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Abstract: The use of statistical inference in linguistics and related areas like
psychology typically involves a binary decision: either reject or accept some null
hypothesis using statistical significance testing. When statistical power is low, this
frequentist data-analytic approach breaks down: null results are uninformative,
and effect size estimates associated with significant results are overestimated.
Using an example from psycholinguistics, several alternative approaches are
demonstrated for reporting inconsistencies between the data and a theoretical
prediction. The key here is to focus on committing to a falsifiable prediction, on
quantifying uncertainty statistically, and learning to accept the fact that — in
almost all practical data analysis situations — we can only draw uncertain con-
clusions from data, regardless of whether we manage to obtain statistical signifi-
cance or not. A focus on uncertainty quantification is likely to lead to fewer
excessively bold claims that, on closer investigation, may turn out to be not sup-
ported by the data.

Keywords: experimental linguistics; statistical data analysis; statistical inference;
uncertainty quantification

1 Introduction

Statistical tools are widely employed in linguistics and in related areas like psy-
chology to quantify empirical evidence from planned experiments and corpus
analyses. Usually, the goal is to objectively assess the evidence for one or another
scientific position. Typically, conclusions from data are framed in decisive lan-
guage. Examples are statements like: “we found a significant/robust effect of
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(some factor) X on (dependent variable) Y.” If researchers fail to find a significant
effect, too often they will incorrectly conclude that they have evidence for no effect:
phrases like “X had no effect on Y” are often used in published papers: the
conclusion is often framed as evidence of absence, rather than absence of evi-
dence. Claims based on data tend to be stated deterministically because estab-
lished practice in psychology, psycholinguistics, and linguistics generally tells us
to place our results into one of two bins: “significant” or “not significant”;
Greenland (2017) calls it dichotomania. When a result turns out to be statistically
significant, we are taught to believe that we have found the truth. Even a single,
small-sample experiment can be treated as big news, worthy of publication in a
major journal. This way of thinking is fundamentally incorrect, a distortion of the
underlying statistical theory.

A major reason for these misunderstandings stems from the perfunctory ed-
ucation provided in statistics, in both linguistics and psychology programs
worldwide. Learning statistical theory and practice are inseparable from scientific
reasoning; and contrary to what is an increasingly popular belief in linguistics,
experimentally grounded research is no guarantee that research will become more
grounded in objective facts, as opposed to the subjective beliefs that are tradi-
tionally used in intuition-based linguistic theorizing. What’s missing in statistics
education in these fields is basic training in what kinds of answers statistics can
and cannot provide.

We begin by revisiting the underlying principles and assumptions of null
hypothesis significance testing. This review, although very basic in nature, is
necessary because in our experience many researchers are not clear on the details
of the one-sample t-test. Then, we suggest some alternative ways in which con-
clusions can be drawn from data. In this paper, we assume that the reader has
encountered some of the foundational ideas behind null hypothesis significance
testing: the t- and p-value, Type I, II errors, and statistical power. A recent intro-
ductory book that is specifically aimed at linguists is available (Winter 2019); also
see Navarro (2013) and the special issue on Emerging data analysis in phonetic
sciences (Roettger et al. 2019).

We stress that there is nothing fundamentally new in this paper. Many re-
searchers, especially in psychology, have covered the topics we discuss in pub-
lished work, and much more extensively than we do here; the reader will benefit
from reading this literature. Some examples are Cumming (2014), Kruschke (2013,
2014), Kruschke and Liddell (2018), Simmons et al. (2011), Verhagen and Wagen-
makers (2014), Wagenmakers et al. (2018), and Yarkoni (2020). The contribution of
the present paper is only to demonstrate, through some practical examples, how
uncertainty can be communicated in linguistic research, and to explain why
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statistical significance testing is not informative unless certain very specific con-
ditions are met.

1.1 The logic of significance testing

The standard logic of significance-based testing can be illustrated by considering a
simple example. Suppose we are interested in the difference in reading times
between two conditions a and b. To make the discussion concrete, we will consider
here a phenomenon called agreement attraction (Wagers et al. 2009). The claim in
the psycholinguistics literature is that in sentences like (1), which are both un-
grammatical, comprehenders read the auxiliary verb were faster in (1a) than in (1b).

. * : —plural : +plural plural
€y a. *The bodybuilder, ., who met the trainers_g,, ... were {i,...} ...
* . —plural . —plural plural
b.  *The bodybuilder, ., who met the trainer_g,jec, were {G ...} ..

Several theoretical explanations have been proposed to account for this observed
speedup. One of them (Engelmann et al. 2020; Vasishth et al. 2019; Wagers et al.
2009) is the claim that when the human sentence comprehension system en-
counters the plural marked auxiliary verb were, an attempt is made to access a
plural-marked subject from memory in order to determine who the main actor of
the sentence is. The search in memory for a plural-marked subject is initiated using
a set of so-called retrieval cues (shown in brackets at the auxiliary verb in 1); the
nouns are assumed to have a feature-specification marking, among other things,
its subject status and number. The correct target for retrieval is the subject noun
bodybuilder but it does not have the right plural feature specification (this is what
makes both the sentences ungrammatical). However, there is a non-subject
(trainers) in (1a) that is plural-marked, and this noun occasionally is mistaken for
the grammatical subject of the sentence.

Thus, based on the quantitative predictions (shown later, in Figure 5) of the
model reported in Engelmann et al. (2020), the research hypothesis is that the
auxiliary verb in (1a) will be read faster than in (1b). The statistical test of this
hypothesis can be carried out in the frequentist paradigm by assuming that the
reading times at the auxiliary verb in (1a) and (1b) have some unknown but fixed
true mean reading times p, and y;, respectively. A null hypothesis is set up which
states that the difference between these two meansis 0, i.e., that the two means are
identical. Conventionally, we write this null hypothesis as Hy : § = y, — p;, = 0.

Having set up the null hypothesis, we collect data from n participants for both
(1a) and (1b); usually, a Latin square design is employed (Arunachalam 2013). How
the sample size n is decided on will be discussed in Section 3. For now, we assume
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that we somehow decide to sample data from n participants, and each participant
delivers one data point for condition (a) and one for condition (b). If each partic-
ipant delivers more than one data point for each condition, an average of those
multiple points is taken, so that what goes into the statistical test is one data point
per participant per condition. In practice, we usually collect multiple data points
from each participant for each condition and do not need to take the average as
described here; but we can disregard this detail for now. For further discussion of
how to analyze such repeated measures data without having to average the data,
see Bates et al. (2015) and Winter (2019).

