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Abstract: Quantitative studies in linguistics almost always involve data points
that are related to each other, such as multiple data points from the same partic-
ipant, multiple texts from the same book, author, genre, or register, or multiple
languages from the same language family. Statistical procedures that fail to ac-
count for the relatedness of observations by assuming independence among units
can lead to grossly misleading results if these sources of variation are ignored. As
mixed effects models are increasingly used to analyze these non-independent data
structures, it might appear that the problem of violating the independence
assumption is solved. In this paper, we argue that it is necessary to re-open and
widen the discussion about sources of variation that are being ignored, not only in
statistical analyses, but also in theway studies are designed. Non-independence is
not something that is “solved” by new statistical methods such as mixed models,
but it is something that we continuously need to discuss as we apply newmethods
to an increasingly diverse range of linguistic datasets and corpora. In addition, our
paper delivers something that is currently missing from statistical textbooks for
linguists, which is an overview of non-independent data structures across different
subfields of linguistics (corpus linguistics, typology, phonetics etc.), and how
mixed models are used to deal with these structures.

Keywords: corpus statistics; experimental design; generalizability; mixedmodels;
multilevel models; sampling

1 Introduction

Large-scale attempts to replicate existing studies in psychology and other fields
have produced disheartening results (e.g., Camerer et al. 2018; Open Science
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Collaboration 2015). At the same time, these replication failures have generated
fruitful discussion about methodological standards, including in linguistics (e.g.,
Berez-Kroeker et al. 2018; Roettger 2019; Roettger and Baer-Henney 2019; Roettger
et al. 2019), and in this spirit the current special issue has brought linguistic
researchers from various subfields together to discuss methodological challenges.
In a recent paper, Yarkoni (2020) opened up another discussion on what he calls
the “generalizability crisis”. Yarkoni argues that researchers often make verbal
statements that are more general than the corresponding studies allow. His
argument rests on the idea that most studies neglect, in some form or another,
known or theoretically plausible sources of variation. This can happen either in the
design of a study, such as when only one item is sampled even though claims are
predicated on a larger set of items, or it can happen at the analysis stage if het-
erogeneity across clusters in the data (such as items) is unaccounted for.

To illustrate the basic logic of Yarkoni’s (2020) argument with a linguistic
example, consider the claim that younger speakers use swear words more often
than older speakers (Murphy 2009). Clearly, some people swear more than others.
A corpus analysis that exclusively focuses on aggregate results without taking
variation across speakers into account can lead to grossly misleading results
(Brezina and Meyerhoff 2014; Gries 2015a; Johnson 2009; Sönning and Krug 2021;
Tagliamonte and Baayen 2012). For example, the association between age and
swear word usage could be driven by a few young individuals who swear a lot.
Alternatively, it could be that only a specific swear word is used more often by
younger speakers, not a wide range of swear word types. In both of these cases, the
general statement “younger speakers usemore swearwords”would be incorrect as
it fails to take variation across speakers and variation across words into account.
Omitting important sources of variation from one’s analysis limits the generaliz-
ability of any conclusions drawn from the study. Such an omission can also lead to
a failure to replicate when, for example, a result was contingent on the particular
item(s) chosen for a study and does not hold for an alternative item sample (Judd
et al. 2012; Yarkoni 2020).

Another way of talking about the omission of variance components in one’s
analysis is in the context of the “independence assumption” of a statistical pro-
cedure. Independence means that for any two observations in a sample, knowing
the value of one observation, relative to the mean of the population, gives us no
information about the other (Kenny and Judd 1986: 422). When there is more than
one observation from the same grouping unit (e.g., participants, items, texts,
registers, languages, language families), these observations share a connection
and cannot be assumed to be independent anymore. Failing to account for these
clusters statistically violates the independence assumption.
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There is an extensive literature across a diverse range of disciplines doc-
umenting the serious consequences of violating the independence assumption
(e.g., Bromham et al. 2018; Hurlbert 1984; Kenny and Judd 1986; Kroodsma et al.
2001; Lazic 2010; Lazic et al. 2018, 2020; Lombardi andHurlbert 1996;Machlis et al.
1985; Scariano and Davenport 1987; Vul et al. 2009). One of the most serious
consequences is a potentially drastic increase in the rate of spuriously significant
results (“Type I errors”). This has been demonstrated analytically, via simulations,
and via concrete examples of published findings that cease to be significant once
an analysis appropriately deals with all sources of variation that introduce non-
independence (e.g., Bromham et al. 2018; Judd et al. 2012; Kenny and Judd 1986;
Roberts et al. 2015; Scariano and Davenport 1987; Winter 2011).

Linguists from different subfields are already well-accustomed to avoiding
violations of independence with respect to participants and items. For example, it
is widely known that participants are a source of variation that needs to be
incorporated into one’s analysis (Baayen et al. 2008; Brezina and Meyerhoff 2014;
Gradoville 2019; Gries 2015b; Johnson 2009; Tagliamonte and Baayen 2012).
Likewise, the issue of bringing item variation into one’s analysis has been known
for a long time (Brunswik 1955; Clark 1973; Coleman 1964) and continues to be
discussed in psychology (Judd et al. 2012;Wells andWindschitl 1999;Westfall et al.
2014; Yarkoni 2020). In recent years, mixedmodels have taken linguistics by storm
precisely because they allow researchers to deal with multiple sources of
non-independence in a given set of data within an integrated framework via the
inclusion of random effects. Arguments for mixed models have been made
in psycholinguistics (Baayen et al. 2008), sociolinguistics (Johnson 2009;
Tagliamonte and Baayen 2012), typology (Jaeger et al. 2011), second language
acquisition research (Cunnings 2012), and corpus linguistics (Gries 2015b).

