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Abstract: The number of shrew species in Israel has been
and still is the subject of debate. In this work we used for
the first time a molecular marker, the cytochrome b gene, to
investigate the number and identity of shrew species in
Israel. Our molecular results confirmed the presence of four
species: Crocidura leucodon, Crocidura suaveolens guel-
denstaedtii, Crocidura ramona, and Suncus etruscus. The
C. ramona sequences were found to differ from all other
Crocidura species sequenced to date, supporting its status
as a distinct species. Whether it is conspecific with Croci-
dura portali (described in 1920 from Israel and usually
synonymized with C. suaveolens), will require additional
study. The sequences of Israeli C. suaveolens were found to
be very similar to those of Iran, Turkey, and Georgia
(i.e., C. suaveolens gueldenstaedtii), in agreement with
previous studies. The Israeli C. leucodon sequences, how-
ever, formed a distinct clade among C. leucodon. Finally,
the S. etruscus sequences clustered with sequences from
France, Italy, and Iran.
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1 Introduction

Shrews (family: Soricidae) are among the most diverse and
abundant mammals (Burgin et al. 2018b; Wilson and
Reeder 2005). Among them, the Old-World genus Croci-
dura, contains 198 species, more than any other mamma-
lian genus (Burgin et al. 2018a). However, being mainly
small, nocturnal, and rather unremarkable-looking, their
diversity tends to have escaped the notice of the general
public, environmental decision-makers, conservation
agencies, and even scientists. The number of shrew species
thought to exist in Israel is under debate (Table 1). Tristram
(1884) recognized five species in the Levant and assigned
them to the genus Sorex: Sorex araneus, Sorex tetragonurus
(currently known as S. araneus), Sorex pygmaeus (currently
known as Suncus etruscus), Sorex crassicaudus (currently
known as Suncus murinus), and Sorex fodiens (currently
known as Neomys fodiens). N. fodiens is a water-shrew and,
together with S. araneus and S. murinus, it has not been
reported again in Israel since Tristram’s original work
(Bodenheimer 1935). Thomas (1919, 1920) assigned two
Israeli species to the genus Crocidura: Crocidura russula
judaica (Thomas 1919) and a new species that he described:
Crocidura portali (Thomas 1920). Bodenheimer (1935) con-
tended that three species of Crocidura occur in Israel:
C. russula, Crocidura judaica, and C. portali. Later, he
considered C. portali as a subspecies of Crocidura suaveo-
lens (Bodenheimer 1958); however, no explanation was
given for this decision. Regarding Suncus, Bodenheimer
(1935) indicated that the presence of S. crassicaudus is a
consequence of misidentification and Bodenheimer (1958)
reassigned the shrew described by Tristram (1884) as
S. pygmaeus, to S. etruscus. Harrison (1963), later con-
tended that Thomas’s C. russula judaica (1919) is in fact a
local synonym of Crocidura leucodon, based on morpho-
logical traits. He further identified C. russula and C. sua-
veolens portali as inhabiting Israel.

Molecular studies of shrews started in the 1980s. Based
on karyotype and allozyme comparisons, Catzeflis et al.
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Table 1: Number and identities of Israeli shrew species.
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Source

Shrew species inhabiting Israel

Tristram (1884)
Thomas (1919, 1920)"
Bodenheimer (1935; 1937)

Sorex araneus, S. tetragonurus’, S. pygmaeus’, S. crassicaudus', S. fodiens*
C. russula judaica, C. portali®
Sorex araneus, Sorex minutus (=pygmaeus), Neomys fodiens,

C. russula, C. r. judaica, C. portali®, S. tristrami’

Bodenheimer (1958)

Harrison (1963)'

Mendelssohn and Yom-Tov (1987)

Mendelssohn and Yom-Tov (1999);
Harrison and Bates (1991)

Dolev and Perevolotsky (2004);
Meiri et al. (2019), this work

Wilson and Reeder (2005)

IUCN red list (2020)

Burgin et al. (2018b)

C. russula, C. judaica, C. suaveolens portali, S. etruscus

C. russula, C. leucodon judaica, C. suaveolens portali

C. russula, C. leucodon, C. suaveolens, S. etruscus

C. leucodon judaica, C. suaveolens monacha, S. etruscus etruscus

C. ramona, C. leucodon, C. suaveolens, S. etruscus
C. gmelini®, C. katinka, C. ramona, C. leucodon, C. suaveolens, S. etruscus

C. katinka, C. ramona, C. leucodon, C. suaveolens, S. etruscus, perhaps C. gmelini
C. ramona, C. leucodon judaica, C. gueldenstaedtii gueldenstaedtii, S. etruscus etruscus

*Sorex tetragonurus has been synonymized with Sorex araneus (Wilson and Reeder 2005).
*Sorex pygmaeus has been synonymized with Suncus etruscus (Wilson and Reeder 2005).
‘Sorex crassicaudus has been synonymized with Suncus murinus (Wilson and Reeder 2005). Its presence in Israel was considered to be the

result of a misidentification by Bodenheimer (1958) and later sources.