Given these data, we first compute a vector that contains each participant’s
difference score d, and then compute the mean difference between the two con-
ditions, d.

The standard procedure is to compute the observed mean difference in reading
time:

Then, we compute the estimate of the standard error from the estimated standard
deviation s and the sample size n:

The standard error gives us an estimate of the standard deviation of the sampling
distribution of the difference of sample means under (hypothetical) repeated
sampling: if (counterfactually) we were to run the experiment repeatedly with new
participants from the same population, for large enough sample sizes, the distri-
bution of sample means we would obtain would have a Normal distribution with
estimated standard deviation of SE = s//n; see Draper and Smith (1998) for further
details.

In null hypothesis significance testing (NHST), we are interested in quanti-
fying how much some statistic computed from our data deviates from outcomes
expected under the null hypothesis. That is, in our case, assuming there is no
difference between these conditions, we want to quantify the extent to which the
difference we found is at odds with the null-hypothesized value of 0. To this end,



DE GRUYTER MOUTON Embracing variation and accepting uncertainty —— 1315

we compute a statistic called the t-statistic, which tells us how many standard error
units the sample mean is away from the hypothesized mean 6 = 0.

t-SE=d-6

As shown in Figure 1, if the absolute value of the t-statistic is “large enough”, i.e., if
the sample mean of the differences is far enough away in standard error units in
either direction from the hypothesized difference of means, the convention is to
reject the null hypothesis. Glossing over some details and simplifying slightly,
“large enough” is considered to be an absolute value (in standard error units)
equal to or larger than 2. This is a simplification because what constitutes a large
enough t-value depends on the sample size; but this simplification is good enough
if we have 20 or more participants, which is usually the case at least in psycho-
linguistics. Usually, a so-called p-value is computed alongside the t-value; the
p-value gives us the probability of observing the absolute t-value we obtained, or
some value more extreme, assuming that the null hypothesis is true. The p-value
cannot represent the probability that the null hypothesis is true — we have already
assumed that it is true when we compute the p-value.

Once we reject the null hypothesis, the convention is to treat this rejection as
evidence for the specific research hypothesis we had. In our case, the research
hypothesis is that § has a negative sign, so if we can reject the null hypothesis, we
conclude that we have evidence for this claim. This is technically not correct,
because all we have evidence against is the null hypothesis. In other words, the
NHST approach doesn’t tell us how well our research hypothesis fits with the data;
it only tells us how improbable the test statistic (the t-value or the like) is assuming
that the null hypothesis is true.

—~

t-SE=d—-2¢

0.3 Rejection region Rejection region

P
-5.0 -25 0.0 25 5.0

Figure 1: An illustration of the two-sided t-test. If the observed t-value (the black dot) falls in
either of the rejection regions in the tails, then the null hypothesis is rejected.
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The so-called confidence intervals are usually reported alongside the statis-
tical test. For example, it is common to report a 95% confidence interval around the
sample mean: d + 2 x SE. The confidence interval has a rather convoluted meaning
that is prone to misinterpretation (Hoekstra et al. 2014). If a p-value is not provided,
the confidence interval is often used as a proxy for the null hypothesis test: if O is
not in the interval, then the null hypothesis is rejected. Used in this way, the
confidence interval just becomes another equivalent way to conduct null hy-
pothesis tests, raising the same problems that arise with the t-value based decision
criterion. As we show in this paper, the confidence interval can be used to quantify
uncertainty about the effect of interest, without making binary decisions like
“accepting” or “rejecting” the null hypothesis. For a related discussion, see
Cumming (2014) and Gelman and Greenland (2019).

1.2 Some problems with significance testing

In null hypothesis significance testing, we erroneously go from (i) data, (ii) some
assumed statistical model and the assumptions associated with the model, and (iii)
a theoretical prediction, to a decisive claim about the phenomenon we are inter-
ested in studying (in the above example, for the agreement attraction effect). There
are at least two important problems with this approach to data analysis:

— Low-power studies, when filtered by statistical significance, will lead to mis-
estimation. If the probability of obtaining a difference in means that represents
the true effect (statistical power) is low, then one of two things can happen. If
we run the study multiple times (i.e., under repeated sampling), either we will
obtain null results repeatedly, or we will occasionally get significant or even
highly significant effects that are overestimates of the quantity of interest (in
our case, the difference in means). The null results will be inconclusive, even if
we obtain them repeatedly. What is worse, any significant effects we find, no
matter how low the p-value, will be overestimates or Type M(agnitude) errors
(Gelman and Carlin 2014); they could even have the wrong sign (Type S error).
We show below that, at least in one subset of phenomena studied in psy-
cholinguistics, statistical power is often surprisingly low. Thus, low power has
two consequences: when researchers repeatedly obtain a non-significant ef-
fect, they will often incorrectly conclude that there is evidence for no effect. For
an example of such an invalid conclusion, see Phillips et al. (2011). When a
significant effect is obtained, this outcome will be based on a mis-estimation of
the true value of the parameter of interest. Mis-estimation might not seem like
such a bad thing if the estimated effect is in the “right” direction; but it has the
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bad consequence that future research will end up overestimating power,
perpetuating invalid inferences.

—  Significant effects will often be non-replicable. When power is low, any signif-
icant effect that is found in a particular experiment will tend not to replicate. In
other words, in larger-sample direct replication attempts, the effect size will
tend to be smaller and a statistically significant effect will tend to be found to
be non-significant. Recent papers from psycholinguistics discuss this point in
detail (Jager et al. 2020; Nicenboim et al. 2020; Vasishth et al. 2018). Here,
studies that originally showed a significant or near-significant effect were not
replicable: the effect sizes in the replication attempts were smaller, and the
original significant (or near-significant) effect did not come out significant.
This inability to replicate an effect can be due to low power of the original
experimental design, but even if power is high, especially in experiments
involving human participants, effects can vary from study to study.