However, mixed models do not “solve” issues of non-independence auto-
matically (Hurlbert 2009; Yarkoni 2020). The field-specific debates about viola-
tions of independence have found a modern parallel in discussions about what
happens when important random effects terms are omitted from a mixed model
analysis (Aarts et al. 2015; Barr et al. 2013; Schielzeth and Forstmeier 2008; Yarkoni
2020). While there has been a debate about appropriate random effects structures
in some subfields of linguistics, such as psycholinguistics (Barr et al. 2013;
Matuschek et al. 2017) and typology (Jaeger et al. 2011), we were inspired by
Yarkoni (2020) to broaden the focus. What sources of non-independence are there
across different subfields of linguistics? And how are mixed models used across
different subfields of linguistics to deal with these non-independences? Finally,
are there sources of variation that are left unaccounted for, either in study design or
in statistical analysis? If so, what are these sources of variation?
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We think that it is crucial to re-open the discussion about the independence
assumption for several reasons. First, while issues of non-independence have
extensively been discussed in academic journals, pedagogical texts for linguists
lag behind. For example, several new textbooks targeted primarily at corpus lin-
guists (Desagulier 2017; Stefanowitsch 2020; Wallis 2021) do not present much
discussion of the independence assumption, even though this has been the focus
of extensive debate in corpus linguistics (Baroni and Evert 2009; Brezina and
Meyerhoff 2014; Evert 2006; Gradoville 2019; Gries 2015a, 2015b, 2018; Kilgarriff
1996, 2005; Koplenig 2019; Lijffijt et al. 2016; Oakes and Farrow 2006).1 For
example, Desagulier (2017), Stefanowitsch (2020), and Wallis (2021) discuss the
application of Chi-square tests to corpus data even though this procedure assumes
independent observations (Gries 2015a, 2015b; Lijffijt et al. 2016). As pointed out by
Gries (2015b: 121), mixed models could “end the way in which corpus linguists
nearly always violate basic assumptions of our statistical tests”. Unfortunately,
mixed models are sometimes not discussed at all (e.g., Desagulier 2017; Wallis
2021) despite persistent calls for their utility in corpus linguistics (Gries 2015b;
Tagliamonte and Baayen 2012). Given that corpora always have complex nested
data structures that standard significance tests cannot account for, we should be
asking ourselves the question whether at this stage in the methodological devel-
opment of linguistics, it is at all appropriate to teach classical significance tests (cf.
Koplenig 2019) instead of model-based approaches that allow us to deal with
multiple sources of variation more effectively.

A second reason to re-open the discussion surrounding non-independence has
to do with the introduction of new methods to linguistics. Consider, for example,
random forests (Breiman 2001), a relatively new technique argued to perform well
in “low n, high p” situations (Strobl et al. 2009), involving potentially small
datasets (n) with a large number of potentially collinear predictors (p) (as is the
case when a large number of predictors are highly correlated). Gries (2019) rightly
draws attention to important methodological issues that may arise in the appli-
cation of random forests to linguistic data. However, a much more fundamental
issue not discussed by Gries (2019) is whether the random forest applications
commonly used by linguists (such as the R packages ranger, randomForest, and
party) can actually be applied to linguistic datasets at all, given that, just like other
statistical procedures, random forests are biased when the data contains non-

1 It should be pointed out that not all of these texts discuss the “independence assumption” with
this exact terminology, such as Evert (2006) and Kilgarriff (2005), who frame their discussion in
terms of “randomness”. However, in some form or another, each one of these texts deal with the
independence assumption, andmany reference it directly (e.g., Gries 2015a, 2015b; Kilgarriff 1996;
Lijffijt et al. 2016).

1254 Winter and Grice



independent subgroups (Hajjem et al. 2014; Karpievitch et al. 2009; Stephan et al.
2015). This shows that we need to continue the discourse of non-independence as
new methods enter our field.

Third and finally, Yarkoni (2020) asks us to think about unmeasured sources of
variation more widely. When it comes to study design, it is important to discuss
whether particular experimental designs underestimate the variation that is pre-
sent in natural language. Alternatively, we may ask ourselves whether particular
experimental design strategies that have become traditions in some fields actually
capture relevant sources of variation that are of interest.

Our discussion proceeds as follows. First, we use mixed models to elucidate the
problem of non-independent data structures, thereby also demonstrating to readers
unfamiliar with this method how mixed models allow addressing violations of the
independenceassumption (Section2). Second,wegiveanoverviewofhow the issueof
non-independence arises in different forms across different subfields (Section 3), also
discussing less commonly considerednon-independence issues, aswell ashowmixed
models can or are being used to address them.

2 Introduction to mixed models, independence,
and generalizability

This section uses mixed models to elucidate the problem of omitting important
sources of variation that are present in the data. It also serves as a brief primer for
readers unfamiliar with mixed models that will help with the discussion that
follows. Figure 1(a) shows 28 data points in which a response ( y) differs as a
function of a predictor (x). This scenario mimics many common situations in lin-
guistic data analysis. For example, if this were psycholinguistic data, the predictor
on the x-axis could be word frequency and the response on the y-axis could be
response time: more frequent words are processed faster, as indicated by the
negative slope of the superimposed linear model (thick black line).

