Search in Google Scholar
De Tommaso, D., Formoso, A.E., Teta, P., Udrizar Sauthier, D.E., and Pardiñas, U.F.J. (2014). Distribución geográfica de Calomys musculinus (Rodentia, Sigmodontinae) en Patagonia. Mastozool. Neotrop. 21: 121–127.Search in Google Scholar
Díaz, M.M., Barquez, R.M., and Carrizo, L.V. (2009). Mammalia, Rodentia, Cricetidae, Tapecomys primus Anderson and Yates, 2000: new locality record. Check List 5: 439–441, https://doi.org/10.15560/5.3.439.Search in Google Scholar
Diniz‐Filho, J.A.F., Bini, L.M., and Hawkins, B.A. (2003). Spatial autocorrelation and red herrings in geographical ecology. Global Ecol. Biogeogr. 12: 53–64.10.1046/j.1466-822X.2003.00322.xSearch in Google Scholar
d’ Hiriart, S., Ortiz, P.E., González, R., and Jayat, J.P. (2017). Ecología trófica de la lechuza del campanario (Tyto furcata) en las Yungas del noroeste argentino. Ecol. Austral 27: 364–374, https://doi.org/10.25260/ea.17.27.3.0.505.Search in Google Scholar
Dray, S. (2008). Moran’s eigenvectors of spatial weighting matrices in R. Available at: <https://rdrr.io/rforge/spacemakeR/f/inst/doc/tutorial.pdf>.Search in Google Scholar
Dray, S. (2013). spacemakeR: spatial modelling. R package version 0.0-5/r113, Available at: <http://R-Forge.R-project.org/projects/sedar/>.Search in Google Scholar
Dray, S., Legendre, P., and Blanchet, F.G. (2007). packfor: forward selection with permutation (Canoco p.46), version 0.0-8. Software, Retrieved from: <http://R-Forge.R-project.org/projects/sedar/>.Search in Google Scholar
Dray, S., Legendre, P., and Peres-Neto, P.R. (2006). Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol. Model. 196: 483–493, https://doi.org/10.1016/j.ecolmodel.2006.02.015.Search in Google Scholar
Dray, S., Pélissier, R., Couteron, P., Fortin, M.J., Legendre, P., and Peres-Neto, P.R. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82: 257–275, https://doi.org/10.1890/11-1183.1.Search in Google Scholar
Fernández, F.J., Ballejo, F., Moreira, G.J., Tonni, E., and De Santis, L.J.M. (2011). Roedores cricétidos de la provincia de Mendoza. Córdoba: Editorial SAA and Universitas Sarmiento.Search in Google Scholar
Ferro, I.L., and Barquez, R.M. (2009). Species richness of nonvolant small mammals along elevational gradients in Northwestern Argentina. Biotropica 41: 759–767, https://doi.org/10.1111/j.1744-7429.2009.00522.x.Search in Google Scholar
Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., and Gibbs, H.K., et al.. (2005). Global consequences of land use. Science 309: 570–574, https://doi.org/10.1126/science.1111772.Search in Google Scholar PubMed
Formoso, A.E., Teta, P., Carbajo, A.E., and Pardinas, U.F.J. (2016). Unraveling the patterns of small mammal species richness in the southernmost aridlands of South America. J. Arid Environ. 134: 136–144, https://doi.org/10.1016/j.jaridenv.2016.07.007.Search in Google Scholar
Fretwell, S.D. and Lucas, J.R. (1970). On territorial behaviour and other factors influencing habitat distribution in birds. Acta Biotheor. 19: 16–36.10.1007/BF01601953Search in Google Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., and Marengo, J. (2009). Present-day south american climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281: 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032.Search in Google Scholar
Gaston, K.J. (2000). Global patterns in biodiversity. Nature 405: 220–227, https://doi.org/10.1038/35012228.Search in Google Scholar
Gómez, M.D., Fontanarrosa, G., Ortiz, P.E., and Jayat, J.P. (2012). Pequeños mamíferos predados por la Lechuza de Campanario (Tyto alba) en la ecorregión del Chaco Seco en el noroeste argentino. Hornero 27: 127–135.Search in Google Scholar
González-Fischer, C.M.G., Baldi, G., Codesido, M., and Bilenca, D. (2012). Seasonal variations in small mammal-landscape associations in temperate agroecosystems: a study case in Buenos Aires province, central Argentina. Mammalia 76: 399–406, https://doi.org/10.1515/mammalia-2011-0113.Search in Google Scholar