Psychologists (Cohen 1962, 1988) have long pointed out the importance of ensuring
high statistical power for making discovery claims, but until recently these rec-
ommendations have largely been ignored in linguistics, psychology, and psy-
cholinguistics; some recent papers that take power into account are Brehm and
Goldrick (2017), Stack et al. (2018), and Zormpa et al. (2019). In response to the
replication crisis that (partly) resulted from underpowered studies (Open Science
Collaboration 2015), several remedies have been suggested, such as reducing the
probability of committing a Type I error to 0.005 (Benjamin et al. 2018), or abol-
ishing statistical significance testing entirely (McShane et al. 2019). But in any
experimentally oriented research program, there is no substitute for an adequately
powered study, and direct replications, if one’s aim is to establish whether one’s
results are robust. As discussed later in this paper, when high-powered studies are
simply impossible to carry out, other approaches, such as evidence synthesis, are
needed.

Figure 2 shows power estimates based on the meta-analysis in Jager et al.
(2017) for reading studies on agreement attraction and closely related topics; for
typical effect sizes (10-50 ms), and commonly seen standard deviations (150—
300 ms) in reading studies (self-paced reading and total reading time in eye-
tracking), and routinely used participant sample sizes (30-60), estimates of power
are generally well below 80%. These estimates of power should give us pause.

When planning an experiment or research program, it is important to develop
a good understanding of what the prospective power is; i.e., what the probability is
of detecting, in a future study, an effect with a particular magnitude. If power is
low, frequentist null hypothesis significance testing in an individual study will
never yield meaningful results because, as discussed above, every possible
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Figure 2: Power estimates for different numbers of participants (30, 40, 50, 60), assuming a
standard deviation (of the residual) of 150, 200, 250, 300 (a typical range in reading studies), and
an effect size ranging from 10 to 50 ms. For a justification of these estimates for the sample size,
standard deviation, and effect sizes, see Jdger et al. (2017).

outcome under repeated sampling will be misleading: there will be a high pro-
portion of inconclusive null results, and any significant effects will be due to mis-
estimations of the true effect (Gelman and Carlin 2014). The frequentist method
would of course furnish accurate inferences in the long run if there were no pub-
lication bias (if studies’ results were published regardless of statistical signifi-
cance), and meta-analyses were being carried out to synthesize evidence, as is
routinely done in medicine (Higgins and Green 2008). One important pre-requisite
for carrying out such meta-analyses is transparent data and code release along
with the published paper, as recommended by Simmons et al. (2011), among
others. Fortunately, modern open access journals in psycholinguistics, such as
Glossa: Psycholinguistics, now have an Open Data Policy, which requires data and



DE GRUYTER MOUTON Embracing variation and accepting uncertainty —— 1319

code release. This policy decision is likely to have a positive impact on psycho-
linguistics, because it will allow for better-quality systematic reviews and evidence
synthesis.

As long as one does not filter results by their statistical significance, the NHST
paradigm works as you would expect: If power is low, most results will be regarded
as uninformative, and the few significant results will be overestimates. But once
you filter results by their statistical significance and power is low, all remaining
results will be overestimates and the literature will be entirely misleading. Figure 3
illustrates this. Here, we assume that the true effect in a reading time experiment is
20 ms, and that standard deviation is 150. A paired t-test with 25 subjects will have

Effect 20 ms, SD 150,
n=25, power=0.10

2004
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<
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Effect 20 ms, SD 150,
n=350, power=0.80
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(2]
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©

Q

E signifi
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¢ p>0.05

-200+

0 10 20 30 40 50
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Figure 3: A simulation showing the effect of low versus high power on estimates of an effect,
under repeated sampling (50 samples). Here, we assume that the data are generated from a
normal distribution with mean 20 ms and standard deviation 150. The true mean is shown in
each plot as a solid horizontal line. When power is low, every outcome is bad in a different way:
either we get a lot of null results, or we get a significant outcome that results from a mis-estimate
(a Type M or Type S error). By contrast, when power is high, significant results are meaningful:
they are close to the true value.
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approximate power 10%, and with 443 subjects, power will be approximately 80%.
Statistical power is a continuum ranging from whatever the probability of
committing a Type I error is (usually 5%) to 100%. By taking 10 and 80% power as
representative low and high-power situations here, our aim is to show two edge
cases.

Figure 3 shows that under low power, all outcomes are bad: there will be many
uninformative null results, and any significant results will be based on mis-
estimation of the true effect. Under high power, we get a high proportion of sig-
nificant results, and, importantly, in each the estimated effect is close to the true
value.

One important point to take away from this discussion is that the frequentist
method can work well, but only under specific conditions; at the very least, power
must be high. When power is low, relying on statistical significance or non-
significance is not meaningful. When power is high, it can be useful to use sta-
tistical significance as one source of information (Wasserstein and Lazar 2016). But
there are other sources of information that should not be ignored. We discuss this
point next.

2 Accepting and quantifying uncertainty

So far, we have discussed some problems in the ways that the results of statistical
tests are commonly misinterpreted. What are some alternative ways to proceed?
We present some possibilities.

The most difficult idea to digest in data analysis — and one that is rarely taught
in linguistics and psychology — is that conclusions based on data are almost
always uncertain, and this is regardless of whether the outcome of the statistical
test is statistically significant or not. This uncertainty can and must be commu-
nicated when addressing questions of scientific interest. The perspective we take is
that the focus in data analysis should be on estimation rather than (or only on)
establishing statistical significance or the like (Cumming 2014; Thompson 2002;
Wasserstein and Lazar 2016).

One suggestion in the statistics literature is to “accept uncertainty and
embrace variation” (Gelman 2018). But what does embracing variation mean in
practice? By revisiting several published data-sets that investigate agreement
attraction (the phenomenon discussed above), we illustrate how the results from
data analyses can be presented in such a way that the focus is on estimation and
uncertainty quantification, rather than on drawing overly confident (and often
invalid) conclusions. We present some alternative ways in which uncertainty can
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be given the importance it deserves when summarizing the results of a (psycho)
linguistic analysis.

2.1 A case study: agreement attraction effects

Consider again the agreement attraction effect discussed in the introduction. What
do the data tell us about this effect? To illustrate different possible approaches, we
will use 10 published studies’ data; the data are available online as part of a larger
meta-analysis, reported in Jager et al. (2017). Approach 1is the standard one, which
we have criticized above. Approaches 2—4 are alternatives one can adopt; they are
not intended to be mutually exclusive. One can use all of them together, depending
on the situation.

