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Abstract: Following the quantitative turn in linguistics, the field appears to be ina
methodological “wild west” state where much is possible and new frontiers are
being explored, but there is relatively little guidance in terms of firm rules or
conventions. In this article, we focus on the issue of variable selection in regression
modeling. It is common to aim for a “minimal adequate model” and eliminate
“non-significant” variables by statistical procedures. We advocate an alternative,
“deductive modeling” approach that retains a “full” model of variables generated
from our research questions and objectives. Comparing the statistical model to a
camera, i.e., a tool to produce an image of reality, we contrast the deductive and
predictive (minimal) modeling approaches on a dataset from a corpus study. While
aminimal adequate model is more parsimonious, its selection procedure is blind to
the research aim and may conceal relevant information. Deductive models, by
contrast, are grounded in theory, have higher transparency (all relevant variables
are reported) and potentially a greater accuracy of the reported effects. They are
useful for answering research questions more directly, as they rely explicitly on
prior knowledge and hypotheses, and allow for estimation and comparison across
datasets.

Keywords: effect estimation; statistical modeling; theory and data; variable
selection

1 Linguists and statistical models: cowboys with
cameras

Linguistics has been undergoing a methodological paradigm shift towards an
increasingly quantitative discipline (Janda 2013; Kortmann this issue; Sampson
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2005, 2013). This “quantitative turn” has done much to improve the empirical
robustness of linguistic research, and perhaps to lead researchers to ask more
empirical questions to begin with. Turning to observational data and taking a
quantitative perspective is a principled decision; however, which methods and
tools to use in analyzing data is often a matter of availability, familiarity, and
knowledge of how a given technique can be applied. Most researchers working
with language data are interested in learning how to use statistical applications.
Many linguists may have read one or several user’s manuals that are tailored to
their needs, such as Baayen (2008), Johnson (2008), Gries (2013), or Levshina
(2015), which explain how to apply statistical analyses to language data. Given the
increasing range of possibilities, it is an exciting time to reflect on how statistical
methods can help explain linguistic data and enrich our analyses. At the end of the
day, however, we — as linguists — are experts on language, not statistics: our
interest is in the workings of language, not arithmetic. We want to learn about
language, not about numbers. Yet, an informed and linguistically meaningful use
of statistical methodology does require some understanding of how it works. Like
with any household appliance, we may not need to know exactly where the wires
run inside the device, but we need to know what happens when we turn this button
or pull that lever.

When a researcher first ventures into the hardware store of quantitative
methods, they often find the range of tools bewildering and the complexity of each
one of them overwhelming. Bewildered and overwhelmed, they will, perhaps, ask
for firm guidelines to direct their decision making. Such guidelines, however, are
often of rules of thumb. For example in regression modeling, when asking how
many variables we can fit to a set of data points, we are given the “15 events per
variable” rule, which states that we need at least 15 observations per variable
(Baayen 2008: 195; Harrell 2015: 73). Elsewhere, we read about “10—15 observations
per coefficient” (Levshina 2015: 144), and for logistic regression “the less frequent
response level divided by 20” (Speelman 2014: 530), by 10 (Hosmer et al. 2013:
407-408; Levshina 2015: 257), or even just by 5-9 (Hosmer et al. 2013: 408; cf.;
Vittinghof and McCulloch 2006). What we can really learn from such varying sug-
gestions is not the “rule” so much as the understanding that sparse data will lead to
greater uncertainty in the modeled effects. Rather than holding on to firm rules and
conventions, we should develop an understanding of the underlying statistical ra-
tionales for such recommendations, to eventually explain the reasoning behind the
steps we have followed to reach our own statistical conclusions.

A seemingly reliable rule is ‘p < 0.05’; this, we have learned, means statistical
significance, and what is significant is worth reporting. However, there has been
general criticism against using p-values with an arbitrary cut-off point (such as
0.05), which promotes an inappropriate dichotomous thinking in terms of
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“significant versus not significant” (cf. Cumming 2012: 27-33; Vasishth and
Nicenboim 2016: 353). This can lead to a bias in model-building, in that variables
selected on the basis of p-values will result in underestimated uncertainty and
overestimated significance (cf. Tong 2019: 247-248). Moreover, p-values and null
hypothesis testing do not provide a proper interpretation of effects: “[t]he p value
cannot inform us about the magnitude of the effect of X on Y. Similarly, the p value
cannot help us to choose which variable explains the most” (Figueiredo Filho et al.
2013: 47; cf.; Cumming 2012; McElreath 2016; Thompson 2002).! Again, following a
rule (here, p < 0.05 as the significance threshold) may be less helpful than forming
an understanding of what p does not tell us.

Moreover, an increasing range of statistical methods is being introduced to the
field, and while there is a spirit of novelty and exploration, linguistic research finds
itself in a kind of “wild west” of quantitative methodology: there are many new
prospects for (statistical) analysis, in the rather well-chartered territory of regres-
sion modeling and beyond, such as Correspondence Analysis (Glynn 2014;
Greenacre 2007) or conditional inference trees (Gries 2020; Hothorn et al. 2006;
Levshina 2021); there are also new methodological frontiers such as mixed effects
regression (Gries 2015; Zuur et al. 2009), generalized additive models (Winter and
Wieling 2016; Wood 2017) or multidimensional scaling (Borg and Groenen 2005).
These new opportunities might have brought along a gold rush, an unrealistic
hope for incredible riches (valuable new findings, or perhaps just the gold nuggets
of statistically significant effects) to be dug up from the new language data terrain.
Especially for the less stats-savvy, this also brings up the perceived need to follow
the “customary”/standard procedures specified in textbooks (or previous studies)
in order to achieve the state-of-the-art statistical analysis suggested by the re-
viewers of their publications; but the wild west is not a place to rely on customs and
standard procedures. We have to be adventurous and cautious at the same time.

In a nutshell, using statistical modeling in our analyses has brought us closer
to the quantitative approaches followed in other scientific fields (“to boldly go
where the others already are” [Kortmann this issue]), but it does not necessarily
bring us closer to more definite answers as regards the reality we study.