‘Sorex fodiens has been synonymized with Neomys fodiens (Wilson and Reeder 2005).
*Crocidura portali has been synonymized either with C. suaveolens (Bodenheimer 1958) or under C. gmelini’ (Wilson and Reeder 2005), or kept

at the species rank (Krystufek and Vohralik 2001).

‘Suncus tristrami has been synonymized with C. suaveolens (Wilson and Reeder 2005).
*Crocidura gmelini has been synonymized with C. suaveolens (Bannikova et al. 2006; Burgin et al. 2018b; Saeedzadeh et al. 2017).

"Description of specific specimens.
'Harrison (1963) focused on the genus Crocidura.

(1985) demonstrated that the individuals called C. russula in
the Middle East were in fact members of C. suaveolens, and
further placed the subspecies gueldenstaedtii and monacha
within suaveolens. Harrison and Bates (1991) treated C. sua-
veolens specimens from Israel as C. suaveolens monacha.
They also noted that a smaller form is present in southern
Israel, Sinai, and Arabia, and that, consequently, a second
subspecies may be present “If this proves to be the case the
name portali is available”. Relationships among members of
the suaveolens species complex have been found to be
intricate and obscured by introgression events (Bannikova
et al. 2006; Castiglia et al. 2017; Dubey et al. 2006, 2007a;
Ohdachi et al. 2004). C. suaveolens specimens from the
Caucasus, the Balkans, and the Levant have been either
treated as a distinct species within the suaveolens group,
Crocidura gueldenstaedtii (Bannikova et al. 2006; Burgin
etal. 2018b), or as a subspecies: C. suaveolens gueldenstaedtii
(Burgin et al. 2018a; Dubey et al. 2008; Palomo et al. 2016). Of
note, the subspecies assignment of Israeli specimens is
further complicated by the use of the subspecies monacha
(Harrison and Bates 1991; Mendelssohn and Yom-Tov 1999).
In the absence of a formal revision of the C. suaveolens group,
we refer throughout the text to such specimens as C. sua-
veolens gueldenstaedtii. Ivanitskaya et al. (1996) described a
new species of Israeli endemic shrew: Crocidura ramona,

which presents different morphological characteristics and
karyotype to those of C. leucodon and C. suaveolens.

It is thus currently considered that there are at least four
shrew species in Israel: C. leucodon, C. suaveolens/C. guel-
denstaedtii, C. ramona, and S. etruscus (Dolev and Per-
evolotsky 2004; Meiri et al. 2019; while there is debate
regarding two additional species, C. portali and Crocidura
katinka Table 1, Gerrie and Kennerley 2017; Wilson and
Reeder 2005). C. katinka was originally described in 1937
from a Pleistocene skull discovered in the Tabun Cave near
Mount Carmel (Bate 1937). The species was thought to be
extinct until the recent discovery of skulls similar to Bate’s
C. katinka in owl pellets from Syria (Hutterer and Kock 2002).
While there has not been recent evidence of C. katinka’s
presence in Israel, it is often listed as a member of the Israeli
fauna (Gerrie and Kennerley 2017; Wilson and Reeder 2005).
Similarly, the exact status of C. portali Thomas 1920 remains
unresolved. It has been treated variously as a distinct species
(Krystufek and Vohralik 2001) or suggested as a senior syn-
onym of C. ramona (Burgin et al. 2018b; Krystufek and
Vohralik 2001), synonymized with C. suaveolens (Bod-
enheimer 1958) or with Crocidura gmelini (Hoffmann 1996;
Wilson and Reeder 2005). C. gmelini is found in arid envi-
ronments from Iran to Kazakhstan (Hutterer 2017) and
has sometimes been synonymized with C. suaveolens
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(Bannikova et al. 2006; Burgin et al. 2018b; Saeedzadeh et al.
2017). It is thus unclear as to whether or not another member
of the C. suaveolens species complex (Bannikova et al. 2006;
Dubey et al. 2006, 2007a) is present in Israel.

Neither C. leucodon nor S. etruscus from Israel have
been the subject of any molecular phylogenetic study to
date. Based on the sequences of two specimens, Dubey
et al. (2007a) suggested that “C. suaveolens” from Israel is
part of the gueldenstaedetii clade (their ‘C. suaveolens clade
V’), which includes individuals from the southern Balkans,
the Caucasus, Transcaucasia, Turkey, the Near East, Ara-
bia, and several Mediterranean islands. In their molecular
study of the Crocidura radiation, Dubey et al. (2008)
sequenced part of the BRCA1 (254 bp) and part of the
Apolipoprotein B gene (840 bp) of a C. ramona specimen
from Israel. A careful look at their published sequence
revealed the ramona BRCA1 sequence (accession number:
EF525159) to be identical to the C. suaveolens sequences,
while the Apolipoprotein B gene (accession number:
EF525041) differs, suggesting that at least one of the se-
quences could be a contamination. This casts doubt on
Dubey et al.’s (2008) inference concerning the phyloge-
netic position of this species.