2.1.1 Approach 1: standard significance-testing

Suppose that we were to carry out a standard frequentist linear mixed model
analysis (Bates et al. 2015) of each of the 10 data-sets on agreement attraction. The
t-values from such an analysis are shown in Table 1. Here, we could have carried
out paired t-tests; but because all the data are available publicly, we were able to fit
varying intercepts and varying slopes by participant and by item, without any
correlation parameters (Bair et al. 2013; Bates et al. 2018).

What stands out in Table 1 is that although a few studies manage to cross the
significance threshold of an absolute t-value of 2, the results do not look too
convincing if we compare the number of significant effects (four) to the number of
null results (six). One can think of these studies as replication attempts. In sum-
mary, under the conventional a of 0.05, we obtain four significant and six non-
significant results (a 40% replication rate). This should count as the beginning of a
full-blown replication crisis in psycholinguistics, much like the famous psychol-
ogy replication attempt in which only about a third to half (depending on the
replication criterion) of the studies could be replicated (Open Science Collabora-
tion 2015). As discussed above, this approach is fairly meaningless, for the reasons
explained above. We turn next to some more meaningful approaches.

Table 1: t-values from 10 published studies on the agreement attraction effect.

1 2 3 4 5 6 7 8 9 10

-2.56 -2.25 -1.67 -1.83 -1.40 -2.22 -1.33 -0.22 -2.81 -1.74
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2.1.2 Approach 2: display the estimates with uncertainty intervals

There is a better way to summarize these results than in terms of significant versus
non-significant results. Figure 4 shows the estimated means and 95% confidence
intervals in log milliseconds of the agreement attraction effect in the 10 studies.
Using confidence intervals to summarize the results leads to two observations:
First, the mean effect across the studies is consistently negative. Looking for such
consistency across multiple studies is referred to by Gelman and Hill (2007) as the
“secret weapon”; we will presently show (Approach 3) how to formalize this
suggestion. The second important observation is the noisiness of the estimates. For
example, on the log scale, the largest estimate (study 1) has an effect (back
transformed to milliseconds) of —-75 ms, and a 95% confidence interval spanning
[-133, -16] ms. Such a large confidence interval suggests that under repeated
sampling, the sample mean will be highly variable. Indeed, a larger-sample
replication attempt of study 1 (181 participants as opposed to 40 participants in the
original study) shows a much narrower interval and a smaller mean effect esti-
mate: —22 [-46, 3] ms (Jager et al. 2020). The difference between Approach 1and 2is
that in t- or (equivalently) p-value based reasoning, we only focused on how many
effects were significant; there was no discussion about the estimate of the

Agreement attraction across 10 studies

0.00+ T " T

-0.05+1 T

Estimate (log ms)

-0.10+1

i 9 6 2 3 10 7 4 5 8
Study id

Figure 4: The mean agreement attraction effect and 95% confidence intervals from the
frequentist analyses of 10 reading studies. The horizontal black lines show the 95% Bayesian
credible interval of the meta-analysis estimate, computed by synthesizing the evidence from the
10 studies.
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Figure 5: Ridgeplots showing the distributions of the effect of interest from 10 published
reading experiments (eyetracking and self-paced reading) on agreement attraction; the studies
are ordered by the magnitude of the mean effect. Also shown is the model’s probability
distribution of the predicted effect, computed using a large-sample (n = 181) data-set
investigating agreement attraction (Engelmann et al. 2020; Jager et al. 2020; Vasishth 2020); the
model’s prediction is labeled “model” in the figure. For reference, we also show the estimate of
the agreement attraction effect in the large-sample study (this is labeled “repl (n = 181)”); this
study was a replication attempt of study 1. The black vertical lines mark the 95% credible interval
of a meta-analysis estimate computed using all published reading studies that were available in
2016 that investigated agreement attraction (Jager et al. 2017).

magnitude of the effect and the uncertainty of the estimated difference in means. In
Approach 2, the noisiness of the estimate is of central importance.

Even though the sample sizes in the 10 studies, given the experiment design
and research question, are too small to give us sufficiently high power (Figure 2),
by looking at the estimates and their 95% confidence intervals from the 10 studies
side by side, we could still conclude that the data are at least consistent with the
theoretical prediction that the effect should be negative in sign, with the qualifi-
cation that the true value of the effect is likely to be much smaller, and therefore
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strong conclusions should not be drawn from these data. The true effect is likely to
be smaller because papers are generally published selectively based on signifi-
cance, and if the studies reported are underpowered, Type M error becomes an
issue.

2.1.3 Approach 3: conduct a meta-analysis

The graphically based reasoning we did above was an informal meta-analysis. It is
possible to synthesize the information from the 10 studies formally. We can carry
out a so-called random-effects meta-analysis (Gelman et al. 2014; Normand 1999;
Sutton and Abrams 2001; Van Houwelingen et al. 2002). Such a meta-analysis
produces an estimate of the effect given all the estimates from the studies,
weighting (or partially pooling) each study’s estimate by its uncertainty (standard
error). The larger the standard error in a particular study, the less influence the
study has on the meta-analysis mean.

Formally, a random-effects meta-analysis is simply a linear mixed model
(Bates et al. 2015) with varying intercepts. We assume that the true unknown effect
we are interested in (here, the agreement attraction effect) is the parameter 6. Given
estimates d of the effect, along with their standard errors SE, fromi=1, ..., n
studies, assume that the observed estimates d are generated as follows:

d; ~ Normal (6;, SE;)

0; refers to each individual study’s true (unknown effect); this will differ from study
to study due to differences in design, labs, protocols, etc., across the research
groups conducting these studies. We further assume that the true effect 6 generates
these individual studies’ true estimates, with some variability, represented by the
standard deviation T:

6; ~ Normal (6, 1)

For further details, and examples of meta-analyses in psycholinguistics, see Biirki
etal. (2020), Jager et al. (2017), Mahowald et al. (2016), and Nicenboim et al. (2018,
2020).

Figure 4 shows the meta-analysis confidence interval (black horizontal lines).
These are actually not frequentist confidence intervals, but so-called Bayesian 95%
credible intervals. They represent the range over which one can be 95% certain that
the values of the effect lie, given the data and model. The 95% credible interval is
going to be influenced by the data (if the data are biased, the interval will be too),
and the model (if the model is incorrect, then this can affect the interval). So, being
95% certain about the range of plausible values of the effect doesn’t necessarily
entail that the interval reflects the true values of the effect. Nicenboim et al. (2018)
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is a tutorial article that explains how to carry out such analyses, using an example
from linguistics.