1 The downsides of p-values and null hypothesis testing have led some scholars to proclaim a
paradigm shift in the use and interpretation of statistics. This is evinced in book titles such as
Understanding the new statistics (Cumming 2012) and Statistical rethinking (McElreath 2016). One
major proposal is to use effect size estimation and confidence intervals as a statistical yardstick.
These can be interpreted directly without necessitating the detour of rejecting (or not rejecting) a
constructed null hypothesis. Again, this means that we cannot hold on to a firm rule but instead we
get a picture of the size of an effect and the range within which it plausibly falls (cf. Cumming and
Finch 2005: 174; Thompson 2002: 31).
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1.1 Statistical models as images

“All models are wrong, but some are useful” is a common aphorism in statistics,
famously formulated by George Box (1979). In his view, models can only provide
useful or illuminating “approximations”. We might say they are like the pipe in
Magritte’s work The Treachery of Images (1929). It cannot be packed, lighted, or
smoked; it is not a real pipe, only its visual representation (see Figure 1). Similarly,
a statistical model offers us a concise abstraction, a singular representation or
picture of the linguistic phenomenon under study.

Accordingly, we should bear in mind that a statistical model is not the reality;
it is just an (abstract) image of the reality that we study. However, this image
should highlight relevant aspects to help us understand the phenomenon of

Figure1: Magritte’s La trahison des images ‘The treachery of images’ (1929), Los Angeles County
Museum of Art.?

2 © René Magritte, VEGAP, Vigo, 2021 and Digital Image Museum Associates/LACMA/Art
Resource NY/Scala, Florence.
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interest. We might then conceive of a statistical method as the camera that will
allow us to take a picture of the reality we are interested in. The model will take the
picture for us, but what the picture shows will depend on the camera’s settings, as
well as on other circumstances that surround the “reality” and might affect the
image indirectly (e.g., natural lighting; noise in the data). The photographer’s/
researcher’s task is to find an appropriate configuration of the camera/model,
given the purpose and conditions at hand.

1.2 Variable selection: adjusting the exposure level in our
cameras

A researcher will have an overall goal regarding their data, such as pursuing a

“confirmatory” or “exploratory” line of investigation, and in many contexts it is

essential to state the approach taken (cf. Agresti 2002: 212; Vasishth and Nicen-

boim 2016). We think that it also helps to consider, for each individual variable,

why it is part of the investigation. In multifactorial research settings, different

objectives may lead us to include a variable in our study:

(i) Exploration: We want to explore the influence of a variable, but have no

particular expectation about whether or in what way that influence will show.

(ii) Confirmation: Previous findings or theory suggest an effect for a variable; we
want to test whether the effect is present in our dataset.

(iii) Estimation: We expect a certain effect (from previous findings or theory) and
want to evaluate its magnitude in our dataset.

(iv) Arbitration: Previous findings or theories suggest different expectations
regarding the effect of a variable; we want to test which of them our data
supports.

In settings with multiple input (i.e., independent) variables, our line-up will
include predictors of different types. As we proceed to statistical modeling, the way
in which a procedure treats a variable is blind to the researcher’s original objec-
tive — the model does not distinguish between cases (i) to (iv). For example, if we
follow through with an automatized variable selection procedure, we end up
treating every variable on a par and as dispensable if so judged by statistical
criteria (which should only apply to objectives (i) and (ii), if at all). This means we
put aside whatever expectations we may have had about the variable on theo-
retical grounds. Yet, when we discuss our results, the expectations and theoretical
objectives may be crucial as the basis of our interpretation of the results. We will
argue that these expectations and objectives should also be relevant to the
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procedure of data analysis. This means that research aims can and should guide
every step of data analysis and, if need be, have priority over automatic processes.

When using a regression model to account for linguistic variation, researchers
have to adjust a number of settings when they run an analysis (or “take a picture”
of the reality/phenomenon in focus). Deciding on the variables that must be
included in the model is the first and possibly the most important adjustment
required. To continue with the camera metaphor, we can use automatic settings or
make manual adjustments. We might then think of variable selection as the
“exposure level” of regression models, i.e., how much light do we need in order to
get the shot that comes closest to a reasonable and informative image of the
reality? Likewise, when fitting a regression model, a sensible recruitment of vari-
ables is required, and the question arises which out of a set of candidate variables
are to be part of the model in the end. This is “a question with no definite answer”
(Baayen 2013: 347). Variable selection thus has been described as a balancing act
“between high within-dataset accuracy on the one hand, and high predictive ac-
curacy for new data on the other” (Johnson 2008: 90). Speelman (2014: 529) adds
the warning that an overly detailed model runs the risk of “overfitting to the ‘noise’
in the data”, while a reduced one may lead to “misreading or oversimplifying the
patterns in the data”.

Textbooks on statistics for Linguistics typically suggest — or at least describe —
an Occam’s razor approach to model selection, namely the idea that among
competing hypotheses, the one with the fewest assumptions should be preferred
(cf. Upton 2017: 90). This translates into preferring a model with fewer co-
efficients — to “get as good a fit as possible with a minimum of predictive variables”
(Johnson 2008: 90) — and often implies following an automatic elimination pro-
cedure in order to reach a “minimal adequate model” that ultimately drops the
variables that do not make a significant contribution to explaining the variance in
the dependent variable. There are two popular strategies towards model mini-
malism: a backward elimination procedure starts with a maximal specification of
the statistical model, one that includes all predictors. It then works its way back-
wards to a parsimonious constellation. Forward selection, on the other hand,
builds up towards this minimal specification step-by-step, by adding predictors to
the focal model until the minimal adequate set is reached. Forward and backward
procedures can also be combined (bidirectional model selection). These tech-
niques feature prominently in the quantitative linguist’s bookshelf. For instance,
Johnson (2008: 90) suggests stepwise forward variable selection; Baayen (2008)
mentions sequential ANOVA tests as a forward stepwise procedure (2008: 199), as
well as backwards elimination (2008: 205), but does not explain variable selection
techniques in detail. Hosmer et al. (2013: 90-93) promote variable selection and
minimal adequate models, although not by purely statistical means but by a
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process of “purposeful variable selection” that involves seven different steps. Gries
(2013) also suggests (stepwise) variable selection on the basis of Occam’s razor
(2013: 285), although he does warn that “automatic model selection processes can
be dangerous: different algorithms can result in very different results” (2013: 292).
Levshina (2015) mentions the option of “retain[ing] all theoretically relevant fac-
tors in the model” (2015: 149) and is cautious about stepwise selection procedures
(2015: 152); similar words of caution come from Agresti (2002: 214), who states that
“algorithmic selection procedures are no substitute for careful thought in guiding
the formulation of models”. However, most current research papers on linguistic
variation that use regression modeling seem to implicitly or explicitly follow a
“minimal adequate” modeling approach.