Grau, H.R., Gasparri, N.I., and Aide, T.M. (2005). Agriculture expansion and deforestation in seasonally dry forests of northwest Argentina. Environ. Conserv. 32: 140–148, https://doi.org/10.1017/s0376892905002092.Search in Google Scholar
Grayson, H.G. (1973). On the methodology of faunal analysis. Am. Antiq. 38: 432–439, https://doi.org/10.2307/279149.Search in Google Scholar
Griffith, D.A. and Peres-Neto, P.R. (2006). Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87: 2603–2613, https://doi.org/10.1890/0012-9658(2006)87[2603:smietf]2.0.co;2.10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2Search in Google Scholar
Henry, D.A., and Cumming, G.S. (2016). Spatial and environmental processes show temporal variation in the structuring of waterbird metacommunities. Ecosphere 7: 10, https://doi.org/10.1002/ecs2.1451.Search in Google Scholar
Heroldová, M., Bryja, J., Zejda, J., and Tkadlec, E. (2007). Structure and diversity of small mammal communities in agricultural landscape. Agric. Ecosyst. Environ. 120: 206–210, https://doi.org/10.1016/j.agee.2006.09.007.Search in Google Scholar
Hershkovitz, P. (1962). Evolution of Neotropical cricetine rodents (Muridae) with special reference to the phyllotine group. Field Mus. Nat. Hist. 46: 1–524, https://doi.org/10.5962/bhl.title.2781.Search in Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978, https://doi.org/10.1002/joc.1276.Search in Google Scholar
Holyoak, M., Leibold, M.A., and Holt, R.D. (2005). Metacommunities: spatial dynamics and ecological communities. Chicago: University of Chicago Press, p. 513.Search in Google Scholar
Jayat, J.P., Ortiz, P.E., González, R., Lobo Allende, R., and Madozzo Jaén, M.C. (2011). Mammalia, Rodentia, Sigmodontinae Wagner, 1843: new Locality records, filling gaps and geographic distribution maps from La Rioja province, northwestern Argentina. Check List 7: 614–618, https://doi.org/10.15560/7.5.614.Search in Google Scholar
Jayat, J.P., Ortiz, P.E., and Miotti, M.D. (2008a). Distribución de roedores sigmodontinos (Rodentia: Cricetidae) en pastizales de neblina del noroeste de Argentina. Acta Zool. Mex. 24: 137–178, https://doi.org/10.21829/azm.2008.243913.Search in Google Scholar
Jayat, J.P., D'Elía, G., Pardiñas, U.F.J., Miotti, M.D., and Ortiz, P.E. (2008b). A new species of the genus Oxymycterus (Mammalia: Rodentia: Cricetidae) from the vanishing Yungas of Argentina. Zootaxa 1911: 31–51, https://doi.org/10.11646/zootaxa.1911.1.2.Search in Google Scholar
Jayat, J.P., Pacheco, S., and Ortiz, P.E. (2009). Un modelo predictivo de distribución para Andinomys edax (Rodentia: Cricetidae) en Argentina. Mastozool. Neotrop. 16: 321–332.Search in Google Scholar
Jayat, J.P., Ortiz, P.E., González, R., and D’Elía, G. (2016). Taxonomy of the Phyllotis osilae species group in Argentina; the status of the “Rata de los nogales” (Phyllotis nogalaris Thomas, 1921; Rodentia: Cricetidae). Zootaxa 4083: 397–417, https://doi.org/10.11646/zootaxa.4083.3.5.Search in Google Scholar PubMed
Kerr, J.T., and Packer, L. (1997). Habitat heterogeneity as a determinant of mammal species richness in high energy regions. Nature 385: 252–254, https://doi.org/10.1038/385252a0.Search in Google Scholar
Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology 74: 1659–1673, https://doi.org/10.2307/1939924.Search in Google Scholar
Legendre, L. and Legendre, P. (1998). Numerical ecology. Editorial Elsevier.Search in Google Scholar
Love, R.A., Webon, C., Glue, D.E., and Harris, S. (2000). Changes in the food of British Barn Owls (Tyto alba) between 1974 and 1997. Mamm Rev. 30: 107–129, https://doi.org/10.1046/j.1365-2907.2000.00060.x.Search in Google Scholar
Maestre, F.T., Escudero, A., and Bonet, A. (2008). Introducción al análisis espacial de datos en ecología y ciencias ambientales: métodos y aplicaciones. Dykinson.Search in Google Scholar