Thus, if data from multiple (low-powered) experiments exist, we can synthe-
size what we can learn from these via a meta-analysis. This is one way to realize the
recommendation to “accept uncertainty and embrace variation” (Gelman 2018):
focus on and interpret the uncertainty of the estimate from the accumulated evi-
dence before drawing any firm conclusions about the effect. The meta-analysis
estimates in Figure 4 show that the mean agreement attraction effect on the
millisecond scale is —35, with 95% credible interval [-49, —21] ms. This estimate is
consistent with the theoretical claim of a speedup. Whether this amounts to a
discovery claim, i.e., whether there is evidence in favor of an effect, requires much
more investigation, using formal hypothesis testing tools such as Bayes factors
(Kruschke 2014; Schad et al. 2021; Wagenmakers et al. 2018).

Once we have such a theoretically predicted range of effects, we can use it to
interpret future data. We turn to this approach next.

2.1.4 Approach 4: use a region of practical equivalence

Sometimes, quantitative predictions for an effect are available. These could be the
meta-analysis estimates available from existing work, or they could be derived
from a computational model. Figure 5 shows the estimates from a larger meta-
analysis than the one done above (Jager et al. 2017), as well as the predicted range
of effects from the computational model for agreement attraction mentioned
earlier (Jager et al. 2020; Vasishth 2020). In Figure 5, the meta-analysis range is
shown as black vertical lines and the model predictions and the estimates from the
individual studies are shown as probability distributions.

Given the model’s predicted range of values for the agreement attraction ef-
fect, we can see that the meta-analysis estimate, and estimates from the 10 studies
are consistent with the predicted range. The meta-analysis credible interval
overlaps almost exactly with the model’s predictions. From this, we would
conclude that the evidence from published studies on agreement attraction is at
least consistent with model predictions. A future study could use the model’s
predictions as well as the meta-analysis estimates to interpret their data in the
context of the theory’s predictions.

Comparing the estimates derived from individual studies to a predicted range
of effects is not a new idea (Freedman et al. 1984; Spiegelhalter et al. 1994). In
recent years, this idea has been re-introduced into psychology by Kruschke (2014)
as the region of practical equivalence (ROPE) approach. The essential idea behind
interpreting data using a ROPE is summarized in Figure 6. Assume that we have a
model prediction spanning [-36, —9] ms; this is in fact the model prediction
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reported in Jager et al. (2020). Then, if we aim to run our experiment until we have
the same width as the predicted range (here, —-9—(-36) = 27 ms), then there are five
possible intervals that can be observed. These uncertainty intervals are not fre-
quentist confidence intervals, but Bayesian 95% credible intervals; they demarcate
plausible ranges of values for the effect, given the model and data.

The observed uncertainty interval can be:

entirely to the right of the predicted interval.

entirely to the left of the predicted interval.

to the right of the predicted interval but overlapping with it.

to the left of the predicted interval but overlapping with it.

within the predicted range (this is the case in Figure 5).

mo 0w

Only situation E shows a convincing consistency with the quantitative prediction.
A and B are inconsistent with the model prediction; and C and D are also consistent
with the quantitative prediction, but unlike E are inconclusive. If, for some reason,
one cannot reach the desired precision (width of 27 ms), there is a sixth possibility:
the observed interval may overlap with the predicted range but may be much wider
than it (here, the width of the predicted range is 27 ms). That would be an unin-
formative, low-precision study.

In contrast to the region of practical equivalence approach described above,
what linguists usually predict is the sign of an effect, but they do not attend to the
magnitude or the uncertainty. But a prediction like “the effect will be negative in
sign” is not particularly useful because this implies that an effect with
mean —500 ms that is statistically significant would validate the prediction just as
well as a significant —10 ms effect. As discussed above, under low power, statis-
tically significant large effects are very unlikely to be an accurate estimate due to
Type M error (Gelman and Carlin 2014).

A —O—
B —0O——
C F——-=0O—
D —O—
E —0O0——
—O—
-36 ms -9 ms

Figure 6: The five possible outcomes when using the null region or “region of practical
equivalence” method for decision-making (Kruschke 2014). Outcomes A and B are inconsistent
with the quantitative predictions of the theory; Cand D are inconclusive; and E is consistent with
the quantitative theoretical prediction.
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The region of practical equivalence approach is also relevant to more general
issues relating to model/theory evaluation. As Roberts and Pashler (2000) have
pointed out in their classic article, a vague theoretical prediction (e.g., “the effect is
predicted to have a negative sign”) and/or a very uncertain estimate from the data
(an effect with a very wide 95% confidence interval) both lead to very weak support
for the theoretical prediction. In psychology and linguistics, the Roberts and
Pashler (2000) discussion on what constitutes a persuasive evaluation of a model
has not yet received the attention it deserves. The essential idea in their paper is
summarized in Figure 7. A vague theory will allow a broad range of predictions,
and a data-set which has a lot of uncertainty associated with the estimate will be
uninformative when testing a prediction. In order to argue that the data are
consistent with a theory, it is necessary to have both a constrained quantitative
prediction, and a high-precision estimate of the effect.

WeaK Ssupport WeaK support

e

weak support | [ Strong support |
> >
X X

Figure 7: A schematic summary of the Roberts and Pashler (2000) discussion regarding what
constitutes a good fit of a model to data. If a model predicts a positive correlation between two
variables xand y, the strong support for the model can only be argued for if both the data and the
model predictions are highly constrained: the model must make precise predictions, and the
data must have low uncertainty associated with it. The figure source: 10.6084/
m9.figshare.14241869.
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In summary, with the region of practical equivalence approach, the focus is on
graphically visualizing the uncertainty of the estimates from different experi-
ments, with reference to a predicted range of effects. The Roberts and Pashler (2000)
criteria for deciding what constitutes a good fit is closely related to this approach,
because they also place the focus on the range of quantitative predictions made by
the model, and the uncertainty associated with the estimate of the effect in the
data.