An “alternative” to significance-based variable selection is deductive
modeling or “effect estimation”, as suggested by Harrell (2015: 98), for instance:
“[bly effect estimation is meant point and interval estimation of differences in
properties of the responses between two or more settings of some predictors”. This
method implies pre-selecting variables of interest on the basis of theory and pre-
vious research and then reading them off the model as it is generated. Thus, a
deductive statistical model includes all theoretically relevant factors and provides
information on the effect of each factor, especially the direction and size of the
effect. Further reduction of the model is not desirable in this approach, since
eliminating a factor from the model would be to eliminate the information on its
effect. This means that studies using this approach do not aim for a parsimonious
model, or as such for predictive accuracy. Instead, they explicitly assess relevant
factors of a variation. They follow Agresti’s (2002) advice:

It is sensible to include a variable that is central to the purposes of the study and report its
estimated effect even if it is not statistically significant. Keeping it in the model may help
reduce bias in estimated effects of other predictors and may make it possible to compare
results with other studies. (Agresti 2002: 214)

We believe that deductive modeling is in keeping with the aims of many
contemporary linguistic studies: it is a theoretically informed strategy that takes
background knowledge and research objectives into account, and it requires the
researcher to be clear about their aims and expectations.

Drawing on a random selection of some of our favorite linguistic research
papers, we observe that most apply some form of significance-based variable
selection and they are more or less explicit about it. Studies such as Lohmann
(2011), Fonteyn and Van de Pol (2016), Kaatari (2016) or Hilpert and Saavedra
(2020), for instance, report minimal adequate models but do not offer much detail
on the procedure followed for variable selection. Some of them do provide model
comparison between the minimal and a “saturated” (Kaatari 2016: 548) or full
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model, including all variables, by means of the Akaike Information Criterion (AIC).
Other papers, such as Wolk et al. (2013), Rosemeyer (2016), Pijpops and Speelman
(2017) or Levshina (2016) are more precise about their procedure. Using mixed-
effects logistic regression, Wolk et al. (2013) explain their backward selection
method:

[flirst, we constructed models containing all predictors and all putatively relevant in-
teractions. These models were then reduced by removing predictors and interactions that did
not have reliable effects, and the new models were compared to the fuller ones by means of
the Akaike Information Criterion. (Wolk et al. 2013: 16)

Rosemeyer (2016: 19) states the use of a backward fitting process based on ANOVA
and reports C and AIC scores to show that no explanatory power (in the statistical
sense) is lost by excluding variables. Pijpops and Speelman (2017: 227) differentiate
between “hypothesis-driven” and “nuisance” variables, thus stating the objectives
for the variables (where “nuisance” roughly corresponds to “exploration” above).
After running a bidirectional stepwise selection, all their hypothesis-driven vari-
ables make it into the final model — however, this selection procedure does not pay
heed to the initial distinction between variables, and if the outcome had been
different (i.e., one or more hypothesis-driven variables dropped), the researchers
could not have reported all the relevant results. Last, taking a Bayesian approach,
Levshina (2016: 253) reports a model that “contains all 17 variables of interest as
fixed effects” — so essentially a deductive model — and notes that a “more parsi-
monious model with only those predictors whose 95% credible intervals do not
include zero [...] reveals highly similar results”.

Overall, we see that most cowboys — especially those with training and
experience in the use of statistical methods — are aware of the fact that their
cameras need adjustment, and that the automatic filter is to be used with caution.
However, linguists who are new to statistical methods might be misled into
thinking that generating minimal models is the one (and only) standard procedure
that grants validity and reliability. Some misconceptions might also arise that
minimal modeling provides some kind of advantage when dealing with unruly
data (e.g., multicollinearity, scarcity of data points, empty cells in the analysis). As
pointed out by Harrell (2015),

[flor reasons of developing a concise model or because of a fear of collinearity or of a false
belief that it is not legitimate to include “insignificant” regression coefficients when pre-
senting results to the intended audience, stepwise variable selection is very commonly
employed. Variable selection is used when the analyst is faced with a series of potential
predictors but does not have (or use) the necessary subject matter knowledge to enable her to
prespecify the “important” variables to include in the model. (Harrell 2015: 67)
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Importantly, “important” refers to theoretical, not statistical, importance here.
This importance motivates the inclusion of a variable (except perhaps for purely
exploratory variables about which no “subject matter knowledge” is present). With
minimal modeling, important information, which was originally in our data, might
be left out of a model due to the categorical character of variable selection: a
predictor either stays in the model or is dropped. Modeled effects, however, are
gradual - coefficients, standard errors, t-/p-values are all continuous measures —
so a categorical in/out decision may cause us to lose relevant detail. Moreover, it
can be a form of cherry-picking by statistical significance, as Harrell (2015: 63)
explains: “Variable selection is an example where the analysis is systematically
tilted in one’s favor by directly selecting variables on the basis of p-values of
interest, and all elements of the final result (including regression coefficients and
p-values) are biased”. This bias can lead to overrating the statistical significance of
the effects that remain in the model (cf. Heinze et al. 2018: 435).

Minimal models also hinder comparability: when a model is applied to new
data, the two results may be different after the variable selection process. Because
models are inherently dependent on the observed data, two minimal models
including the same candidate variables but run on separate datasets may contain
different variables on the basis of their contribution to explaining the variance in
the dependent variable. In the camera metaphor, variable selection might make it
less straightforward to look back at the two pictures to compare them and find
differences as regards perspectives or shades of color. Assessing such differences
can be part of a research design or of a research cycle to create cumulative
knowledge (cf. Schmidt 1996). In this paper, we argue that a pre-defined set of
variables might be useful when these variables are tested on different dependent
variables and then compared (e.g., different loci of phonetic reduction in the same
morphophonological unit).

1.3 Deductive versus predictive modeling: a matter of research
design

There seems to be little awareness in the (linguistic) research community of the
distinction between “explanatory” and “predictive” modeling (cf. Shmueli 2010).
On the one hand, explanatory modeling applies “statistical models to data for
testing causal hypotheses about theoretical constructs”. On the other hand, pre-
dictive modeling applies “a statistical model or data mining algorithm to data for
the purpose of predicting new or future observations” (Shmueli 2010: 291). These
definitions of explanatory and predictive modeling refer to the purpose of
modeling (not the method). The kind of research setting we address here, empirical
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research based on cognitive or social theories of language, can be considered
“theory-heavy” (Shmueli 2010: 290). The questions asked in this setting typically
call for an explanatory modeling approach, as they aim to test or refine theoretical
constructs.® This is why it is central to distinguish between these two different
dimensions (explanatory vs. predictive) in order to build a model that best “fits”
the data as well as the purpose: we should consider that “[e]xplanatory power and
predictive accuracy are different qualities; a model will possess some level of each”
(Shmueli 2010: 305). One purpose of the present paper is to highlight the
distinction between predictive and explanatory modeling and how they lead to a
minimal or deductive use of variables, respectively.