Maestri, R., and Patterson, B.D. (2016). Patterns of species richness and turnover for the South American rodent fauna. PloS One 11: e0151895, https://doi.org/10.1371/journal.pone.0151895.Search in Google Scholar PubMed PubMed Central
Mares, M.A., Barquez, R.M., Braun, J.K., and Ojeda, R.A. (1996). Observations on the mammals of the Tucumán province, Argentina. I. Systematics, distribution, and ecology of the Didelphimorphia, Xenarthra, Chiroptera, Primates, Carnivora, Perissodactyla, Artiodactyla, and Lagomorpha. Ann. Carnegie Mus. 65: 89–152.10.5962/p.226630Search in Google Scholar
Mares, M.A., Ojeda, R.A., Braun, J.K., and Barquez, R.M. (1997). Systematics, distribution and ecology of the mammals of Catamarca province, Argentina. In: Yates, T., Gannon, W., and Wilson, D. (Eds.). Life among the muses: papers in honor of James S. Findley. Albuquerque: Museum of Southwestern Biology, University of New Mexico, pp. 89–141.10.5962/p.226630Search in Google Scholar
Massa, C. (2015). Ecología del Paisaje: comunidades de pequeños roedores de la Provincia de Entre Ríos, Ph.D. thesis. Buenos Aires, Universidad de Buenos Aires.Search in Google Scholar
Massoia, E. and Fornes, A. (1967). Roedores recolectados en la Capital Federal (Caviidae, Cricetidae y Muridae). INTA IDIA 240: 47–53.Search in Google Scholar
Massoia, E. and Fornes, A. (1969). Claves para el reconocimiento de los roedores del delta del Paraná (Mammalia). INTA IDIA 253: 11–18.Search in Google Scholar
McIlroy, D. (2004). Packaged for R by Browning R. and Minka T.P. Mapproj: map projections, R package version 1.1.7, http://www.r-project.org.Search in Google Scholar
McIntire, E.J.B., and Fajardo, A. (2009). Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90: 46–56, https://doi.org/10.1890/07-2096.1.Search in Google Scholar
Mehner, T., Emmrich, M., and Hartwig, S. (2013). Spatial predictors of fish species composition in European lowland lakes. Ecography 37: 73–79, https://doi.org/10.1111/j.1600-0587.2013.00432.x.Search in Google Scholar
Méot, A., Legendre, P., and Borcard, D. (1998). Partialling out the spatial component of ecological variation: questions and propositions in the linear modelling framework. Environ. Ecol. Stat. 5: 1–27, https://doi.org/10.1023/a:1009693501830.10.1023/A:1009693501830Search in Google Scholar
Michel, N., Burel, F., Legendre, P., and Butet, A. (2007). Role of habitat and landscape in structuring small mammal assemblages in hedgerow networks of contrasted farming landscapes in Brittany, France. Landsc. Ecol. 22: 1241–1253, https://doi.org/10.1007/s10980-007-9103-9.Search in Google Scholar
Millán de la Peña, N., Butet, A., Delettrey, Y., Paillat, G., Morant, P., Le Du, L., and Burel, F. (2003). Response of the small mammal community to changes in western French agricultural landscapes. Landsc. Ecol. 18: 265–278, https://doi.org/10.1023/a:1024452930326.10.1023/A:1024452930326Search in Google Scholar
Minetti, J.L., Vargas, W.M., Hernández, C.M., and López, C.R. (2005). La circulación regional estacional en Sud América. Su incidencia en el clima del noroeste argentino. In: Minetti, J.L. (Ed.). El clima del noroeste argentino, Editorial Magna, Laboratorio Climatológico Sudamericano. Tucumán, pp. 41–90.Search in Google Scholar
Myers, P., Patton, J.L., and Smith, M.F. (1990). A review of the boliviensis group of Akodon (Muridae: Sigmodontinae) with emphasis on Peru and Bolivia. Misc. Publ. Mus. Zool. Univ. Mich. 177: 1–89.Search in Google Scholar
Nanni, A.S., Ortiz, P.E., Jayat, J.P., and Martín, E. (2012). Variación estacional de la dieta de la Lechuza de Campanario (Tyto alba) en un ambiente perturbado del Chaco Seco argentino. Hornero 27: 149–157.Search in Google Scholar