3 Planning future studies using available
information

One important point that we emphasized in the above discussion is the importance
of running an informative experiment (when feasible). This involves ensuring that
there is as little measurement error as possible (Loken and Gelman 2017), that the
experiment design is thought out well so as to have a good chance of detecting the
effect (Gelman and Carlin 2014), and that sample size (number of participants and
items) is high enough to have a reasonably good chance of detecting the effect of
interest (Cohen 1988).

In practice, how can one plan a study such that one ends up with an infor-
mative experiment? One approach, which focuses on achieving a tight enough
confidence interval to be informative for the research question at hand, is to define
a ROPE based on a meta-analysis, quantitative predictions from a model, or expert
judgement (O’Hagan et al. 2006). For an example using judgement about expected
ranges of effect sizes for deciding on a sample size, see Vasishth et al. (2018).
Another possible approach is Bayes factor design analysis (Schonbrodt and
Wagenmakers 2018); for an example, see Montero-Melis et al. (2019) (although the
way that these authors compute Bayes factors is not really appropriate; for further
details, see Schad et al. (2021)). The adaptive Bayesian methods developed for
clinical trials (Berry et al. 2010; Spiegelhalter et al. 2004) also have a lot of potential
applications in linguistics and psychology.

An alternative (purely frequentist) approach to ensuring that one has precise
enough estimates is to conduct a power analysis. One can use quantitative pre-
dictions based on a meta-analytic estimate in the following way for planning a
future study. As an example, consider a study with two conditions. We want to plan
a new, higher-powered study, assuming that a meta-analysis estimate (along with
its 95% confidence interval) reflects the best guess we have of the effect. We
proceed as follows (all the code for reproducing these analyses is shown in the
appendix):
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1. Extract all the parameter estimates from the linear mixed model used to analyze
an existing study (or studies, if more than one is available). This includes all the
variance components estimated by the linear mixed model.

2. Using the above estimates, generate simulated data 100 times (or more)
repeatedly using the meta-analysis estimates. Using such a simulation,
compute the proportion of times that the null hypothesis is rejected; this gives
us the estimated range of power for the meta analysis mean and 95% confidence
interval.

3. Use the above simulation technique to work out the range of participants that
would be needed to achieve at least 80% power.

When we carry out such a simulation-based computation using study 1’s data,
what we find is that for the sample size of 40 participants and 48 items in study 1,
our estimated power ranges from 0.25 to 0.77. We can now easily compute the
power for, e.g., 300 participants: for the mean estimate from the meta-analysis, the
estimated power is 1, with lower and upper bounds ranging from 0.77 to 1. The wide
range of uncertainty in the power calculation arises due to the uncertainty implied
by the 95% confidence interval of the meta-analysis estimate.

We carried out the power analysis above “by hand”, i.e., by writing custom
code that generated simulated data. There are ready-made functions/packages
available that can automate the process to a large extent: see the packages simr
(Green et al. 2021) and designr (Rabe et al. 2021). Accessible tutorials for auto-
mating the simulation-based power computation process are also available
(Brysbaert and Stevens 2018; DeBruine and Barr 2021). For a Bayesian perspective
on power analysis, see Kruschke and Liddell (2018) and Schad et al. (2021).

Our discussion here is heavily focused on statistical power. Of course, power is
not the only important issue in experimental science: other factors like measure-
ment error and a strong theoretical foundation are also very important. But it is
important to understand that without adequate power, the significance testing
paradigm breaks down. This is why power calculations need to become an integral
part of the data analysis workflow.

4 Some potential objections

We encounter various objections to the points we have raised in this paper. We
discuss some of these next.
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4.1 Is there a danger of “uncertainty overshoot”?

“Uncertainty overshoot” could be a danger: we may become overly conservative
when drawing conclusions from data. In the practical running example in this
paper, we have discussed the conditions under which strong support for a theory
can be argued for: both the theory and the data have to be sufficiently informative
(Roberts and Pashler 2000). In all other situations, uncertainty undershoot is not
very likely; far more likely is “certainty overshoot”. In practice, what we see in the
literature are over-confident claims that fail to be validated upon closer scrutiny.

4.2 Will over-cautious reporting make papers difficult to
publish?

Researchers sometimes object to proposals demanding weaker claims in published
articles with the argument that it would make papers more difficult to publish if
one does not make a decisive claim. We consider it a questionable research
practice to make a decisive claim when none is warranted statistically. Never-
theless, these concerns do have some basis: sometimes journals, editors, and
reviewers explicitly state that they want certainty or “closure” in a paper, and that
expressing uncertainty about the conclusions does sometimes lead to rejection.
However, our experience in recent years has been that the situation is changing.
Editors and reviewers have started to appreciate open discussion of uncertainty,
especially if one has done one’s best to get to the facts (e.g., through many repli-
cation attempts, or large sample studies; usually both). Here are some examples of
papers that explicitly express uncertainty about the findings and were neverthe-
less published in a major psycholinguistics journal:

— In Vasishth et al. (2018), one out of seven experiments showed an effect that
was consistent with a theoretical claim, but was nevertheless unexpected
because no other study had found such an effect in the language. In the
conclusion, the authors wrote:

One interesting suggestion from this 100-participant study is that the ... effect that is pre-
dicted by [the theoretical account under study] may have some weak support. Since this is, to
our knowledge, the first time that any evidence for [the theoretical claim] has been seen in
German, clearly further investigation is needed.

- In a single large-sample eyetracking study reported in Jédger et al. (2020), in
total reading times the authors found effect estimates consistent with a
particular theory of sentence processing. But in first-pass regressions, they
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also found effects not consistent with this theory’s predictions. It is not clear
which dependent measure one should rely on. Accordingly, in the paper, the
authors openly discuss the support (or lack thereof) for the theoretical claim,
conditional on the dependent measure considered. The paper does not end
with a clear conclusion.

Other researchers have also published papers in which power analyses were car-
ried out to understand the properties of the experiment design, and/or the results
framed appropriately without overly strong conclusions. Some examples are
Montero-Melis et al. (2017, 2019), Xie and Jaeger (2020), and Xie et al. (2021).