As an initial step, both approaches require some kind of pre-selection of
candidate variables. In the research setting described above, this will ideally be
based on subject matter knowledge (theoretical and empirical literature, domain
expertise). Then, a predictive approach is interested only in information that will
reliably “predict” an outcome, typically producing a “minimal adequate” model.*
Thus, predictive modeling entails that some of the variables we or others have
hypothesized to have an effect on a given outcome might simply disappear
because we are interested in forecasting future results rather than in compre-
hensively accounting for the existent effects. The explanatory approach, however,
requires a careful formulation of expectations as regards the effects of given var-
iables (in relation to their status as in Section 1.2.), and then to estimate them as
precisely as possible. This is achieved by a deductive modeling strategy that does
not exclude “inefficient” variables. The fact that prediction implies economy of
predictors should not be used to argue that deductive models are “uneconomic”,
undiscerning, or unreliable. It is the researcher’s responsibility to craft deductive
models that allow for a useful interpretation of effects in a dataset. There are ways
to attain this, and there are advantages to this approach.

In what follows, we show the ramifications of both the minimal and deductive
approaches to regression modeling by considering their applications to data from a
previous corpus study. This case study illustrates some advantages of deductive
models: they rely explicitly on prior knowledge, they are responsive to our lin-
guistic objectives, and they allow for estimation and comparison across datasets
(in this case, different loci of variation).

3 Other areas, e.g., computational linguistics, may be more data-driven and work in an “algo-
rithmic modeling culture” (Breiman 2001) that explicitly prioritizes prediction over explanation.
Most of what we suggest here will not apply to the latter approach.

4 Other methods than variable selection have been developed, such as weighting and penaliza-
tion of coefficients (e.g., ‘elastic net’; cf. Tomaschek et al. 2018) — these are designed for predictive
modeling, but might be of use in explanatory settings, too (for example to deal with collinearity
problems).
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2 Case study

To illustrate the outcome and interpretation that different approaches produce,

we use data from Lorenz and Tizén-Couto (2017). This study investigated pro-

nunciation variation in English semi-modals, based on the Santa Barbara Corpus

of Spoken American English (SBC) (Du Bois et al. 2000). We focus here on 337

tokens of have to. Their phonetic form was analyzed by the variation in three

sounds:

— The final vowel of to as /u/ versus /a/. Reduction to schwa can occur in any
instance of to and is not expected to be specific to modal items or have to.

— Lenition of /t/ to /r/ (or even to zero). /t/-flapping is common in American
English, though not at the onset of words or morphemes (cf. Patterson and
Connine 2001); therefore, when /t/-lenition occurs in have to, it constitutes
strong phonetic reduction and attests to the coalescence of the bigram into a
single unit.

—  Fricative devoicing: /f/ for /v/. In have to, the fricative may be devoiced in
assimilation to the following /t/. This indicates a degree of coalescence of
have + to, but word-final fricatives are often devoiced (cf. Shockey 2003: 30)
and this does not constitute phonetic reduction.

We wanted to see how each of these variations is affected by a number of
factors of speech reduction. These are factors for which we have an expectation
as to their effect on reduction, following from the literature on variation in
speech. In terms of the types of objectives introduced above (Section 1.2), we
could label these factors “confirmatory” if the question was only whether or
not they show an effect in the expected direction; but since we also want to
assess and compare the size of their effects, our aim is “estimation”. They are
as follows:

—  SpeecH rATE: The pace of articulation in the intonation unit (excluding the target
item), measured in syllables per second (syll/sec). It is expected that rapid
speech increases the chance of unplanned, articulatory reduction (Fosler-
Lussier and Morgan 1999; Raymond et al. 2006). The variable is logarithmized
and centered in the models below.

—  Forrowing sounp: The first phoneme of the next word after have to (usually the
infinitive verb), grouped by place of articulation: labial/dental, alveolar, velar,
and “other” (vowel/pause/end of utterance). The “other” category comprises
environments in which reduction is known to be less likely (cf. Fox Tree and
Clark 1997; Jurafsky et al. 1998; Raymond et al. 2006).
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—  Srtress ACCENT: a light or heavy prosodic stress accent on the main verb (have).
Items with a heavy stress accent are expected to undergo less reduction (cf.
Greenberg et al. 2002; Raymond et al. 2006).

— SpekcH situatioN: Based on the SBC file descriptions, situations are private
conversations, professional interactions, or public talks. Reduced pronunci-
ation variants are often marked for informality and therefore more expectable
in private settings.

—  Speaker’s YEAR OF BIRTH: ranging from 1903 to 1980. If a reduced form takes hold
as a variant, it will be increasingly frequent in younger speakers. The variable
is scaled and centered in the models below.

As we are estimating the effects of these factors on the phonetic variation in three
different positions ([v,fl, [t,r], [v,3]), we employ three models, each with a different
dependent variable and the same five factors as independent variables.® The three
models are built from the same set of tokens of have to. Importantly, we need to
compare the outcomes in two ways: (a) For each variation, what factors determine
it? (b) For each factor, how does it affect each variation?®

We now have two possible approaches available for these models, that is,
either we try to arrive at “minimal adequate models” by variable selection, or we
use “deductive modeling” and consider the effect size of every factor in every
model. We presented deductive models in the original study (Lorenz and Tizén-
Couto 2017).” In the present exercise, we will compare the models and results under
either approach; discussing the advantages and disadvantages, we will make a
case for the (hitherto) lesser-used option, deductive modeling.

5 There is no problematic collinearity between any of the independent variables (vif < 2 for all
terms).

6 A reviewer suggested to make this comparison within a single model, by implementing the
different variational positions as a moderator variable and then reading the differences from the
interaction terms of ‘position’ with the other variables (see Gahl and Baayen 2019 or Lorenz 2020
for examples). Such an analysis is possible with our data, and it can be deductive. There are also
promising methods that can handle multiple dependent variables in one model, notably structural
equation modeling (Larsson et al. 2020). We present three separate models here because the three
variations are different phonetic phenomena, and because for didactic purposes we want to show
the comparison of separate models.

7 For demonstration purposes, we will take a ‘strictly deductive’ approach here, limiting the
analysis to main effects and matching them against the expectations formulated beforehand. In
the original study, we had explored interaction effects as well, leading in part to more detailed
results.
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Table 1: “Full model” of fricative devoicing (Model 1).

