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Abstract: According to the recommendations of the IFCC 
and other organizations, medical laboratories should 
establish or at least adapt their own reference intervals, 
to make sure that they reflect the peculiar characteris-
tics of the respective methods and patient collectives. In 
practice, however, this postulate is hard to fulfill. There-
fore, two task forces of the DGKL (“AG Richtwerte” and 
“AG Bioinformatik”) have developed methods for the 
estimation of reference intervals from routine laboratory 
data. Here we describe a visual procedure, which can 
be performed on an Excel sheet without any program-
ming knowledge. Patient values are plotted against the 
quantiles of the standard normal distribution (so-called 
QQ plot) using the NORM. INV function of Excel. If the 
examined population contains mainly non-diseased per-
sons with approximately normally distributed values, the 
respective dots form a straight line. Very often the values 
are rather lognormally distributed; in this case the straight 
line can be detected after logarithmic transformation of 
the original values. Values, which do not match with the 
assumed theoretical distribution, deviate from the linear 
shape and can easily be identified and eliminated. Using 
the reduced data set, the mean value and standard devia-
tion are calculated and the reference interval (μ±2σ) is 
estimated. The method yields plausible results with simu-
lated and real data. With the increasing number of results, 
which do not match with the model, it tends to underes-
timate the standard deviation. In all cases, where the QQ 
plot does not yield a substantial linear part, the proposed 
method is not applicable.

Keywords: indirect estimation; MS Excel; quantile quan-
tile plot; reference interval.

Introduction
Most laboratory medical decisions are based on the com-
parison of measured values with reference intervals. 
These determine which results are to be classified as 
“normal” – or more precisely, which people are “not ill”. 
Given its enormous relevance for diagnostics, prognostics, 
and follow-up/treatment monitoring, one would assume 
that the term reference interval should have been defined 
clearly and that the procedures for determining decision 
limits should have been established precisely. In theory, 
this is true according to the current IFCC/CLSI guideline 
from 2008 [1]:

–– The reference interval is defined as the central 95% 
range of observed values of an apparently healthy 
population.

–– Each medical laboratory must determine its own ref-
erence intervals for all analytes in use on the basis of 
at least 120 reference individuals by way of the 2.5 and 
97.5 percentiles, or must at least check existing infor-
mation on the basis of 20 healthy controls.

According to DIN EN ISO 15189, each laboratory must doc-
ument and communicate to users the foundations of the 
corresponding decision values [2].

But these specifications are often deviated from in 
real life. On the one hand, the term “healthy” is imprecise 
(for example, concerning the elderly), and on the other 
hand, medical laboratories are required to examine suit-
able reference individuals for hundreds, if not thousands, 
of tests, which appears to be unrealistic and – in the case 
of healthy newborns – even unethical [3, 4]. The require-
ment of 120 reference individuals may seem reasonable 
at first sight, but this number must be multiplied by 2 
for gender-based values and by even higher factors with 
respect to age, so that the total number of individuals may 
indeed reach a 1000 or more. As a result, most laboratories 
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accept the information provided by the manufacturers of 
diagnostic products or other authors without the neces-
sary verification and documentation. This can produce 
substantial discrepancies between different sources [5]. 
For example, the reference intervals for electrolytes or 
proteins stated on much-visited Internet sites differ by as 
much as 30% (Table 1).

One way out of this dilemma is to resort to indirect 
methods using routine laboratory results for estimation 
of reference intervals. The underlying idea is to eliminate 
values that do not fit the expected distribution based on 
model hypotheses. Then, theoretic percentiles are calcu-
lated from the remaining values. The foundation for this 
method was laid as early as around 1960 (see overview in 
Ref. [6]), but it was not until the arrival of the personal 
computer in the 1980s that enough computing power was 
available to apply it generally.

Worthy of special mention here is the reference limit 
estimator (RLE) method published by Arzideh et al. in 2007 
[7]. It was developed by the “Reference Values Working 
Group” of the German Society for Clinical Chemistry and 
Laboratory Medicine (DGKL) by means of the statistical 
software package R. This mathematically sophisticated 
method is based on transformed raw data, calculates the 
theoretical density function at the center of the distribu-
tion, and eliminates potential outliers due to local devia-
tions from this function at “truncation points”. The group 
succeeded in estimating the reference values of enzymes 
[7], electrolytes [8] and blood count parameters [9], which 
was also evaluated in multicenter studies [10, 11]. But the 
RLE method requires very large datasets of several 1000 
cases, which are not always available. In addition, the soft-
ware package R often poses an obstacle to users without 
experience in computer science and statistics.

This is why we evaluated less sophisticated methods, 
which should be manageable with little effort and without 
programming experience. In a joint activity of the DGKL 
working groups Reference Values and Bioinformatics 
[12], we focused in particular on the original methods 
of J. Pryce 1960 [13] and R. Hoffmann 1963 [14] that were 
based on real data with theoretical normal distributions, 

Table 1: Reference intervals published on the Internet for common 
parameters (as of 05.10.2015).