Despite all the positive developments exemplified above, papers (including
those from the first author’s lab) do continue to be rejected for not providing
sufficiently conclusive results. We hope that this situation will change some day. A
major goal of the present paper is to help towards normalizing openness in
expressing our uncertainty about our conclusions. The alternative to maintaining
uncertainty about our conclusions is a proliferation of exaggerated conclusions
that will probably not hold up to closer scrutiny. This is in fact what has happened
in social psychology and other areas: claims have been published that are non-
replicable. Linguistics can learn from these past mistakes in other fields, and
develop a culture of accepting and quantifying uncertainty about the conclusions
that can be drawn from a particular study.

It is important to stress here that our point is not that researchers should only
publish high-powered studies. Often, it is impossible to run a sufficiently powered
study; examples are experiments involving field work in remote regions of the
world, and studies on aphasia. Science is an incremental process, and eventually
enough information can accumulate (e.g., through meta-analyses) about a
research topic. As Simmons et al. (2011) and many others have pointed out, open
availability of data, and reproducible code and analyses, will be important drivers
such an incremental evidence-accumulation process.

Our goal in this paper is merely to stress the point that we should not present
underpowered studies as furnishing clear evidence for or against a theoretical
claim, otherwise we risk flooding the field with non-replicable results.

4.3 Will increasing the number of replicates per subject and
keeping sample size small solve the power problem?

Psychologists (Smith and Little 2018) have recommended so-called small-N studies
as a response to the replication crisis: obtain many repeated measurements from
each participant, but use only a few participants. This approach can be effective in
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obtaining accurate estimates in certain specific types of scientific inquiries; for
example, Ebbinghaus discovered several laws of memory with a single subject
(himself), and in vision science it is common to use only a few participants. Small-
N studies only make sense when it is known that between-subject variability is low
or the effect size is so large that the effect is easy to detect. This situation only rarely
arises in linguistics and psycholinguistics. One extreme example where a small-N
study would yield robust (i.e., replicable) results is asking subjects to rate the
acceptability of strings like The boy saw the girl and Boy the girl the saw. Most
linguistic and psycholinguistic studies today investigate much more subtle
questions with small effect sizes, and these can show important between-subject
variability. In such cases, if the goal is to generalize from a sample to a population,
there is no way around properly powering the study if one wants to obtain accurate
estimates.

4.4 Can some effects already be detected with small sample
studies?

There is a commonly-encountered fallacy relating to sample sizes that Loken and
Gelman (2017) summarize as “that which does not kill statistical significance
makes it stronger.” Some researchers think that if one observes a significant effect
with a small sample size, that effect is all the more convincing. For example, Kuang
et al. (2007) state (footnote 11): “... the fact that we get significant differences in
spite of the relatively small samples provides further support for our results.”
Such misunderstandings can easily be dispelled through simulation-based
investigation of one’s experiment design. To take a concrete example, Gibson and
Wu (2013) obtained a significant effect in a two-condition repeated measures
design with a sample size of 37 participants and 15 items (originally there were 16
items, but one item was removed). One can adapt the simulation code shown in the
appendix to establish that the significant effect was likely a Type M error, arising
from an underpowered study. In the Gibson and Wu (2013) study, the estimate of
the difference between the conditions was approximately 120 ms (they analyzed
the data on the raw ms scale; we follow their approach here). Although this esti-
mate is larger than the approximately 100 ms difference found in English relative
clauses (Grodner and Gibson 2005), let’s assume that the true difference between
relative clause processing times in Chinese is in fact 120 ms. If we were to
repeatedly sample data from such a design (the appendix shows how this can be
done), with sample size 40 subjects and 16 items, we would find that almost all the
statistically significant effects are driven by effect estimates larger than 120 ms. As
shown in Figure 8, 89% of the significant effects are based on overestimates of the
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effect estimates
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Figure 8: Thedistribution of effect estimates that are statistically significant when the true value
of the effect in the Gibson and Wu (2013) data-set is 120 ms (shown by the vertical line). The
histogram shows that most of the estimates that are statistically significant under repeated
sampling using simulated data are overestimates, i.e., they are Type M errors.

effect (the significant estimates can be as much as 2.4 times larger than 120 ms). If
the true effect had been 60 ms, the probability of overestimating the effect size
given a significant result is 100%, with the estimate being as much as 3.2 times
larger than 60 ms. This kind of simulation is an easy way to establish that a
significant effect based on a small sample size is not very convincing, because it is
based on an overestimated effect size.

In summary, the importance of power cannot be stressed enough. Power
should be seen as the ball in a ball game; it is only a very small part of the sport,
because there are many other important components. But the players would look
pretty foolish if they arrive to play on the playing field without the ball. Of course,
power is not the only thing to consider in an experiment; no amount of power will
help if the design is confounded or introduces a bias in some way.

5 Concluding remarks

We have argued that statistical analyses in linguistics and related areas should
follow the best practice recommendations of statisticians and psychologists: they
should focus on uncertainty quantification rather than just conducting null hy-
pothesis significance testing and drawing overly strong conclusions from data. We
presented specific examples that showed how this could be done in practice, and
the advantages that come with using such an approach as regards theory
evaluation.
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Appendix A

Generating simulated data to compute power

Here we provide code for generating simulated data, and for computing power fora
two-condition experiment.

A.1Function for generating simulated data

First, we write a function for producing data from a Normal likelihood, assuming a
varying intercepts and varying slopes model, for participants and items. The un-
derlying model assumed is as follows.

Let j index participant id, and let k index item id. The variable cond is a sum-
coded contrast (Schad et al. 2020), where +1/2 represents one condition a and -1/2
the other condition b. Thus, a negative sign on the f coefficient would be consistent
with a theoretical prediction of a speedup in condition a versus b.

Yi~Normal (a + uoj + Wor + (B + wy; + wyi) x condy;, o)

with the following sources of variability:

- ugj~Normal (0, 0y9)
- wj~Normal(0,0,1)
- wo~Normal(0, ovo)
-  wy~Normal(0,0y,)

Here, we are assuming no correlation between the varying intercepts and
slopes; if one wants to assume such a correlation, one can easily modify the code.
See Jéger et al. (2020) and Vasishth et al. (2018) for example code.