According to the International Union for Conserva-
tion of Nature’s Red List of Threatened Species (IUCN Red
List; last accessed April 2020) all the Israeli shrews are
listed as ‘least-concern’. Nonetheless, only C. suaveolens.
is assessed as having stable populations (Palomo et al.
2016), while the three other species’ population trends are
considered unknown (Aulagnier et al. 2017; Hutterer and
Shenbrot 2017; Shenbrot et al. 2016). Consequently, there
is sparse knowledge regarding the biodiversity patterns of

E. Shpirer et al.: Molecular relationships of Israeli shrews —— 81

shrews in Israel, and an inadequate understanding of
their conservation needs. This is especially true for
C. ramona, which has been described as endemic to Israel
and Palestine. It is known from the Negev, the Arava,
Samaria and the Judean Desert.

In this work we performed a barcoding analysis using
cytochrome b (cyt b) sequences of representatives of the
Israeli shrew diversity in order to determine the number of
shrew species present in Israel.

2 Materials and methods
2.1 Sample origin

Thirty-one samples were used in this work. We received eight C. leu-
codon, 12 C. suaveolens, six S. etruscus, and three C. ramona samples
(all from Israel) from the Steinhardt National Collection of Natural
History, Zoological Museum at Tel Aviv University (Israel). The loca-
tion of the samples is indicated in Figure 1A. In addition, the Field
Museum of Natural History (Chicago, USA) kindly provided two
samples of Crocidura nana from Tanzania, which were also considered
in order to examine the possible relationship of this species to
C. ramona. Both ramona and nana share a small size and a greyish
tinge to their fur (Dobson 1890; Ivanitskaya et al. 1996). Voucher
number, collection location, and date of all samples are provided in
Supplementary Table S1.

2.2 DNA isolation

Two types of museum samples were used. The first was that of tissue
samples from specimens captured relatively recently (2002-2015) and
preserved in 70-100% ethanol. The second type of sample was that of
skin pieces of older specimens (collected 1969-1995) preserved as

Kilometers'

0 25 50 100

Figure 1: Shrew sample locations. A.
samples sequenced in this work. B. shrew
specimen present in the Steinhardt
National Collection of Natural History,
Zoological Museum at Tel Aviv University
(Israel). The two major biomes of Israel: the
Mediterranean biome, and the desert, are
indicated in green and yellow, respectively.
Red squares, blues stars, green circles and
black triangles indicate C. ramona, S.
etruscus, C. suaveolens gueldenstaedtii
and C. leucodon specimen respectively. The
museum records encompass 79

C. leucodon, 594 C. suaveolens
gueldenstaedtii, 13 C. ramona and 443

S. etruscus.
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study skins (Supplementary Table S1). Each type of sample was
extracted following a different protocol.

For the specimens preserved in alcohol, a sample of the leg muscle
(about 0.5 gr), ear (about 0.5 gr/sample), or kidney/heart (about the
same weight) was cut into small parts and digested using 0.5 mL of lysis
buffer (1% SDS, 10 mMTris-HCl pH8, 125mMNaCl, 5 mM EDTA, and
0.5 mg/mL Proteinase K) at 55 °C. Following homogenization, the DNA
was extracted using a standard phenol-chloroform protocol followed by
ethanol/sodium-acetate precipitation (Sanbrook et al. 1989).

For the four specimens preserved as skins, we used the Qia-
genDNeasy Blood and Tissue Kit following the protocol of Iudica et al.
(2001) for small bones from dried mammalian museum specimens.
This protocol starts with washing the tissue 3 times in 250 pL of 1% PBS
for 10 min at 55 °C. This step allows the removal of any inhibitors and
residual fixatives present in the skin specimens. Iudica et al.’s (2001)
protocol includes a long digestion time (in our case digestion was
conducted for 15-36 h, depending on the sample) with repeated ad-
ditions of proteinase K (specifically 10 pL every 6 h, overnight 20 pL).
The long digestion was necessary since the skin tissues used were hard
and difficult to digest.

2.3 Amplification and sequencing of the cytochrome b

Amplification of the complete cyt b gene was conducted differently for
the ethanol-preserved samples and the skin samples. For the ethanol-
preserved samples the DNA quality following extraction allowed us to
amplify large fragments. Consequently, amplification of the cyt b gene
was conducted with the primers D1 and R1, which are located in the
tRNA-glu and tRNA-thr, respectively (primer sequences are presented
in Supplementary Table S2). The PCR amplifications were conducted
using the BIOTAQ™ DNA polymerase (Bioline, London). Following a
denaturation at 94 °C for 2 min, the PCR was set for 40 cycles of
denaturation at 94 °C for 40 s, annealing at 59 °C for 40 s, and elon-
gation at 72 °C for 2.5 min. The 40 cycles were followed by a final
elongation step at 72 °C for 10 min.