The simple linear model in Figure 1(a) can be expressed in the following form:

1. yi∼Normal (μi, σ)
2. μi = α + βxi

The dependent variable, y, is assumed to follow a normal distribution with a
specified mean μ (“mu”) and a standard deviation σ (“sigma”). The subindex i
represents the fact that thismodel predicts differentmeans for different data points
(i= 1, i= 2 etc.). In ourmodel, themean, or expected value, for observation i (i.e., μi)
depends on the value of the predictor x (i.e., xi). The mean itself is a function of a
linear combination of an intercept (α) and a slope (β), corresponding to the two
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terms that form the equation of a line. After having seen the data, the linear model

estimates the intercept to be α̂ = 3.7 and the slope to be ̂β = −0.2 (the hat indicates
that these are now estimates derived from the data). Here, the slope of −0.2 tells us
that responses to frequentwords are faster. For an extensive book-length treatment
of linear models in linguistics, see Winter (2019).

A caveat with the above linear model is that it assumes that all data points are
independent, anassumptionsharedwithalmost all statistical procedurescommonly
used in linguistics. In an experimental context, this assumption would be satisfied
if each of the 28 data points came from a different participant. Let us now assume
that the data seen in Figure 1(a) does, in fact, come from only a few individuals,
four to be exact, as represented by the four dashed lines in Figure 1(b). This
immediately changes our understanding of what “N” is in this data. There are not in
fact 28 independent data points, but when focusing on participants, N is merely 4.
Not incorporating information about the individual participant into the model
amounts to artificially increasing sample size, which leads to a spurious increase in
statistical power (Hurlbert 1984, 2009).2 Thus, we need to bring the individual into
the analysis, which can be done via a mixed model. One way of representing the
mixed model corresponding to Figure 1(b) mathematically is as follows.

1. yi∼Normal (μi, σ)
2. μi = αj + βjxi

a. αj∼Normal (0, σa)
b. βj∼Normal (0, σβ)
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(b) Mixed model with random slopes
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Figure 1: (a) A simple linear model shows a declining trend; the white square represents the
intercept; (b) the same plot with superimposed random effects predictions for individuals;
(c) the 95% credible intervals for the corresponding slopes of a simple linear model (no random
effects) and a mixed model with a random effect for subject.

2 Statistical power is the probability that a hypothesis test correctly rejects the null hypothesis
(i.e., the probability of obtaining a significant result when the null hypothesis is actually false).
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The new indented terms correspond to the random intercepts (αj) and random
slopes (βj). Notice that the equation of a line μi = αj + βjxi, now has additional

subindices for the intercept and slope, with j representing different individuals
(participant j = 1, participant j = 2, etc.).

The effects that the incorporation of random effects has on our inferences are
shown in Figure 1(c), where the 95% interval of the slope estimate widens drasti-
cally (Aarts et al. 2015; Barr et al. 2013; Schielzeth and Forstmeier 2008; Yarkoni
2020).3 The certainty that is suggested by the narrower interval of the linear model
without random effects is spurious, purely resulting from the neglect of variation
across individuals.

To the reader unfamiliar with mixed effects models, it should be pointed
out that all the arguments presented here conceptually also apply to all stan-
dard significance tests, most of which assume independence in some form
or another. Mixed models are a solution to the independence issues that arise
when using standard significance tests, but only if all important sources of
variation have actually been incorporated into the model as random effects. It is
also important to emphasize that the above arguments are couched in terms of
continuous data for the sake of exposition but carry over to categorical data
structures and tests for categorical data (such as Chi-square tests, Fisher’s exact
tests etc.). Finally, to be extra clear it has to be emphasized that while the
example only used “individual” (e.g., participant) to demonstrate conceptual
matters, the same principles carry over to any other grouping factor (e.g., items,
registers, different texts in a corpus etc.).

3 Overview of non-independent data structures in
linguistics

3.1 Introduction

The literature on violations of the independence assumption across different
fields, such as ecology (e.g., Hurlbert 1984), animal behavior research (e.g.,
Kroodsma 1989; Lombardi and Hurlbert 1996), and psychology (Kenny and Judd

3 All intervals reported here are 95% Bayesian credible intervals rather than confidence intervals
(Morey et al. 2016). This does not, however, matter for our arguments. A 95% credible interval can
be interpreted as having a 95% probability of containing the true value. The code used to produce
this analysis is available at https://osf.io/zdrpc/.
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1986) is testament to the fact that this is a serious issue that takes many different
forms (Hurlbert 2009). Kenny and Judd (1986) distinguish between “non-inde-
pendence due to groups”, “non-independence due to sequence”, and “non-inde-
pendence due to space”. As mentioned above, participant- and item-specific
variation has already received extensive discussion in linguistics and will
therefore not be repeated here. Both of these factors relate to Kenny and Judd’s
“non-independence due to groups”, with either participant or item being the
corresponding grouping factor. However, as we will outline in this section, there
are other grouping factors to consider that are less commonly discussed as random
effects.