Coeff. S.E. Wald Z p Sig.
Intercept 0.775 0.288 2.69 0.007 *x
Speech rate -1.312 0.451 -2.91 0.004 *k
Stress_accent=heavy 1.235 0.25 4.94 <0.001 kel
Year_of_birth -0.114 0.129 -0.89 0.375
Following_sound=labial/dental 0.284 0.31 0.92 0.359
Following_sound=velar 0.205 0.38 0.54 0.590
Following_sound=other 0.475 0.342 1.39 0.165
Situation=professional -0.007 0.294 -0.03 0.980
Situation=public -0.289 0.51 -0.57 0.572

p (chi?) < 0.001; C = 0.716; D,, = 0.431; AIC = 422.0

2.1 Deductive models versus backward variable selection

We begin with the model for fricative devoicing ([v] versus [f]) in have to. With the
deductive approach, we include the five independent variables above. The
resulting full model is presented in Table 1.2

Trained in “star-gazing” (McElreath 2016: 167), our attention will turn to the
rightmost column to scan for significant effects. But richer information is gained
from the coefficients and their standard errors. These provide the effect estimation
that the model is designed for. Coefficients are odds ratios on the logarithmic scale,
which is not the most intuitive of concepts, but their interpretation is straightfor-
ward (see, e.g., Jaccard 2001: 7-8 for a concise explanation of log odds ratios).
Positive values indicate positive effects (in this case, on the probability of
devoicing), negative values indicate negative effects; large values indicate large
effects, small values indicate small effects.” The standard error (S.E.) shows the
precision with which the effect is measured in the data (the smaller S.E., the more
precise). p-values and significance thresholds, on the other hand, do not inform us
of the direction, size, and precision of the effect. An effect may be “significant”
because it is large, or because it is precise, or both.

8 Naturally, this “full model” is not the largest model possible (as we could include more variables
or interactions); we call it ‘full’ in opposition to the ‘minimal adequate model’. Heinze et al. (2018)
call it the ‘global model’.

9 We should keep in mind that the coefficients of categorical and continuous variables cannot be
directly compared - for categorical variables they refer to factor levels, for continuous variables to
an increment of one (i.e., a difference of 1 S.D. = 15 years in YEAR OF BIRTH, or exp(1) = 2.72 syll/sec in
SPEECH RATE).
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In estimating effects based on coefficients and standard errors, we acknowl-
edge what the data at hand reveal (the coefficient) and apprehend the degree of
uncertainty (the standard error) that stems from the fact that the data are only a
sample. Standard errors often reflect the amount of data that an effect is measured
on. In Table 1, the largest S.E. is for situaTion=public, because there are only 22
tokens of this factor level; the observed effect is in the expected direction (less
devoicing, i.e., more canonical forms, in public speeches), but given the low
number of data points, the estimate comes with a high degree of uncertainty.

As we now take the “parsimonious modeling” approach, we will reduce the
model in Table 1 to a “minimal adequate model” by statistical variable selection.
There are several methods and tools available for this (see Levshina 2015: 149-152
for an overview). We will use stepwise backward variable selection with the R
functions fastbw() (package rms [Harrell 2017]) and step() (based on drop1(),
from the package stats, which comes with the basic installation of R). Stepwise
backward variable selection methods start from the full model and take out the
least predictive variable; this is repeated until the resulting model would be
significantly “worse” (in terms of predictive power) than the previous one. Both
fastbw() and step() apply the Akaike Information Criterion (AIC) for model
comparison, though step() tends to be more conservative than fastbw(). The
resulting minimal models are shown in Table 2 (step()) and Table 3 (fastbw()).

A first essential insight is that there is not the one “minimal adequate model”.
The different selection functions produce different results. Model 2 retains sPEEcH

Table 2: ‘Minimal adequate model’ of fricative devoicing according to drop1()/step() (Model 2).

Coeff. S.E. Wald Z p Sig.
Intercept -0.574 0.180 -3.19 0.001 *x
Speech rate -1.285 0.440 -2.92 0.004 *k
Stress_accent=heavy 1.257 0.241 5.21 <0.001 *kk

p (chi®) < 0.001; C = 0.710; Dy, = 0.420; AIC = 413.1

Table 3: ‘Minimal adequate model’ of fricative devoicing according to fastbw() (Model 3).

Coeff. S.E. Wald Z p Sig.
Intercept —-0.641 0.177 -3.63 <0.001 Fkx
Stress_accent=heavy 1.375 0.236 5.82 <0.001 kol

p (chi®) < 0.001; C = 0.663; D,, = 0.326; AIC = 420.1
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RATE along with sTress accent, Model 3 drops it. Having to choose between models,
the researchers are forced to make a decision that they may have hoped to leave to
automatized statistical procedures. We might resolve this by a principled decision
for the “most minimal” (Model 3) or for the smallest AIC (Model 2), or — ideally — by
smallest AIC and ANOVA comparison (which in this case suggests that Model 2is a
significantly better fit). Yet, the case serves to show that trying to obtain the most
“objective” result by running a variable selection function is deceptive — human
decisions are still involved.

Comparing the full model (Model 1) and Model 2, we see that Model 2 has a
lower AIC and almost equal C, so, if we are aiming for parsimony, Model 2 wins. We
would probably even report the same basic findings from either model, such as a
higher probability of devoicing in slow speech and with heavy stress accent. This is
reassuring, as it shows that results — at least when they are clear enough — will not
be turned on their head by changing one methodological decision. However, the
deductive full model and a focus on coefficients and standard errors allow us to
quantify and assess “significant” and “non-significant” effects alike, rather than
merely reporting them as present or absent.

Moreover, there is the issue of comparability: the effect of a factor can be
compared across cases when models with the same variables are applied. We will
do this by looking at the same factors for the realization of /t/ (full or lenited) and of
the final vowel ([u] or [3]) in have to. As above, we present for each variation the
full model and “minimal adequate models” as produced by drop1()/step() and
fastbw().

Overall, the results in Table 4 are in line with what we would expect in a case of
articulatory reduction, such that reduction is disfavored in formal situations, and
before pauses as well as (slightly) in slow speech — while the effect of stress accent
cannot be ascertained. If we glance over the models, we find, again, that the
estimates of the reported effects do not differ much between the full and minimal
models. The difference is in what the minimal models leave out; most strikingly,
fastbw() drops the variable srruation, which produces a significant effect in the
other models (/t/-lenition is less likely in professional situations compared to
private conversations). So the choice of a variable selection method would lead to
either stating that the situational context is a determinant of /t/-lenition or that it
has “no effect” — two opposite conclusions, drawn from the same dataset. What we
rather want is to quantify the effects and assess their reliability. We see from the
full model that the effect of siruation=professional matches our expectation (as
casual situations favor reduction) with a fair degree of certainty; the effect of
situaTion=public actually shows the expected direction but cannot be reliably
ascertained as it is only a very slight trend on a small number of observations. This
is the information we ask for in an “effect estimation” scenario.
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In fact, when srruartion is taken out, the estimates for other effects also change —
SPEECH RATE has a larger coefficient, and to the strict “star-gazer” it may look as
though roLLowING sounp=0ther has “lost” one star. These changes are not dramatic
when considered with care, but the danger is real: “it may happen, that after
eliminating a potential confounder another adjustment variable’s coefficients
moves closer to zero, changing from ‘significant’ to ‘nonsignificant’ and hence
leading to the elimination of that variable in a later step” (Heinze and Dunkler
2017: 8).