Because the yield of the amplification was insulfficient to directly
sequence the PCR fragments obtained, these products were re-
amplified. The re-amplifications were conducted using the nested
primers D2 and R2, which are located in the tRNA(Glu) and tRNA(Pro)
genes, respectively. The PCR conditions were as described above.

For the four samples preserved as skins, the DNA was too
degraded to enable the amplification of fragments longer than 400 bp.
The sequencing of the complete cyt b gene was conducted by ampli-
fying small overlapping fragments of ~200-350 bp. Different primer
sets were used for each species (all primer sequences are given in
Supplementary Table S2). Following denaturation at 94 °C for 3 min,
the PCR was set for 34 cycles of denaturation at 94 °C for 45 s,
annealing at 51 °C for 45 s, and elongation at 72 °C for 45 s. The 34 cycles
were followed by a final elongation step at 72 °C for 10 min.

PCR products were directly sequenced using Big Dye Terminator
v1.1 (Applied Biosystems) on an ABI 310 sequencer by the DNA
Sequencing Unit at the G.S. Wise Faculty of Life Sciences, Tel Aviv
University.

2.4 Phylogenetic reconstructions

Four datasets were used to reconstruct the phylogenetic position of the
obtained Israeli sequences. The first dataset comprised representatives
of the Crocidura diversity. Specifically, sequence searches were
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conducted on the National Center for Biotechnology Information (NCBI)
nucleotide collection database, with the queries ‘Crocidura cyt b’ and
‘Crocidura cytochrome b’, and all sequences longer than 500 bp were
downloaded. We also downloaded all sequences from Dubey et al.’s
(2008) dataset, and sequences from the same individuals were concat-
enated. From the list of sequences obtained from the NCBI searches and
the Dubey dataset, we selected the longest sequence for each Crocidura
species. In addition, two C. leucodon, two C. suaveolens, three C. ramona,
two S. etruscus (all from Israel), and two C. nana (from Tanzania), ob-
tained as described above, were added to the dataset. We also added
S. etruscus (LC126597 and DQ630397), S. dayi (DQ630389 and
DQ630432), two S. montanus (GQ290374 and DQ630388), and three
S. murinus (LC126460, LC126565, and LC126577) sequences from different
countries as outgroups (Dubey et al. 2008) (Supplementary Table S3).

The C. leucodon dataset was created by downloading C. leucodon
cyt b sequences from NCBI using the keywords “C. leucodon cyt b” and
selecting only nucleotide results. A total of 56 sequences longer than
500 bp were downloaded. Eight newly-obtained C. leucodon se-
quences from Israel were added to this dataset. The tree was rooted
with cyt b sequences of Crocidura musseri (F]813927 and FJ813929) and
Crocidura obscurior (KC684154, KC684155, and KC684158) down-
loaded from NCBI. Again, the outgroup choice was based on Dubey
et al. (2008) (Supplementary Table S4).

The C. suaveolens complex dataset was created by downloading
C. suaveolens cyt b sequences from NCBI using the keywords
“C. suaveolens cyt b” and selecting only nucleotide results. A total of
203 sequences longer than 500 bp were downloaded. Four Crocidura
shantungensis cyt b sequences (KF144163, AB077278, KF144159, and
AY843447) and one Crocidura zarudnyi sequence (AY925211) were
also added since they are known to be closely related to C. suaveo-
lens (Dubey et al. 2008). A total of 12 C. suaveolens sequences from
Israel were added to this dataset. The tree was rooted with cyt b
sequences from Crocidura brunnea (DQ059025), Crocidura lasiura
(AY843503), and Crocidura nigripes (DQ059024), since these species
are closely related to C. suaveolens (Dubey et al. 2008) (Supple-
mentary Table S5).

The S. etruscus dataset was prepared by first downloading
Suncus cyt b sequences from NCBI using the search “Suncus cyt b”
and selecting only nucleotide results. A total of 250 sequences was
downloaded and sequences shorter than 500 bp were removed.
From this dataset we selected all representatives of S. etruscus,
Suncus fellowesgordoni, S. madagascariensis, S. malaynus, and
S. dayi. In addition, we selected three S. montanus, five S. murinus,
and two S. stoliczkanus sequences as outgroups. This choice was
based on previous phylogenetic works (Dubey et al. 2008; Mee-
gaskumbura et al. 2012a, b; Omar et al. 2011). Finally, we added six
S. etruscus sequences from Israel to this dataset (Supplementary
Table S6).