The following section provides a tour of selected domains that demonstrate
various forms of non-independence in linguistics, corresponding to different
sources of variation that affect different kinds of linguistic data. We consider
spatial dependence (Section 3.1), language and language family dependence
(Section 3.2), temporal and sequence dependence (Section 3.3), talker effects
(Section 3.4), dyad effects (Section 3.5), exact repetitions (Section 3.6), and the
nested hierarchical structure of corpora (Section 3.7). While some of these sources
of variation have received extensive discussion, others have not. It should be noted
that while most of the dependencies we discuss here can be dealt with via random
effects in a mixedmodel context, some of the dependencies (such as temporal and
sequence dependencies) are dealt with in other ways, and yet other dependencies
are more focused on issues relating directly to study design.

3.2 Spatial dependence

All else being equal, individuals closer to each other aremore similar to each other.
A linguistic reflection of this fact is that speakers closer to each other are more
likely to share linguistic features, thus introducing a form of non-independence
when a study includesmultiple speakers from the same group. One form of dealing
with this is to have a “dialect” random effect,4 or “location” or “province” random
effects (Bischetti et al. 2021; Wieling et al. 2011, 2014). Spatial dependence prob-
lems also arise in typology (Bickel 2011; Cysouw 2010; Gast and Koptjevskaja-
Tamm 2018) and in studies of cultural and language evolution more generally

4 In many studies of specific dialect comparisons, “dialect” is a fixed effect (e.g., McCloy et al.
2015). This is appropriate when generalizability claims are predicated on a specific set of dialects
that are of interest to a researcher. If, however, the goal is to make generalizations across dialects,
“dialect” should be a random effect.
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(Bromham et al. 2018; Roberts and Winters 2013; Roberts et al. 2015). Languages
and cultures that are geographically closer to each other are more similar to each
other, either because they have on averagemore contact (Jaeger et al. 2011; Roberts
et al. 2015), or because their environments share more features (see discussion in
Bromham et al. 2018).

Within amixedmodel framework, this source of variation can be dealt with by
adding area-based random effects, which is frequently done in typological
research (e.g., Bentz and Winter 2014; Jaeger et al. 2011; Sóskuthy and Roettger
2020). There is room for discussion about what type of area-based random effects
structure are appropriate, and how granular the spatial resolution should be. For
example, Sóskuthy and Roettger (2020) use macro-areas from Glottolog (Ham-
marström et al. 2020), which divide the world into six areas (Africa, Australia,
Eurasia, North America, Papunesia, and South America). While this accounts for
the fact that languages within each area are expected to be more similar to each
other due to contact, it does not account for more fine-grained within-area struc-
tures (e.g., within Africa, two languages within the same country or region are
expected to be more similar to each other, see Bromham et al. 2018).

3.3 Language or language family

Just as “dialect” is a viable random effect, “language” can be a viable random
effect for crosslinguistic studies that have multiple data points from the same
language and that seek to make generalizations over languages. An example of
this is Murakami (2016), who performed a corpus analysis of L2 learners’ writings
withwriters from 10different languages,with “language” as randomeffect. If an L2
learner study is specifically interested in comparing a small set of languages, such
as Chinese learners versus Korean learners of English, then it is appropriate to fit
“language” as a fixed effect. However, doing so effectively constrains one’s gen-
eralizations to the specific languages investigated. By not including language as a
random effect, those studies cannot make conclusions about languages beyond
those considered in the sample (cf. Yarkoni 2020). Thus, if the goal of an analysis is
to generalize across languages, as was the case in Murakami (2016), language
should be a random effect.

It is a widely discussed problem that crosslinguistic analyses need to control
for genealogical dependencies (Bickel 2011; Bromhamet al. 2018; Cysouw2010). As
a result of this, typological studies generally include language family as a random
effect alongside the above-mentioned area effects (e.g., Bentz and Winter 2014;
Jaeger et al. 2011; Sóskuthy and Roettger 2020). As an example of what can happen
when genealogical dependencies are ignored, consider Chen (2013), who reported
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that speakers of languages without a grammaticized present/future distinction
save more money than speakers of languages who do make this grammatical
distinction. Roberts et al. (2015) showed that this association between grammar
and savings behavior goes away in amixedmodel analysis with random effects for
language family and area. In a similar case, Atkinson (2011) suggested that lan-
guages situated further away fromAfrica have fewer phonemes, a result which also
did not survive statistical controls for genealogical and areal dependencies (Jaeger
et al. 2011). Bromham et al. (2018) discuss some of the caveats with having lan-
guage family as a random effect: while this accounts for the fact that two or more
languages within the same family are more similar to each other, it does not deal
with the more fine-grained aspects of a phylogeny. For example, within Indo-
European, German and English aremore closely related to each other than German
and French. Bromham et al. (2018) discuss additional approaches to control for
phylogenetic dependencies.

3.4 Temporal and sequence dependence

Serial dependence is a common feature for sequential or time series data, where
observations are often more similar to each other as a function of time lag (auto-
correlation). Serial dependency comes up in both experimental and corpus lin-
guistic contexts. First, with respect to experiments, any study that involves
repeated measures from the same individual automatically introduces time or
sequence as a dependency factor. This includes such things as fatigue, attentional
fluctuations, or learning over successive trials. Baayen et al. (2017) show that
psycholinguistic data contains a non-negligible amount of such serial dependency
that also interacts with condition predictors. Sequence dependence is not the sort
of idiosyncratic variation that is dealt with via random effects and therefore re-
quires a different analysis approach. Baayen et al. (2017) show that Generalized
Additive Mixed Models (GAMMs) can be used to deal with this (for tutorials, see
Sóskuthy 2017; Wieling 2018; Winter and Wieling 2016). GAMMs are an extension
ofmixedmodels that can be used tomodel time series data via the incorporation of
nonlinear transformations of predictors, such as “time” or “trial order.”