Data from the above model can be generated using the following function:
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library(MASS)
gen_fake_norm <- function(nitem=NULL,nsubj=NULL,
alpha=NULL,beta=NULL,
sigma_u@=NULL,
sigma_ul=NULL,
sigma_w@=NULL,
sigma_w1=NULL,
sigma_e=NULL){
## prepare data frame for two condition in alatin square design:
gl<-data.frame(item=1:nitem,
cond=rep(c("a","b"),nitem/2))
g2<-data.frame(item=1:nitem,
cond=rep(c("b","a"),nitem/2))

## assemble data frame in long format:

gp1<-gllrep(seq_len(nrow(gl)),
nsubj/2), ]

gp2<-g2[rep(seq_len(nrow(g2)),
nsubj/2),1]

fakedat<-rbind(gp1,gp2)

## add subjects:
fakedat$subj<-rep(1:nsubj,each=nitem)
fakedat<-fakedat[,c(3,1,2)]

## contrast coding:
fakedat$cond<-ifelse(fakedat$cond=="a",1/2,-1/2)

## subject random effects:
ue<-rnorm(n=length(unique(fakedat$subj)),
mean=0, sd=sigma_u0)
ul<-rnorm(n=length(unique(fakedat$subj)),
mean=0,sd=sigma_ul)

## item random effects
wo<-rnorm(n=length(unique(fakedat$item)),
mean=0,sd=sigma_w0)
wi<-rnorm(n=length(unique(fakedat$item)),
mean=0, sd=sigma_w1)

## generate data row by row:
N<-dim(fakedat)[1]
rt<-rep(NA,N)
for(iin 1:N){
rt[i] <- rnorm(1,alpha +
uo[fakedat[i, J$subj] +
wo[fakedat[i, ]$item] +
(beta+ul[fakedat[i, J$subj I+
wl[fakedat[i, J$item])*fakedat$cond[i], sigma_e)}

— 1335
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(continued)

fakedat$rt<-rt
fakedat$subj<-factor(fakedat$subj)
fakedat$item<-factor(fakedat$item)
fakedat

}

A.2 Extract parameter estimates from fitted model

Given a data-set dat containing a predictor cond with two levels, fit a so-called
maximal model (Barr et al. 2013), and then write a function to extract all parameter
estimates from the model as a list.

An example data-set is the Gibson and Wu (2013) Chinese relative clause data,
which has 37 participants and two conditions, subject and object relatives. Orig-
inally, there were 16 items, but one was removed by the authors, leaving 15 items.
We analyze the data on the log ms scale because the normality assumption of the
residuals is violated with raw reading times.

First, we load and pre-process the data, and choose the relevant subset of the
data for analysis (this is the head-noun region in the sentence; see Gibson and Wu
(2013) for details).

## install from: https://github.com/vasishth/lingpsych
library(lingpsych)

data("df_gibsonwu")

## sum-contrast coding of predictor:

gw$cond <- ifelse(

gw$typekinkc("subj-ext"),-1/2,1/2)

## subset critical region

dat<-subset(gw, region=="headnoun")

Next, we fit a linear mixed model, with a full variance-covariance matrix. This
model is overparameterized: the correlation parameters are not estimable. The
reason we include the correlations in the model even though they are not estimable
is just for convenience in extracting the variance components: the extract_par-
ests_lmer function below happens to assume a full variance-covariance matrix
model. In our simulations below, we will not attempt to estimate the correlation
parameters when we repeatedly generate simulated data.


https://github.com/vasishth/lingpsych
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m<-lmer(log(rt) cond+(1+cond|subj)+(1+cond|item),dat,
control=1merControl(calc.derivs=FALSE))

## function for extracting all parameter estimates:
extract_parests_lmer<-function(
mod=m){
alpha<-summary(mod)$coefficients[1,1]
beta<-summary(mod)$coefficients[2,1]
## extract standard deviation estimate:
sigma_e<-attr(VarCorr(mod),"sc")
## assemble variance covariance matrix for subjects and items:
subj_ranefsd<-attr(VarCorr(mod)$subj, "stddev")
sigma_u@<-subj_ranefsd[1]
sigma_ul<-subj_ranefsd[2]
item_ranefsd<-attr(VarCorr(mod)$item, "stddev")
sigma_wo<-item_ranefsd[1]
sigma_wl<-item_ranefsd[2]
## return list of params:
list(alpha=alpha,beta=beta,sigma_e=sigma_e,
sigma_u@=sigma_u@,sigma_ul=sigma_ul,
sigma_w@=sigma_w0,sigma_wl=sigma_w1)

— 1337

The usage of this function will take as input the model that we want to extract

the parameters from:
parest<-extract_parests_lmer(mod=m)

A.3 Function for computing power

Next, we write a function, compute_power, that (i) takes the parameter estimate
values extracted above, (ii) generates simulated data using the gen_fake_norm
function shown above, with 48 subjects and 40 items, (iii) fits a linear mixed model
to the simulated data, (iv) extracts the t-value of the effect from the model, and
(v) computes the proportion of absolute t-values that are larger than the critical

value of 2. This is our estimated power.

compute_power<-function(nsim=100,
alpha=parest$alpha,
beta=parest$beta,
sigma_e=parest$sigma_e,
sigma_u@=parest$sigma_u0,
sigma_ul=parest$sigma_ul,

sigma_w@=parest$sigma_wo,
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(continued)

sigma_wl=parest$sigma_wl,
nsubj=48,
nitem=40){
tvals<-c()
for(iin1:nsim){
fakedat<-gen_fake_norm(nitem=nitem,
nsubj=nsubj,
alpha=alpha,
beta=beta,
sigma_u@=sigma_u0,
sigma_ul=sigma_ul,
sigma_w@=sigma_wo,
sigma_wl=sigma_w1,
sigma_e=sigma_e)
m<-lmer(rt cond+(1+cond]||subj)+(1+cond||item),
fakedat,
control=lmerControl(calc.derivs=FALSE))
tvals[iJ<-summary(m)$coefficients[2,3]
}
mean(abs(tvals)>2)

3

The function can now be used as follows. Suppose we want to know what the
power is for an effect size of -0.02 (log ms scale) given our sum-contrast
parameterization.

compute_power(beta=-0.02)

One can compute the power for different sample sizes (number of participants
or items):

compute_power(nsubj=50,beta=-0.02)
compute_power(nitem=80,beta=-0.02)

The code shown above can easily be extended for more complex models and
for different likelihoods. For examples, see Jager et al. (2020) and Vasishth et al.
(2018). A more sophisticated Bayesian approach is discussed in Schad et al.
(2021).
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