The nucleotide sequences were aligned using a codon-based
alignment as implemented in Geneious 7.1.9, with MAFFT version
7.0.1.7 under the L-ins-i algorithm (Katoh and Standley 2013).
Following alignment, columns with at least 50% gaps were excluded.
The alignment files are provided in Nexus format in Supplementary
Datasets S1-S4. Phylogenetic trees were reconstructed for each data-
set separately under the maximum likelihood (ML) and Bayesian
criteria. ML analyses were performed with the program RaxML version
8.1.2 (Stamatakis 2014) as implemented in RAXMLGUI 1.5b2 beta (Sil-
vestro and Michalak 2012). The analyses were run with the options
“ML + thorough bootstrap”, “20 runs”, “1000 bootstrap repetitions”,
and “GTRGAMMA”. Bayesian reconstructions were performed with
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MrBayes version 3.2.6 (Ronquist et al. 2012) under the GTR + Gamma
model. The parameters of the analyses were: two runs with four chains
each, sampling every 100 generations, and Burninfrac set to 0.25. The
analyses were run for 15,000,000 generations for the C. leucodon and
S. etruscus datasets and for 30,000,000 generations for the C. sua-
veolens complex and the entire Crocidura dataset. For each dataset, we
verified that the average standard deviation of split frequencies was
below 0.01 before the burnin threshold was reached. We also verified
that the Potential Scale Reduction Factor (PSRF) parameters were al-
ways close to 1.0 at the end of the run.

2.5 Network analyses

Median-joining networks (Bandelt et al. 1999) were inferred using cyt b
haplotypes and the program NETWORK v 10.0.0.0 under default pa-
rameters (available at http://www.fluxes-engineering com/share-
net.htm). The datasets used in the network analyses were constructed
from the matrices used in the phylogenetic analyses by removing
outgroups and shorter sequences as well as excluding all positions
containing ambiguous or missing data. The C. leucodon dataset
comprised 51 taxa and 1041 positions, of which 155 were variable. The
C. suaveolens complex dataset comprised 75 taxa and 901 positions, of
which 76 were variable. The S. etruscus dataset comprised 23 taxa and
516 positions, of which 98 were variable.

3 Results

3.1 Phylogenetic relationships among
Crocidura species

The phylogenetic tree reconstructed based on the Croci-
dura dataset, and which encompassed representatives of
the Crocidura species diversity, agreed overall with the
findings of Dubey et al. (2008). Because our analyses were
based on a single gene (1140 bp), whereas Dubey et al.
(2008) had used four genes (3306 bp), branch support is
much lower in our case. It should be noted that the topo-
logical differences between Dubey’s trees and the trees in
Figure 2 and Supplementary Figure S1 only relate to the
lowly supported nodes. Specifically, our results recover the
monophyly of the Afrotropical clade and the Asian clade
described by Dubey et al., but with no support (ML Boot-
strap Percentage, BP < 50%; Bayesian Posterior Probabili-
ties, PP = 0.65 for the Asian clade and PP = 0.98 for the
Afrotropical clade). The monophyly of the Old-World clade
could, however, not be recovered.

Regarding the Israeli samples, the phylogenetic results
confirmed the presence of four distinct species: S. etruscus,
C. leucodon, C. suaveolens gueldenstaedtii, and C. ramona
(Figure 2 and Supplementary Figure S1). The first three
species strongly clustered (BP = 100, PP = 1) with
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sequences of the same species. In agreement with Dubey
etal. (2008), C. ramona sequences formed a distinct lineage
whose phylogenetic position could not be determined
since the monophyly of the Old-World clade was not sup-
ported in our analyses (Figure 2). The C. ramona sequences
are clearly unrelated to the C. nana sequences that we
obtained from Tanzania, which are nested within an
Afrotropical clade with Crocidura jouvenetae, Crocidura
crossei, and Crocidura lusitania (BP = 86, PP = 1.0; Sup-
plementary Figure S1).
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Figure 2: Maximum likelihood tree of Crocidura cytb sequences with
emphasis on the Asian and Old World species. Phylogenetic
relationships inferred from a matrix of 1,128 nucleotide positions for
131individuals. Maximum likelihood bootstrap supports above 50%
and Bayesian posterior probabilities above 0.70 are indicated near
the corresponding node separated with a slash. Sequences
obtained in this work are indicated in bold. Authors of sequence
data in Supplementary Table S3.


http://www.fluxes-engineering

84 —— E. Shpirer et al.: Molecular relationships of Israeli shrews

3.2 Phylogenetic relationships within the
C. leucodon clade

The C. leucodon tree recovered the monophyly of the
main known C. leucodon clades (Dubey et al. 2007b;
Mahmoudi et al. 2019). We found a western clade (with
samples from western Europe and western Turkey;
BP = 71; PP = 0.99), an eastern clade (with samples from
Bulgaria, Romania, Georgia, and eastern Turkey;
BP = 99%; PP = 1.0), and an Iranian clade (with samples
from the Hyrcanian region of Iran; BP = 85%; PP = 1.0)
(Figure 3; Dubey et al. 2007b; Mahmoudi et al. 2019).
Within this tree, the Israeli C. leucodon cyt b sequences
formed an isolated and strongly supported clade
(BP = 91; PP = 1.0) (Figure 3). This Israeli clade is thus
placed as a sister clade to the eastern clade, with (BP =79;
PP = 0.99). The average p-distance between sequences
from Israel and sequences of the eastern clade was 0.023
(minimum = 0.019; maximum = 0.030). The results of the
network analyses support the division into the four
distinct C. leucodon lineages observed in the phyloge-
netic analysis (Supplementary Figure S2).