Baayen et al.’s (2017) arguments also extend to other areas of linguistics, such
as phonetics. For example, in a speech production experiment, speakers could be
more or less prone to hyperarticulation over successive trials. Such trial-order-
based dependencies are not commonly considered in the statistical analysis of
phonetic data. Finally, serial dependence also arises in corpus linguistics, as has
been discussed extensively in the literature on syntactic priming or structural
persistence (e.g., Gradoville 2019; Gries 2005; Sankoff and Laberge 1978;
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Szmrecsanyi 2005). In this case, a speaker orwriter ismore likely to use a particular
construction again after it has recently been used, thus making expressions syn-
tagmatically closer to each other more statistically dependent. Kilgarriff (1996)
describes this as “clumpiness” and speaking of lexical data, he says that “words
come in clumps; unlike lightning, they often strike twice” (p. 4).

3.5 Talker effects

Many psycholinguistic or phonetic experiments involve stimuli that are created by
a single model speaker. We know that which speaker one listens to influences
speech processing (e.g., Buchan et al. 2008; Creel and Bregman 2011; Hay et al.
2009; Trude andBrown-Schmidt 2012), as also evidenced by the literature on talker
effects in cross-dialect and accent perception (e.g., Flege and Fletcher 1992;
McCloy et al. 2015). One way of dealing with this statistically is by adding “talker”
as a random effect to a mixed effects analysis. McCloy et al.’s (2015) mixed model
analysis of cross-dialect speech intelligibility actually found more random effects
variance for by-talker differences than for by-listener differences.

The fact that listeners adapt to a particular talker’s idiosyncratic speech fea-
tures (Nygaard and Pisoni 1998; Nygaard et al. 1994) has wide-ranging implica-
tions for speech perception research. The same way that we can think of sampling
items, as is common in psycholinguistic research, we should consider the option of
sampling voices as well. If only one talker produces all stimuli, this effectively
constrains any generalizations to the model speaker used, a problem that has also
been raised in other fields (Kroodsma 1989). In analogy to the “language-as-fixed-
effect fallacy” (Clark 1973), this could be called the “talker-as-fixed effect fallacy.”
In the spirit of Yarkoni’s (2020: 19) recommendation to “design with variation in
mind”, we have conducted perception experiments which sample different voices,
and in which “voice” was added as a random effect (Baumann and Winter 2018;
Brown et al. 2014; Cangemi et al. 2015; Idemaru et al. 2020; Roettger et al. 2014).
This practice has also been adopted by some researchers conducting speech
perception studies in sociolinguistics (e.g., Ruch 2018).

3.6 Dyad effects

Dyadic communication is fundamentally different from linguistic tasks that
involve just one person, and a statistical analysis of dyadic data needs to reflect
this. Peters et al. (2014) conducted a carefully constructed study on the phonetic
realization of focus in several Germanic languages. To collect naturalistic data,
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participants completed short mini-dialogs in pairs. After completing the task once,
participants switched roles, a practice that is common when pairs of subjects,
rather than a subject and a confederate, enact a dialog. This is the standard pro-
cedure when recording task oriented dialogs such as the widely employed Map
Task (Anderson et al. 1991), in which participants draw routes on multiple maps,
switching between instruction-giver and instruction-follower for a second task
with the same partner.

We know frommuch phonetic research onwhat is called “accommodation” or
“convergence” that when interacting with others, there is a strong tendency for
speaker’s utterances to become more similar to the interlocutor (e.g., Abel and
Babel 2017; Giles and Powesland 1997; Nielsen 2011; Pardo 2006). The existence of
accommodation adds a layer of statistical dependence to any analysis that in-
cludes data from two or more speakers that talk to each other during experimental
tasks. When participants in the study of Peters and colleagues (2014) respond with
a focus type, a statistical model has to take into account the fact that they have
already spoken with their interlocutor, and that their focus realization may be
influenced by what the interlocutor has said previously. However, even if they had
used the same confederate in every dyad, the confederate could still have been
influenced by productions of previous discourse partners, a possibility that would
need to be taken into account in the analysis too. The problem of dyadic data
structures has been extensively discussed in psychology (e.g., Kenny 1996), with
one common solution being the addition of “dyad” random effects (cf. Wendorf
2002). We know of no linguistic research that used a dyadic task and modeled this
with random effects.

It is worth pointing out that specific designs can introduce dyadic structures
“under the hood”. Cangemi et al. (2015) is a perception study that includesmultiple
listeners as well as multiple talkers. The fact that both listeners and talkers are
repeated in this study also means that listener-talker combinations are repeated.
This was dealt with by including a “dyad” random effect. Model comparison
revealed that the “dyad” effect captured non-negligible variation, demonstrating
that different listeners respond differently to specific talkers. Thus, even if the
experimental design does not involve people directly talking to each other, there
may be hidden “dyadic” structures thatmay be important to incorporate into one’s
statistical analysis.