Regarding the variation in the final vowel (Table 5), the variable selection
functions both retain only the factor FoLLowinG sounp, and the only significant effect
is for the labial/dental level (which disfavors reduction to schwa). This is also quite
clear from the full model. We might be tempted to say that this time variable
selection really only clears the model from uninformative clutter. But let’s recall
that the aim of variable selection — at least theoretically - is predictive modeling,
that is, constructing a model that can optimally predict new data (and does not
overestimate spurious effects in the present data). A measure for predictive power
is the C-index, and with C = 0.611, the minimal model in Table 5 is clearly not good
at predicting.'® (Neither is the full model, of course.) This corresponds to the
different inherent purposes of the approaches: The full model allows us to estimate
the effects of a set of pre-selected variables, and in this case we find that most of
them show no reliable association with the dependent variable; with the “minimal
adequate model” we try to make predictions about the probability of variants, and
in this case we have to admit defeat — the minimal model is not adequate.

2.2 Comparability across models and visualization

We have stated that one motivation for keeping all the (theoretically relevant)
variables in our models is their direct comparability across variations. In the
present case, we can compare the effect of each factor on fricative devoicing, /t/-
lenition and final vowel reduction in have to. We illustrate this by visualizing the
coefficients and standard errors of the three full models (Figure 2).1

10 Asa concordance index, C technically only tests goodness of fit, i.e., the model’s predictions on
the same dataset that it was fitted on. Incidentally, the model in Table 5 is also the only one
presented here that does not pass the Hosmer-Lemeshow goodness-of-fit test (cf. Hosmer et al.
2013: 157-169).

11 A neat R function for coefficient plots of individual models is coefplot() from the package arm
(Gelman and Su 2016). To include three models at once, we have extracted the coefficients and S.E.
s and plotted them with ggplot () (package ggplot2; Wickham 2016).
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Figure 2: Comparison of effects: Coefficients and standard errors of the full models.

Figure 2 contains all the information needed to interpret the variations at hand.
Effects are plotted on the x-axis: Negative effects show to the left of the zero line,
positive ones to the right; the distance from zero indicates the size of the effect, the
error bars its degree of uncertainty. While each color/shape represents the model
for one variation, the effects are grouped by factor (level). With this, we can
compare how the effects differ between variations in direction and size. For
example, we can identify factors that show a clear effect on variation but not the
others (e.g., siruation=professional), as well as those which barely have any effect
at all (e.g., FoLLOWING souND=velar); and we can observe that effects on fricative
devoicing (red dots) and /t/-lenition (green triangles) tend to pull in opposite
directions (e.g., for FOLLOWING SOUND=0Other, SPEECH RATE, STRESS ACCENT). This is of in-
terest as it shows that there is a variant “haf to/hafta” as opposed to an articulatory
reduced form “havda”.

Reading off the effects from a coefficient plot like Figure 2 is convenient for a
general comparison. For more detail, they can be visualized as in Figure 3, where
the estimated effects of speech rate are plotted against the dependent variables.!

12 The plots in Figure 3 were created with the R package visreg (Breheny and Burchett 2017). They
are partial effect plots, that is, they show the effect of spercH raTE assuming all other variables take
their mean or most frequent value (which is FOLLOWING SOUND = alveolar, STRESS ACCENT = heavy, YEAR OF
BIRTH = 1956, SITUATION = private).
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Figure 3: Effects of speecH rate on fricative devoicing, /t/-lenition and final vowel reduction in
have to.

While higher speech rates increase the odds for /t/-lenition (middle panel),
fricative devoicing shows the opposite effect (less devoicing in faster speech, left
panel); and there is a slight tendency towards final vowel reduction in rapid speech
(right panel), an effect we might have expected but that is weak (and non-
significant) in the model. Also, the rate of /t/-lenition overall is lower than that of
fricative devoicing or final vowel reduction, which is apparent in the positions of
the regression lines. Again, this direct comparison is only possible if the variable in
question (here, speecH RATE) is included in each model, and it is most reliable when
each model includes exactly the same set of independent variables. These con-
ditions are met with pre-specified, “deductive” models but not with “minimal
adequate” models.

What if we tried comparisons like those in Figures 2 and 3 with models that
have undergone statistical variable selection? To illustrate the difference, we will
show this with the more radically trimmed-down models, those suggested by
fastbw(). The effects plot, showing the coefficients and standard errors from the
three models, is presented in Figure 4; the effects can be read in the same way as in
Figure 2. As for variable selection, we can only note the presence and absence of
effects in Figure 4 (e.g., no effects on fricative devoicing for FoLLOWING SOUND, Or on
the final vowel for spEEcH RATE and STRESS ACCENT); the variables situatioN and YEAR OF
BIRTH are not even shown, as they have been eliminated from all three models. Thus,
instead of showing an accurate comparison, we have turned some effects into a
yes/no question — we have given up information for the sake of parsimony. Even if
we wanted to show only “significant” effects, this is not achieved, as the coefficient
of an individual factor level can still be close to zero (e.g., FOLLOWING soUND=Velar).
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Figure 4: Coefficients and standard errors of the minimal models.

The logic of eliminating variables is based on null hypothesis testing. The
observed data do not allow us to reject a null hypothesis, for example that there is
no effect of situation on /t/-lenition, with sufficient certainty. We end up excluding
the variable, and make no statement about its effect — not even a statement on its
effect size being rather too small or its variance too large due to small token
numbers. As Cumming (2012: 8) notes, “[s]luch dichotomous decision making
seems likely to prompt dichotomous thinking, which is a tendency to see the world
in an either-or way” (emphasis in original). A variable either contributes to
explaining the distribution in the dependent variable, or not. What we should
promote instead (according to Cumming 2012, and we agree) is estimation thinking,
i.e., a focus on effect sizes. The question then is not “yes/no” but “how much”.
Again, it is the full models that have this very focus.