3.3 Phylogenetic relationships within the
C. suaveolens complex

The C. suaveolens complex is a highly diverse lineage.
Dubey et al. (2007a) divided this complex, and its closest
outgroup, C. shantungensis, into ten different clades, all of
which were recovered in our phylogenetic reconstruction
(Figure 4). All Israeli “C. suaveolens” sequences were found
to be nested within clade V, ‘gueldenstaedtii’, of Dubey
et al. (2007a) (BP = 100; PP = 1.0; Figure 4). This clade
includes samples from western Asia, Corsica, Minorca, and
Crete. The Israeli sequences did not form a distinct clade
within clade V. The average p-distance between sequences
from Israel and other sequences of the ‘gueldenstaedtii’
clade was 0.005 (minimum = 0; maximum = 0.018). Simi-
larly the network analysis of the ‘gueldenstaedtii clade’
sequences did not separate Israeli haplotypes from Iranian,
Georgian, Turkish, or Corsican haplotypes (Supplementary
Figure S3).

3.4 Phylogenetic relationships within the
S. etruscus clade

S. etruscus is a widespread Eurasian species whose
distribution extends from France to Vietnam. Previous
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Figure 3: Maximum likelihood tree of Crocidura leucodon cytb
sequences. Phylogenetic relationships inferred from a matrix of
1,077 nucleotide positions for 63 individuals. Maximum likelihood
bootstrap supports above 50% and Bayesian posterior probabilities
above 0.70 are indicated near the corresponding node separated
with a slash. Sequences obtained in this work are indicated in bold.
Authors of sequence data in Supplementary Table S4.

phylogeographic studies have shown that this species is
probably paraphyletic and may be polyphyletic (Mee-
gaskumbura et al. 2012a). Our phylogenetic tree (Figure 5)
separated S. etruscus into two major clades: an eastern
one and a western one. In agreement with Mee-
gaskumbura et al. (2012a), the eastern clade included
S. etruscus sequences from South Asia and S. mada-
gascariensis sequences (BP = 77; PP = 0.99), supporting
the view that S. madagascariensis is a junior synonym of
S. etruscus. However unlike the findings of Mee-
gaskumbura et al. (2012a), sequences from western Eu-
ropean and the Near-East clustered together to form the
Western clade (BP = 67; PP = 0.86). The two S. etruscus
clades weakly cluster together (BP = 59; PP = 0.76) and



DE GRUYTER

DQ630115 Corsica
LR536324 Israel ¥
Q630120 Corsica

AY843498 monacha Turkey
DQG30085 gueldenstaedtl Turkey
AY843502 monacha Turkey
AY843501 Corsica
LR536321 Isracl*
Q630079 gueldenstaedtii Israel
LRS36367 loracl
630091 gueldenstaedtii Iran
D 630081 gueldenstacdtii Syria
R536372 Israclk
LR536320 Israel %
LRS36323 lorael &
LR536319 Isracl %
'AY994375 gucldenstaedtii Georgia
LRS36326 lorael
7 Israel
lerael
LRSS Tor
Doe3007s gueldensuedm Isracl
EU742 fueldensuedm Azerbaijan
‘gueldenstacdti Iran
corgia
DSt corein
X 63008 7guemens|aedm Georgia
Q630087 gueldertaedti Georgl

DQ630082 gueldenslzedhu Turkey
D 1630074 gueldenstaedtii Iran’

9010

65095 94376 gue]dens!aedhi Georgia
o 094 gueldenstaedti Iran

D
[ Q630073 gueldensacdii Iran

DQ6300: 4 Minorca

DQ630097 Min

DQ630080 gueldenstaedtii Iran

[ D630093 gucldenstaedti Iran
ti

-D63078 ld Ialek
0630078 guc enstacdiii Tur oy

11 Israel %
monacha Turkey

AY84342

cldenstaedtii S
DY 630 70 6gneldenslae i Syria

eldenstacdii Syria
DQES0DT] Eelde

nstaedtii Syria
DQ630109 eldenslaedm Crﬂe
Q630104 gueldenstaedtii Crete
DQ630| 07 gueldenstaedtii Crete
270 gueldenstaedtii Crete
3 eldenstaedtii Crete
Crete

ii Crete
i Crete
ii Syria
i Crete

D¢
DOS30105 gueldenstacdiii c;m
1 rete
850,98 1 .LAYS43497 gueldenstaedtii Georgia
3500 gucdensiacdiis Georgia
e quzoosa ‘gueldenstaedtii Turkey