3.7 Exact repetitions

There are clear subfield-specific traditions in the design of experiments. Many
speech production experiments traditionally include what we call “exact
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repetitions”, which involves the same speaker producing the same item in the
same linguistic context multiple times. Roettger and Gordon (2017) survey pro-
duction studies of word stress, and find that 57 out of 113 studies included two or
more exact repetitions; Nicenboim et al. (2018) find that 10 out of 24 studies on the
phenomenon of incomplete neutralization included exact repetitions; and Winter
(2015) found that 26 out of 35 experimental studies in the 2014 issue of Journal of
Phonetics included exact repetitions (https://osf.io/zdrpc/). A quick search for
“repeat” or “repetition” in the most recent issues of Language and Speech and
Journal of Phonetics (all 2019 issues) reveals that this practice is still common, with
21 out of 84 papers including exact repetitions. Importantly, there seems to be no
standard for dealing with repetition as a source of variation. Repetitions are
variously included as fixed effect (e.g., Oh and Byrd 2019), random effect (e.g., Lee
and Jongman 2019), or averaged out of the data (e.g., Chan and Hall 2019). What is
perhaps most worrisome is that several studies in our most recent 2019 sample of
phonetics papers do not explicitly comment on how repetitions were dealt with
analytically.5

The question arises over what source of variation repetitions are intended to
generalize. It seems that speech production researchers view repetitions as
random fluctuations around a “target value”, with the goal of generalizing over
these fluctuations. Cho et al. (2014: 134) explain that for their study “the data were
averaged over repetitions across itemswith different stops in order to provide each
speaker’s representative value per condition”. Similarly, Broad and Clermont
(2014: 54) explicitly comment: “For statistical stability, the data used here are the
averages of these measurements over the five repetitions”. In his introduction to
phonetic analysis, Harrington (2010: 11) says: “since a single production of a target
word could just happen to be a statistical aberration, researchers in experimental
phonetics usually have subjects produce exactly the same materials many times
over”. Interestingly, all of these arguments could just as well be ported to other
fields of linguistics, as variation is an intrinsic component of any aspect of lan-
guage — yet, exact repetitions are not often considered in the design of psycho-
linguistic experiments, unless repetition priming itself is of theoretical interest.

What is perhaps worrisome is that in the above-mentioned sample of journal
papers, item numbers are inversely correlatedwith the number of exact repetitions
across studies. This is the case forWinter’s (2015) survey (Spearman’s rho = −0.54),
as well as, albeit less so, for Roettger and Gordon (2017) (rho = −0.35). It seems that
some phonetic researchers may trade generalization across items with general-
ization across exact repetitions, a practice that is putatively limiting the

5 This includes work by the authors themselves, who in a recent paper that included exact
repetitions did not specify directly how they were entered into the analysis.
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generalizability of a study given that items are such an important source of vari-
ation in experimental research (Baayen et al. 2008; Clark 1973; Judd et al. 2012).6

It is important to open up discussion about whether the logic of generalizing
over repetitions to measure the “representative value” is actually sound (Winter
2015). Exact repetitions would only help us ascertain a better estimate of the true
production target if the repetitions randomly vary around the value of interest,
which is demonstrably not the case (e.g., Kello et al. 2008), especially due to the
serial dependence effects mention above. Specifically, it is known that repeating a
word leads to repetition priming or reduction (Aylett and Turk 2004; Fowler 1988;
Gregory et al. 1999; Pluymaekers et al. 2005), and averaging over repetition means
that these systematic repetition effects are confounded with one’s estimate of the
“true” value (Winter 2015). In addition, including exact repetitions makes exper-
iments longer and less ecologically valid (Niebuhr andMichaud 2015;Winter 2015).
Finally, experiments with exact repetitions introduce a new dimension of
researcher degrees of freedom (Roettger 2019), given that there are many different
ways of dealing with exact repetitions analytically, and currently no widely
agreed-upon standards within phonetic research. For all of these reasons, we
suggest that exact repetitions should never be included as an unquestioned default
in phonetic studies unless variation over repetitions is itself of theoretical interest.
And, if there is the option to increase statistical power via increasing the number of
items and the number of participants, this is preferred over increasing power via
exact repetitions.

3.8 Corpus linguistic data

Although it has not always been named as such (see Footnote 1, above), the
problem of non-independent data structures has been extensively discussed in
corpus linguistics (Baroni and Evert 2009; Brezina andMeyerhoff 2014; Evert 2006;
Gradoville 2019; Gries 2015a, 2015b, 2018; Kilgarriff 1996, 2005; Koplenig 2019;
Lijffijt et al. 2016; Oakes and Farrow 2006) and therefore also requires a more
extensive treatment here. Even though “words within a text are not independent”
(Lijffijt et al. 2016: 374), researchers have only very recently considered mixed
models as a solution (Gries 2015b). In contrast to psycholinguistics, there are still
relatively few studies that use mixed models. While corpus linguistics itself is a