Nanni, A.S., Rodríguez, M.P., Rodríguez, D., Regueiro, M.N., Periago, M.E., Aguiar, S., Ballari, S., Blundo, C., Derlindati, E., and Di Blanco, Y., et al.. (2020). Presiones sobre la conservación asociadas al uso de la tierra en las ecorregiones terrestres de la Argentina. Ecol. Austral 30: 304–320, https://doi.org/10.25260/ea.20.30.2.0.1056.Search in Google Scholar
Novillo, A., and Ojeda, R.A. (2014). Elevation patterns in rodent diversity in the Dry Andes: disentangling the role of environmental factors. J. Mammal. 95: 99–107, https://doi.org/10.1644/13-mamm-a-086.1.Search in Google Scholar
Novillo, A., and Ojeda, R.A. (2018). Biogeografía ecológica de los ensambles de pequeños mamíferos en los Andes centrales de Argentina. Rev. Mus. Argentino Cienc. Nat. 20: 137–149, https://doi.org/10.22179/revmacn.20.558.Search in Google Scholar
Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M.H.H., Oksanen, M.J., and Suggests, M.A.S.S. (2007). The vegan package. Community ecology package, Available at: <http://CRAN.R-project.org/>.Search in Google Scholar
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V., Underwood, E.C., D’amico, J.A., Itoua, I., Strand, H.E., and Morrison, J.C., et al.. (2001). Terrestrial ecoregions of the World: a new map of life on Earth. A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51: 933–938, https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2.10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2Search in Google Scholar
Ortiz, P.E. and Jayat, J.P. (2007). Sigmodontinos (Rodentia: Cricetidae) del límite Pleistoceno-Holoceno en el Valle de Tafí (Tucumán, Argentina): taxonomía, tafonomía y significación paleoambiental. Ameghiniana 44: 641–660.Search in Google Scholar
Ortiz, P.E. and Pardiñas, U.F.J. (2001). Sigmodontinos (Mammalia: Rodentia) del Pleistoceno tardío del valle de Tafí (Tucumán, Argentina): taxonomía, tafonomía y reconstrucción paleoambiental. Ameghiniana 38: 3–26.Search in Google Scholar
Ortiz, P.E., Jayat, J.P., and Pardiñas, U.F.J. (2011). Fossil sigmodontine rodents of Northwestern Argentina: taxonomy and paleoenvironmental meaning. In: Salfity, J., and Marquillas, J. (Eds.). Cenozoic geology of the Central Andes of Argentina. Salta, Argentina: SCS Publishers, pp. 301–216.Search in Google Scholar
Pardiñas, U.F.J., Teta, P., Cirignoli, S., and Podestá, D.H. (2003). Micromamíferos (Didelphimorphia y Rodentia) de norpatagonia extra andina, Argentina: taxonomía alfa y biogeografía. Mastozool. Neotrop. 10: 69–113.Search in Google Scholar
Patton, J., Pardiñas, U.F.J., and D’Elía, G. (2015). Mammals of South America, Vol. 2. Rodentia: The University of Chicago Press, Chicago and London.10.7208/chicago/9780226169606.001.0001Search in Google Scholar
Peres-Neto, P.R., and Legendre, P. (2010). Estimating and controlling for spatial structure in the study of ecological communities. Global Ecol. Biogeogr. 19: 174–184, https://doi.org/10.1111/j.1466-8238.2009.00506.x.Search in Google Scholar
Peres-Neto, P.R., Legendre, P., Dray, S., and Borcard, D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625, https://doi.org/10.1890/0012-9658(2006)87[2614:vposdm]2.0.co;2.10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2Search in Google Scholar
Pianka, E.R. (1966). Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100: 33–46, https://doi.org/10.1086/282398.Search in Google Scholar
R Development Core Team (2013). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, www.R-project.org/.Search in Google Scholar
Reboratti, C. (2005). Situación ambiental en las ecorregiones Puna y Altos Andes. In: Brown, A., Martínez Ortíz, U., Acerbi, M., and Corcuera, J. (Eds.). La situación ambiental Argentina 2005. Buenos Aires, Argentina: Fundación Vida Silvestre Argentina, pp. 28–31.Search in Google Scholar
Rodríguez, M.Á., López‐Sañudo, I.L., and Hawkins, B.A. (2006). The geographic distribution of mammal body size in Europe. Global Ecol. Biogeogr. 15: 173–181, https://doi.org/10.1111/j.1466-822x.2006.00206.x.Search in Google Scholar