630101
99

8310

8310

vII v
1001.0
9910
8119 b2 Vi
e I—— *
e 525 ToTe X
910 < v
10010
93 1.0} m
10010
u
Ll 1 Crocidura
925211 Crocidura zarud
Y AN343503 Crocidura lasiure rocidura sarucnyl
TOTO ;_z,h DQ059025 Crocidura brunnea ]Oulg:oup
%10 e Q59024 Crocidura nigripes

—
0.01

Figure 4: Maximum likelihood tree of Crocidura suaveolens
complex cytb sequences. Phylogenetic relationships inferred from a
matrix of 996 nucleotide positions for 215 individuals. Maximum
likelihood bootstrap supports above 50% and Bayesian posterior
probabilities above 0.70 are indicated near the corresponding node
separated with a slash. Sequences obtained in this work are
indicated in bold. Authors of sequence data in Supplementary
Table S5.

are closely related to S. malayanus and S. fellowesgordoni
sequences (BP = 100; PP = 1.0). One S. etruscus sequence
from Vietnam (KF110756) formed a distant lineage, sug-
gesting it could be a different species. Within our tree, the
Israeli sequences did not form a distinct clade but, rather,
clustered within the western clade (BP 67/0.86) together
with specimens from France and Iran (Figure 5). The
average p-distance between sequences from Israel and
other sequences of the western clade was 0.003 (mini-
mum = 0; maximum = 0.013). The results of the network
analyses support the phylogenetic results (Supplemen-
tary Figure S4).
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Figure 5: Maximum likelihood tree of Suncus cytb sequences.
Phylogenetic relationships inferred from a matrix of 1,140 nucleotide
positions for 36 individuals. Maximum likelihood bootstrap
supports above 50% and Bayesian posterior probabilities above
0.70 are indicated near the corresponding node separated with a
slash. Sequences obtained in this work are indicated in bold.
Authors of sequence data in Supplementary Table Sé6.

4 Discussion

In agreement with Burgin et al. (2018b), Dolev and Per-
evolotsky (2004), and Meiri et al. (2019), our current find-
ings confirm the presence of four different species of shrew
in Israel: C. leucodon, C. suaveolens gueldenstaedtii,
C. ramona, and S. etruscus. Although we attempted to
sequence animals with atypical external characteristics,
such as a black shrew (voucher number TAUM12603) or
specimens with debated assignment (e.g., TAUM12207 was
only identified as Crocidura sp.), we did not detect any
additional species.
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4.1 Crocidura ramona

Our work, based on sequences from type specimens, cor-
roborates the view that C. ramona is a distinct species and
probably endemic to Israel and the West Bank (Dubey et al.
2008; Ivanitskaya et al. 1996). C. ramona has been sug-
gested to be related to the Palearctic “flat-headed rock-
shrews” (i.e., Crocidura pergrisea, C.arispa, Crocidura
armenica, Crocidura serezkyensis and C. zarudnyi) (Burgin
et al. 2018b; Krystufek and Vohralik 2001). Although the
DNA of most of the latter has not yet been sequenced, our
analysis indicates that C. ramona and C. zarudnyi are
distantly related (Figure 2). Similarly, we have shown here
that C. ramona is not closely related to another silvery-gray
shrew — C. nana, as the two formed two distinct and distant
clades in our phylogenetic analyses (Supplementary
Figure S1). We note that there is some doubt regarding
C. nana’s distribution. It is usually considered to be
restricted to Somalia and Ethiopia (Cassola 2019; Hutterer
2005), whereas the samples sequenced in this work origi-
nated from Tanzania. We cannot be certain therefore that
C. nana is the correct species assignment for the Tanzanian
samples that we sequenced.

Because no morphological comparisons have been
carried out between the skulls of C. katinka and C. ramona,
the exact relationship between these two species remains
to be determined. Although C. katinka has been suggested
to be related to certain African species with cranial simi-
larities (e.g., Crocidura bottegi, C. obscurior, Crocidura
bottegoides) (Burgin et al. 2018b; Hutterer and Kock 2002),
our analyses have demonstrated that C. ramona is unre-
lated to C. obscurior.

It is also possible that C. ramona is conspecific with
C. portali. Thomas (1920) described C. portali as a small
shrew (“though not excessively so”), with “pale drab-grey”
pelage; and indicated that it has “clearly nothing to do with
the C. russula group”. The gross morphology of the holo-
type (BMNH #19.4.11.9) and its size agree with C. ramona —
though a detailed examination is still needed in order to
confirm or refute this. KryStufek and Vohralik (2001) sug-
gested that C. portali may be a valid species, related to
Crocidura arispa (and other members of the pergrisea
group), and a senior synonym of C. ramona. Hutterer and
Kock (2002) indicated that C. ramona and C. portali are
similar in skull dimensions as well as in pelage, but note
that they are also similar to C. gmelini, a species that they
note requires “a better definition”. C. gmelini (ranging from
Iran to Mongolia) has been synonymized with C. suaveo-
lens, a species distantly related to C. ramona (Figure 2).
C. arispa, C. ramona, and C. katinka are currently all con-
sidered valid species, while C. portali is not (Burgin
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et al. 2018b; IUCN 2020). Clearly, a taxonomic revision of
these taxa is warranted. Neither the DNA of the C. portali
type, nor that of any shrews identified as C. arispa, C. per-
grisea, or C. katinka, has been sequenced and, unfortu-
nately, we failed to amplify any cyt b fragment from a tissue
of a specimen identified as C. portali (BMNH ZD 1971.817).
We thus tentatively ascribe the sequence we obtained to
C. ramona, pending a taxonomic revision.