6 Many phonetic studies may have small item numbers because constraints on the form of the
words (e.g., all voiced segments for intonation research, or words with a particular type of stop in
the onset) limits the set of words that can be used. However, it may be possible to include a much
larger set of items that are less controlled by dealing with the different item characteristics
statistically.
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diverse field with subfields that have different methodological traditions, it is
insightful to consider Paquot and Plonksky’s (2017) review of learner corpus
research, which finds that out of a sample of 378 studies, the overwhelming ma-
jority (86%) uses simple statistical tests (t-tests, ANOVAs, log-likelihood tests,
correlation tests etc.), even though these tests cannot accommodate the presence
of multiple non-independent grouping structures that are inherent to any corpus.7

To exemplify the non-independence issues that arise in corpus linguistics, we
will adapt the logical structure of an example from Brezina and Meyerhoff (2014),
who raise the important issue of speaker-specific dependencies not being
accounted for in aggregate analyses of corpora (Gries 2015a, 2015b; Sönning and
Krug 2021; Tagliamonte andBaayen 2012). Consider the hypothetical data shown in
Table 1, based on corpus data coming from six speakers, only one of whom pro-
duces more active sentences than passive sentences. If we aggregate this result
across speakers, there are 90 active sentences as opposed to 60 passive ones, a
result that is significant in an exact binomial test (p=0.02). As before, the choice of
the test does not matter here, as the problem would equally matter for other
procedures, such as those performed on contingency tables (e.g., Chi-square tests,
Fisher’s exact test). The online repository (https://osf.io/zdrpc/) demonstrates
how the data shown in Table 1 can be analyzed with a mixed model, in which case
actives are not reliably over-represented anymore, consistent with the fact that
only one speaker in Table 1 exhibits this pattern.

Brezina and Meyerhoff (2014) discuss an approach that deals with speaker-
specific tendencies, but mixed models are a more principled way of incorporating

Table : Active and passive counts for six speakers, only one of which shows an increased use of
actives over passives.

Speaker Passive Active

  

  

  

  

  

  

7 Some tests can accommodate dependencies for one dimension at a time, such as a paired t-test
or a randomeffects ANOVA.However, this will always neglect other sources of variation present in
the corpusbecause these tests cannot accommodatemultiple sources of variation at the same time,
as is the case with mixed models.
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multiple sources of variation, such as variation over texts, speakers, and regis-
ters— all in the samemodel. We need to think about the fact that for any aggregate
corpus data such as the data shown in Table 1, there is not just speaker variation
that needs to be taken into account, but also variation across the many other
nested grouping structures that characterize corpus data, as visualized in Figure 2.
Sticking to the active versus passive example, certain verbs are more to being
passivized (e.g., shortlist, arrest), and passives are more frequent in certain reg-
isters (e.g., academic writing). These and other sources of variation are all ignored
in any aggregate analysis. Instead, these sources of variation should be directly
estimated as part of the same statistical model so that the active versus passive
frequency difference can be evaluated with respect to speaker, item, and register
variation simultaneously within the same model.

The widely discussed set of dispersion measures that quantify dispersion
across individual texts or individual speakers (Egbert et al. 2020; Gries 2006, 2008;
Gries and Ellis 2015; Tagliamonte and Pabst 2020) are testament to the fact that
corpus linguistics of course has always been concerned with variation across
grouping structures. Gries and Ellis (2015: 233) say that “the fact that very similar or
even identical frequencies of tokens can come with very different degrees of
dispersion in a corpus makes the exploration of dispersion information virtually
indispensable”. While dispersion measures are interesting and important in their
own right (Gries and Ellis 2015), supplementing an aggregate analysis with a

Figure 2: A corpus linguistic example where an aggregate difference (more actives than
passives) simultaneously arises from multiple different sources of variation.
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separate dispersion analysis means that the aggregate analysis is not formally
(within the same model) evaluated against the dispersion. A unique benefit of
mixed models is that they give the analyst both the aggregate result, as well as
estimates of dispersion, which is reflected in the random effects variances.

As the use of mixed models in corpus linguistic research is still in its infancy,
the issue of appropriate random effects structures for corpora arises. The majority
of studies seem to use individual-specific random effects, such as “speaker”
(Gradoville 2019; Gries 2015b; Tagliamonte and Baayen 2012; Tagliamonte and
Pabst 2020), “learner” (Murakami 2016), “author” (Geleyn 2017), “tweet author”
(Spina 2019), “postgraduate student” (Nasseri 2021), or “scribe” (Barteld et al.
2016).8 In a similar fashion, several studies use mixed models to generalize over
different types of texts. To look at dispersion across different texts, corpora that
come in separate files allow fitting “file” as a random effect (Gries 2015a; Levshina
2016; Röthlisberger et al. 2017; Szmrecsanyi 2019; Szmrecsanyi et al. 2016), or
“website” in web corpus data (Levshina 2018). Other researchers have used
“register” as random effect to show that results generalize over register variation
(Szmrecsanyi 2019; Szmrecsanyi et al. 2016; Wolk et al. 2013). Corpora involve
complex nesting of registers, subregisters, text types, genres etc.,9 which are
exactly the types of hierarchical structures that mixed models are used for in the
social sciences (Gelman and Hill 2006).