Rohde, K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514–527, https://doi.org/10.2307/3545569.Search in Google Scholar
Teta, P., Abba, A.M., Cassini, G.H., Flores, D.A., Galliari, C.A., Lucero, S.O., and Ramírez, M. (2018). Lista revisada de los mamíferos de Argentina. Mastozool. Neotrop. 25: 163–198, https://doi.org/10.31687/saremmn.18.25.1.0.15.Search in Google Scholar
US Geological Survey (1998). GTOPO30: global 30 arc-seconds digital elevation model. Available at: <http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html>.Search in Google Scholar
Wei, T. and Simko, V. (2016). corrplot: visualization of a correlation matrix. R package version 0.77, Available at: <https://github.com/taiyun/corrplot>.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/mammalia-2020-0149).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Ecology
- Diet composition of Korean water deer (Hydropotes inermis argyropus) from the Han River Estuary Wetland in Korea using fecal DNA
- Horn growth patterns of Nubian ibex from the Sinai, Egypt
- State of knowledge and updated distribution of the northern naked-tailed armadillo Cabassous centralis Miller, 1899 (Cingulata, Chlamyphoridae)
- Diet of Hoffmann’s two-toed sloth (Choloepus hoffmanni) in Andean forest
- Spatial variation of small mammal communities in northwestern Argentina
- Temporal variation in the diet of the endemic and threatened rodent Kerodon rupestris in the semiarid area of Brazil
- First quantitative data on the feeding ecology of an arid zone rodent, the Common gundi (Ctenodactylus gundi)
- Adult males in maternity colonies of Daubenton’s bat, Myotis daubentonii: what are they?
- Record of bats and their echolocation calls from southern Dolakha, central Nepal
- Conservation
- Expanding the knowledge on a desert sigmodontine rodent in Central Argentina with remarks on its conservation status
- Biogeography
- A rangewide distribution model for the Pallas’s cat (Otocolobus manul): identifying potential new survey regions for an understudied small cat
- First records of the bats Eumops bonariensis (Chiroptera: Molossidae) and Pteronotus fuscus (Chiroptera: Mormoopidae) in Peru
- A new locality record for the Syrian hamster, Mesocricetus auratus
- Taxonomy/phylogeny
- Long-standing taxonomic confusion over the identity of Hypudaeus syriacus Brants, 1827, at last resolved
Articles in the same Issue
- Frontmatter
- Ecology
- Diet composition of Korean water deer (Hydropotes inermis argyropus) from the Han River Estuary Wetland in Korea using fecal DNA
- Horn growth patterns of Nubian ibex from the Sinai, Egypt
- State of knowledge and updated distribution of the northern naked-tailed armadillo Cabassous centralis Miller, 1899 (Cingulata, Chlamyphoridae)
- Diet of Hoffmann’s two-toed sloth (Choloepus hoffmanni) in Andean forest
- Spatial variation of small mammal communities in northwestern Argentina
- Temporal variation in the diet of the endemic and threatened rodent Kerodon rupestris in the semiarid area of Brazil
- First quantitative data on the feeding ecology of an arid zone rodent, the Common gundi (Ctenodactylus gundi)
- Adult males in maternity colonies of Daubenton’s bat, Myotis daubentonii: what are they?
- Record of bats and their echolocation calls from southern Dolakha, central Nepal
- Conservation
- Expanding the knowledge on a desert sigmodontine rodent in Central Argentina with remarks on its conservation status
- Biogeography
- A rangewide distribution model for the Pallas’s cat (Otocolobus manul): identifying potential new survey regions for an understudied small cat
- First records of the bats Eumops bonariensis (Chiroptera: Molossidae) and Pteronotus fuscus (Chiroptera: Mormoopidae) in Peru
- A new locality record for the Syrian hamster, Mesocricetus auratus
- Taxonomy/phylogeny
- Long-standing taxonomic confusion over the identity of Hypudaeus syriacus Brants, 1827, at last resolved