On the other hand, with the minimal models of Figure 4, we are probably
inclined to make some “how much” statements too, e.g., that the effect of speEcH
RATE on /t/-lenition is quite large. Apart from the potential issue of accuracy (cf.
Harrell 2015: 69-70), this means that we have taken two steps: First, we test
variables on a “yes/no”-question (does it make a significant contribution to the
model?); then, if the answer is “yes”, we ask “how much” (how large and in what
direction is its effect?). It seems that the first step is unnecessary. Compare this to
the full models (as seen in Figure 2), where “how much” is all we ask. The answer
for some effects may be “practically zero”, which is tantamount to “no effect”; but
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it still is an answer that can be specified (by coefficient and standard error) and
compared to other effect sizes.

3 Deductive and minimal models: summary and
discussion

To sum it up, the advantages of a deductive modeling approach are:
- Its groundedness in theory;

— The potentially higher accuracy of the coefficients;

—  The comparability of effects across models.

When choosing a deductive modeling approach, we prioritize these points over
parsimony and concerns for prediction.

“Groundedness in theory” means that the method takes as its basis the re-
searcher’s thoughts and ideas about a question regarding our understanding of
language and language use. This is not limited to (dis)confirming existing theories,
as deductive modeling can be used to test tenuous theoretical claims and new
ideas, too. As for accuracy of coefficients, this can be compromised also by issues
arising from the data (e.g., scarcity of certain factor levels, collinearity), especially
with “uncontrolled” data from corpora. This means that coefficients should always
be read with care and with a mind for the linguistic patterns that produce the
observed effects.

Regarding the point of comparability, our example has focused on comparing
realizations of different sounds within the same item which can undergo phonetic
adaptations that relate to ease of articulation. In other words, we have compared a
fixed set of independent variables across different dependent variables, in the
same dataset. Another important type of comparison is when the same factors are
tested on new data (e.g., from a different but comparable corpus), basically
replicating a model. This can help refine effect estimates and reduce uncertainty,
leading to cumulative knowledge construction. A breakdown into significant
versus discarded factors is of limited usefulness to this goal. Cumming (2012) and
Thompson (2002) make this argument in more detail under the keyword of “meta-

analytic thinking”."

13 Cumming defines “meta-analytic thinking” as “the application of estimation thinking to
more than a single study” (2012: 9) in order to reduce the uncertainties of a single data sample.
While our case study shows some meta-analytic thinking — in deriving its variables from previous
research and in comparing them across variations - it is slightly different from what Cumming
(2012) has in mind (see also Thompson 2002).
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Under a deductive modeling approach, we are interested in testing the effects
of influencing factors on the dependent variable, rather than in predicting out-
comes. We think that this motivation underlies most uses of multivariate statistical
modeling in linguistic research. Thus, we want to make statements about effects,
such as “fricative devoicing in have to is less likely at higher speech rates” — and we
can specify further how much of a difference speech rate makes: at 4.8 syll/sec (1st
quartile) the modeled rate of devoicing is 0.60 (95% CI [0.52, 0.66]), at 6.9 syll/sec
(3rd quartile) it is 0.48 ([0.41, 0.55]).* This quantifies a specific effect (in Model 1
above). It is more informative to our research questions than prediction statements
such as “the probability of fricative devoicing in a token of have to at a speech rate
of 4.8 syllables per second, with a heavy stress accent is 0.72” (as would be a
prediction from Model 2 above). In other words, our purpose is not to give an exact
and complete description of the dependent variable (i.e., under what circum-
stances which pronunciation of have to will occur); our purpose is to understand
the influence of given variables for which we have hypotheses on the theoretical
level (i.e., to assess articulatory reduction vs entrenched pronunciation variants).
Statistical models are a tool, and when using a tool it is important to keep the
purpose in mind. Here we side with Egbert et al. (2020: 42), who submit that
“statistical tests cannot replace linguistic analysis; they are, and should remain,
tools that assist the researcher in drawing linguistically valid conclusions”.

This is not to say that statistical variable selection is “wrong” — it is a clever but
automatic feature (auto-focus) of the “camera” of regression modeling that we can
choose to apply, or not. If the purpose is predictive or exploratory, it may be
advantageous to use them. However, we can see a number of possible motivations
for employing variable selection algorithms that really are not good reasons. We
list them here, each with a rebuttal.

I. “The dataset is too small, so the number of model coefficients needs to be
reduced”. The problem of too few tokens for too many variables cannot be
solved by statistical methods of model reduction, as the required number of
tokens must be based on a full model with all candidate variables (cf. Heinze
and Dunkler 2017: 7-8). Within a regression framework, the only solution is
either more data or a tighter pre-selection based on theoretical considerations,
research objectives, and/or priorities.

II. “Eliminating some variables reduces the complexity of the reported results”.
When studying complex phenomena, seeking simplicity can be misleading
and does not do justice to the object of study. Rather than simplicity, we
should seek clarity. We think that clarity can be achieved by identifying

14 The values are derived from the model with the Effect () function from the R package effects
(Fox 2003).
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II.

Iv.

variables of interest, stating their expected effects, and interpreting the
observed results in light of these expectations. Even if they are “null results™,
discussing them may inform future research and theory-building. Moreover, a
“simpler” output comes at the cost of more complex statistical mechanisms:
“in search of simpler models, statistical analysis gets actually more complex,
as then additional problems such as model instability, the possibility of
several equally likely competing models, the problem of postselection infer-
ence, etc. has to be tackled” (Heinze et al. 2018: 432).

A “minimal adequate model” is more objective because it results from a strict
statistical procedure”. Research results are never fully objective because they
(partly) follow from decisions on how to treat and analyze the data, what
variables to consider, etc. Moreover, as we have seen, statistical variable se-
lection is not fully determined either, as different algorithms produce different
outcomes. In short, statistical procedures are not to replace the researcher’s
prudent decision-making.

“The ‘full model’ should be trimmed down to avoid the risk of overfitting”.
Overfitting means that the model is so tightly tuned in on the present data that
it may make wrong predictions on new data (cf. Speelman 2014: 529). If pre-
diction is explicitly not the goal of modeling, the issue is of less concern. That
said, we do want the conclusions drawn from a “deductive” model to be as
generally valid as possible, so measures like goodness of fit and model opti-
mism provide valuable information (cf. Harrell 2015: 113-116; Steyerberg 2009:
84) — in the model-as-camera allegory we could say that they show us to what
extent the model highlights (and perhaps exaggerates) the contrasts in the
picture.® A bigger concern to deductive modeling, however, is (multi-)
collinearity between independent variables, as it can confound coefficient
sizes and hence effect estimations (cf. Shmueli 2010: 299). Therefore, checking
on “variance inflation factors” (VIF); (cf. Harrell 2015: 78-79; Levshina 2015:
272) is more essential to deductive modeling than measures of overfitting.