Finally, and very importantly, item-specific random effects also need to be
considered, such as when showing that generalizations such as “active voice is
more frequent than passive voice” generalize over different verbs (Clark 1973). In
line with this, several corpus studies have included item-level variables such as
“verb” as randomeffects into theirmixedmodels (Bresnan et al. 2007; De Smet and
Van de Velde 2020; Geleyn 2017; Gries 2015b; Grieve et al. 2019; Levshina 2016,
2018; Röthlisberger et al. 2017). Interestingly, a look at the use of mixed models in
corpus linguistic research suggests that studies either include item-specific
random effects or text-grouping-specific random effects (speaker, file, register
etc.), but rarely both at the same time.Moreover, one is hard-pressed to find corpus
linguistic studies that fit random slopes, even though it is known that the omission
of random slopes can make mixed model analyses anti-conservative (Aarts et al.
2015; Barr et al. 2013; Schielzeth and Forstmeier 2008).

8 Paolillo (2013) recommends fitting “speaker” as fixed effect. While this is mathematically
possible, it constrains any analysis to the particular type of speakers that are sampled, thus
directly limiting the generalizability of any conclusions to the specific sample at hand. It is
generally not advisable to consider “speaker” as fixed (cf. Judd et al. 2012).
9 See, for example, the multiple nested structures of the ICE International Corpus of English:
https://web.archive.org/web/20200203043847/http://ice-corpora.net/ice/design.html.
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It has to be acknowledged, however, that there are several practical issueswith
the application of mixed models to corpus linguistic data. While many corpora
come in file structures that uniquely mark speakers/authors, Schäfer (2019) notes
that manyweb corpora do not comewith information about authors, and the same
applies to many other corpora, especially when standard corpus query interfaces
are used without access to the raw data. In some cases, it is possible to derive
random effects directly from the structure of the data itself. For instance, the
internal structure of a document such as sentence breaks, paragraph breaks and
chapter breaks could be used to create identifiers for random effect levels. Adding
sentence/paragraph/chapter random effects would help account for the fact that
linguistic features are often clustered in text (Baroni and Evert 2009), as also
attested by the above-mentioned literature on structural priming/persistence. A
very promising approach to deal with the absence of structural metadata has been
spearheaded by Pijpops et al. (2018), who used distributional semantics to group
chunks of texts into semantic clusters. These bottom-up derived semantic clusters
were then used as random effects levels in a mixed model analysis.

Another limiting factor is that mixed models become harder to estimate with
more complex random effects structures. Schäfer (2019) discusses how his choice
of random effects was constrained by which models actually converged. Conver-
gence, however, is much facilitated when mixed models are estimated in a
Bayesian framework (e.g., Nalborczyk et al. 2019; Sorensen and Vasishth 2015),
which some people have begun to apply to corpus data (Levshina 2018). In fact,
corpus linguistics should be in a position to fit muchmore complex random effects
structures than is possible compared to such fields as psycholinguistics, given that
there is more data and often also more random effects levels, both of which
generally facilitate convergence.

4 Conclusions

In this paper, we have given an overview of non-independent data structures
across subfields of linguistics and how these can be tackled via study design and
statistical analysis. This overview also serves to show that non-independence, far
from being an issue that is solvedwith the advent ofmixedmodels in linguistics, is
something that requires continued discussion and education. Yarkoni’s (2020)
arguments for the “generalizability crisis” are focused on psychology, and he uses
examples where experiments fail to demonstrate generalization across stimuli. In
many ways, the stimulus problem is something that linguistics does not have, as it
is by now well-established practice to incorporate items as random effects into
experimental design and statistical analysis. However, our discussion of talker
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effects, dyads, exact repetitions, and other sources of variation shows that there
are additional discussions to be had about which sources of variation linguists
wish to generalize over, and how these sources of variation are incorporated into
statistical analysis. We also need to consider how certain experimental designs
undersample the variation that would be present in more naturalistic settings,
such as using a single voice as stimulus in a speech perception experimentwhen in
fact we wish to make generalizations over voices, or recording few speakers and
items with many repetitions when in fact more generalizable results can be ach-
ieved with more speakers, more items, and fewer repetitions. Relieved by the
constraints that ANOVAs and classical statistical tests impose on experimental
designs, it is possible to design experiments that bring more of the natural het-
erogeneity of language back into the data, therefore allowing us to model these
sources directly viamixedmodels. This answers Yarkoni’s (2020: 19) call to “design
with variation in mind”.

Linguistics is uniquely positioned to become one of the sciences with the
highest potential for generalizability, in large part due to the availability of large-
scale corpora (Grieve this issue), which naturally harbor a lot of variability,
allowing for more ecologically valid and wide-reaching generalizations. However,
this can only be achieved if we actually use the tools that allow making these
generalizations in statistical terms, such as mixed models. Moreover, the discus-
sion about appropriate random effects structures in psycholinguistics (Barr et al.
2013; Matuschek et al. 2017) needs to be expanded to subfields where this dis-
cussion has not been had or taken an actual effect yet, such as corpus linguistics.
Finally, wewill only solve any “crisis” of generalizability (Yarkoni 2020), as well as
any replication or even credibility crisis more generally, if we update our peda-
gogy. Unfortunately, statistical training still emphasizes classical significance
tests at the expense of model-based approaches, even though for any reasonably
complex data set, it is practically impossible not to violate the independence
assumption with respect to some dimension of non-independence when using
standard significance tests. Therefore, textbooks need to actively warn learners
about “the serious consequences that result from ignoring certain variance com-
ponents” (Judd et al. 2012: 55). Thus, non-independence and with it the connected
topic of generalizability is something that needs continued discussion, as well as
continued statistical education.
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