4.2 Crocidura leucodon

The phylogenetic reconstruction indicates that the Israeli
C. leucodon forms a distinct clade related to the eastern
clade (Figure 4, Dubey et al. 2007b). The different C. leu-
codon clades have been suggested to have diverged during
the Pleistocene glaciations (Dubey et al. 2007b; Mahmoudi
et al. 2019). It is unlikely however that the Israeli clade
corresponds to a fourth refugium from the Ice Age. Rather,
the observed mitochondrial genetic divergence is possibly
the result of the edge position of the Israeli population at
the southernmost part of the C. leucodon range. In agree-
ment, Mendelssohn and Yom-Tov (1999) noted that C. leu-
codon is less abundant than C. s. gueldenstaedtii, basing
their conclusion on the number of shrews deposited in
museum collections. The current data available at the
Steinhardt Museum of Natural History support the view
that the range of C. leucodon is more limited than that of
C. suaveolens in Israel, since C. leucodon samples are rarer
in the collection (79 leucodon vs. 594 suaveolens), and with
one exception, restricted to the Mediterranean biome
(Figure 1B). Edge populations have been suggested to
harbor adaptive traits and genetic variability that may be
important when considering future conservation needs
(Hampe and Petit 2005; Matyas et al. 2009). We thus also
recommend that further population and genomic studies
be carried out on this species, since its population status is
currently unknown (Shenbrot et al. 2016), and assessment
from museum collections alone may provide a biased
representation of the population status.

4.3 Crocidura suaveolens gueldenstaedtii

The phylogenetic analysis indicated that all Israeli
“C. suaveolens” sequences are part of clade V — the ‘guel-
denstaedtii’ clade (Dubey et al. 2007a), and close to the
Turkish and Georgian sequences (Figure 5). While the Is-
raeli populations represent the edge of this species com-
plex range, they do not present a mitochondrial genetic
difference from the rest of its clade, unlike the situation in
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C. leucodon. This may be due to their larger population size
and wider range in Israel compared to that of C. leucodon
(Figure 1B). However, it is also possible that genetic dif-
ferences exist in the nuclear genome. Based on the high
similarity between the Israeli and Balkan sequences we
agree with the status of “least concern” listed by the IUCN
(Palomo et al. 2016). Our molecular cyt b data unequivo-
cally place Israeli ‘suaveolens’ specimens within the
‘gueldenstaedtii’ clade. The specific status of the form
awaits a thorough taxonomic revision, including an ex-
amination of animals from the type localities, preferably
alongside specimens from the type localities of other
members of the complex (e.g., C. ‘gmelini’, C. suaveolens
monacha, C. portali) as well as phylogenetic information
from nuclear markers. Until such a study is carried out, we
tentatively refer to Israeli specimens as members of
C. suaveolens gueldenstaedtii.

4.4 Suncus etruscus

The Israeli S. etruscus sequences appear to be closely
related to the European ones and one Iranian sequence.
The differences between the Israeli sequences and those of
other western clade members are very small and compa-
rable to the distances observed within the C. suaveolens
gueldenstaedstii clade. This suggests that the western clade
encompasses individuals from France in the west to Iran in
the east and Israel in the south. However, this species has
been poorly sampled in molecular studies to date. As a case
in point, only a few S. etruscus specimens have been
sequenced from Iran where members of both the western
and eastern clade are present (Darvish et al. 2017; Ohdachi
et al. 2016). More data are needed in order to decipher the
population structure of this species.

5 Conclusions

Our molecular analyses have confirmed here the distribu-
tion in Israel of four shrew species: C. suaveolens guel-
denstaedtii, C. leucodon, C. ramona, and S. etruscus
(Table 1) (Dolev and Perevolotsky 2004; Meiri et al. 2019;
Mendelssohn and Yom-Tov 1999). With the exception of
C. suaveolens gueldenstaedltii, this is the first time that the
cyt b of Israeli samples has been sequenced. Our results
also confirm that C. ramona is a distinct species, though
what name should be assigned to it remains to be decided.
The Israeli C. leucodon belong to a phylogenetically distinct
clade within the C. leucodon tree. Our results emphasize the
need for deeper phylogeographic analyses in order to
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complement our barcoding identifications based on
sequence similarity. Because mitochondrial genetic infor-
mation does not always reflect the nuclear information,
studies should be performed with nuclear markers in order
to corroborate these results.
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