15 “Optimism is defined as true performance minus apparent performance, where true perfor-
mance refers to the underlying population, and apparent performance refers to the estimated
performance in the sample” (Steyerberg 2009: 84). The validate() function in rms (Harrell 2017)
quantifies optimism through resampling. In our case study, the full models all show somewhat
greater optimism than their minimal counterparts. In the models on fricative devoicing (Tables 1-3),
this leads to the corrected D,, of the full model being lower than for the minimal models, though
they are all close to D, (corrected) ~ 0.4. In the models for the final vowel (Table 5), having a low
accuracy to begin with, the corrected D, drops below 0.2. Again, this means that the models should
be interpreted with caution for effect estimation, but are dangerously insufficient for prediction
proper.
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4 Further considerations

We should admit that the examples we have presented here are relatively simple
kinds of models. For one thing, the independent variables were all clearly derived
from theoretical hypotheses and motivated by the need to estimate their effect
(i.e., of type (iii) by the definitions in Section 1.2). This is what Baayen (2008: 236)
calls the “ideal” case. Often, a researcher will want to consider additional factors,
whose influence is to be explored without particular expectations (type (i)). These
could be subjected to a selection mechanism,'® although there is no need for this
when there is no pressure to achieve a parsimonious model. A possible motive may
be that the researcher considers them “nuisance variables” (Pijpops and Speelman
2017) and wants to avoid reporting an unnecessarily large model.

We also did not include any interaction terms in our models. Indeed, testing
for interactions may seem at odds with a deductive approach when we have no a
priori hypothesis about them. Yet, it can follow from the same rationale as keeping
a “full model”: We have chosen a set of variables based on theory and previous
research, now we want to see how they affect the dependent variable in as much
precision and detail as possible — including “non-significant” main effects as well
as relevant interactions that emerge from the data.

Another limitation of the above demonstration is that we did not present a
mixed-effects approach."” In principle, though, the same considerations apply to
the fixed effects in a mixed model: is the aim to estimate the effects of pre-selected
variables or is it to achieve a parsimonious, predictive model? Variable selection is
particularly tricky because a random effect may “step in” to capture variance
otherwise accounted for by a fixed effect (Barth and Kapatsinski 2018).'®

Finally, one might wonder if or how tree-based models (recursive partitioning,
conditional inference trees, random forests) fit into this discussion, given that they
are often described as a handy alternative to regression models. Tree models are
good at showing what factor combinations likely produce a given outcome. For
this, they may indeed be more intuitive, as is sometimes claimed (e.g., Baayen et al.
2013; but see Gries 2020 for some words of caution). However, they do not provide
effect estimates for individual variables. We showed above how such effect

16 Both step() and fastbw() have parameters to set the scope of variables over which the
selection is run (see the respective documentations in R).

17 For corpus linguistics, a compelling urge to consider mixed-effects modeling has been put
forward by Gries (2015).

18 In a mixed-effects setting, there is also the question of a ‘maximal’ or restricted set of random
effects. A discussion of this is beyond the scope of this paper — see Barr et al. (2013) and Bates et al.
(2015) for different positions.
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estimates can be read from a deductive regression model. The nested effects of tree
models, however, have to be read like the prediction statement above, i.e., as a
probability of a variant choice in a particular constellation of values of the pre-
dictor variables. Moreover, tree models inherently involve a strict variable selec-
tion (in fact selecting just one variable at every split), so they suffer from the same
problems as “minimal adequate” regression models when an explanatory
modeling approach is taken.! That said, tree models do have their advantages,
e.g., robustness to collinearity and data scarcity (cf. Levshina 2021). Again, it is up
to the researcher to choose the appropriate tool for the task at hand.

5 Concluding remarks

This paper is intended to raise awareness about how regression modeling can be
used as a “camera” to capture linguistic realities. When we analyze linguistic data
by means of multivariate statistics, we must be aware that different strategies can
lead to different results — so we should be clear about our strategy and not simply
assume predictive modeling and “minimal adequate models” as a default. What
we have advocated in this article is a deductive modeling strategy that aims at
accurate effect estimation rather than parsimony: this approach essentially con-
sists in building a “full” model with carefully selected variables on the basis of
linguistic knowledge, previous findings, and research ideas, with no further
reduction.

When fitting multivariate statistical models to complex data, we should be
mindful of the questions we seek to address, rather than blindly apply an auto-
mated procedure that seeks a level of simplicity our linguistic concerns or analysis
might not call for. “Pre-selection” of variables by theoretical criteria is advanta-
geous when estimation or even direct comparison of effects is at stake. In this
paper, we have provided an example of how putting accuracy before parsimony,
by means of deductive modeling, can translate into transparency/clarity as regards
(a) research aims and hypotheses, (b) comparability with previous studies, and
(c) comparability of models with the same independent variables applied to
different dependent variables.

We have also shown that simplicity (parsimony) does not automatically
translate into a higher predictive accuracy, especially when the model makes weak
predictions to begin with. Dropping variables does not necessarily/always improve
model predictiveness, but it does reinforce the researcher’s overreliance on

19 When fitting tree models to the data of our case study, the variables they select correspond to
the minimal models presented above (depending on parameter settings).
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statistical significance levels and brings them closer to a selective reporting of
results that might “accidentally” leave out important information (cf. Harrell 2015:
63; Sonning and Werner this issue). The bottom line is that deductive models might
also be wrong, but they are certainly helpful in order to estimate the effects in our
(more or less) complex data. The theory-driven character of deductive modeling
also partly avoids the implication that modeled results provide sweeping pre-
dictions that will be corroborated across corpora; such predictions would run
counter to the fact that corpora are neither random nor representative samples
(cf. Egbert et al. 2020: 14; Koplenig 2019; Leech 2007).

Overall, we think that as a general strategy of statistical inference, the deductive
modeling approach can be one element in overcoming the “replication crisis”, in
particular the “significance bias” of published findings. There is no principled
problem with publishing a model that does not predict well (like ours for the final
vowel) or even a model that does not contain any significant effects — as long as we
clearly and carefully explain our interpretation of these (null) results. In any case,
this requires that we have the relevant knowledge to form a judgement about which
variables are worth considering on theoretical grounds; linguists who use statistics
should first and foremost be good linguists. Or, if we think of models as cameras: The
photographer should certainly know how to handle the camera and its settings, but
they should never forget to point the camera in the right direction.
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