Source   Sodium, 
mmol/L

  Calcium, 
mmol/L

  Fibrinogen, 
mg/dL

  Total protein, 
g/dL

DocCheck.com   135–148  2.20–2.65  180–350  6.6–8.3
Laborlexikon.de  135–145  2.02–2.60  150–450  6.1–8.1
Thieme.de   135–150  2.3–2.6  200–400  6.0–8.4
Wikipedia.org   135–145  2.2–2.6  180–350  6.0–8.0

and performed then without computers, using “probabil-
ity paper” instead [15]. In this paper, we present a method 
where the visual approach is simulated via Microsoft 
Excel [16], and compare it to another “modified Hoffmann 
method” [4] from the more recent literature.

Materials and methods
Analysis results from 246 healthy test subjects from a 
study done by the Hanover Medical School (MHH) were 
available for the evaluation of the method. The founda-
tions of the study are described in Ref. [17]. The reference 
for the comparison of methods was the RLE method of 
the Reference Values Working Group [7]; Dr. F. Arzideh, 
University of Bremen, supplied validated patient datasets.

The calculations shown in Figures 1 and 9 were done 
using the English version of R; the others were perfomed 
with the German version of Microsoft Excel. There were 
no fundamental differences between the different Excel 
versions. Only when calling the function NORM.INV (see 
below), one must keep in mind that there was no period in 
older versions (prior to 2010) (NORMINV instead of NORM.
INV). To simplify the generation of random numbers, his-
tograms, etc., one should install the “Analysis ToolPak” 
add-in included in Excel (for instructions, see http://
support.office.com, for example).

Probability plots (“probability paper”) for the visual 
check of distributions without the use of computers are 
available on the Internet (for example, http://gpr.physik.
hu-berlin.de/Downloads/Papiere.html). This is a kind of 
graph paper whose scale on the Y-axis has been adapted 
to a density function. In the case of Gaussian bell-shaped 
curve, the lines are thus the densest in the center at a 
probability of 50%, and drawn far apart at the margins 
beyond 1% and 99%.

For the reference method [7], the freely accessible 
statistics package R (www.r-project.org) with the add-on 
packages geoR and msm was used. To facilitate the use, 
the Reference Values Working Group developed an Excel 
frontend called “Reference Limit Estimator”, which is 
also available online (www.dgkl.de, look for “Arbeits-
gruppe Richtwerte” under the menu item “AGs & Sek-
tionen” – only available in the German version of the 
website).

Practical implementation

The following section is to help readers reproduce the 
results presented and to enable them to run their own 

http://support.office.com
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typical frequency around the mean of 140: In the range 
between μ–1σ and μ+1σ, one expects 68% and between 
μ–2σ and μ+2σ 95%. This 2σ- or 95% range corresponds to 
the required reference interval.

If the Analysis ToolPak has been installed, one may 
simply select the “Data Analysis” submenu item in the 
“Data” menu item. Calling up the “Random Number 
Generation” function, a screen opens for the input 
of parameters (for example, for a variable with 1000 
random numbers, “Standard” distribution, mean 140, 
standard deviation 2.5).

Even skewed distributions can be simulated using 
the NORM.INV function. For example, to obtain lognor-
mally distributed random values for alanine aminotrans-
ferase (ALT) in men with a mode near 20 U/L (e3.0) and a 
97.5 percentile near 45 U/L (e3.8), one generates in column 
A a normal distribution 3.0±0.4 and enters in cell B1 the 
formula

EXP(A1).=

This is, then, copied to the 999 cells A2 to A1000 
below in the Excel sheet to obtain lognormally distributed 
values in column B (Figure 2).

Finally, using this method, it is possible to generate 
also mixed populations that approximate the real, clini-
cal situation, such as 800 inconspicuous sodium levels 
(140±2.5) and 200 reduced levels (130±4.5). The result 
is shown in Table 2: The stated relative frequencies are 
obtained via the “Frequency” Excel function and/or the 
“Histogram” menu item in Analysis Tools.

evaluations. The basis of the QQ-plot method is the NORM.
INV function in Excel [18]. The name (norm = normal, 
inv = inverse) designates the inverse function of the 
s-shaped distribution function1 of a normal distribution 
(Figure 1), and it has the following syntax:

x NORM.INV(p, , )= µ σ

p= probability, μ = mean, σ = standard deviation.
In order to simulate, for example, a random sodium 

value from a normal distribution with the parameters 
μ = 140 and σ = 2.5, one enters the following formula in cell 
A1 of an Excel sheet:

NORM.INV rand ;140;  ( () )2.5=

The “rand()” function in this formula yields equally 
distributed decimal numbers between 0 and 1 and thus 
covers the entire range of possible probabilities p.

In this present study, the simulation of such random 
numbers of known distribution plays a major role, 
because it yields predictable results on the basis of which 
the quality of a model-based statistical method can be 
assessed (for example, see Figure 3, Tables 3 and 6). If 
one takes the above formula in cell A1 and copies it to 
the 999 cells from A2 to A1000 below in the Excel sheet, 
one obtains a total of 1000 normally distributed random 
numbers that represent realistic sodium values with a 
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Figure 1: On the left, a histogram of normally distributed sodium levels (mean 140 mmol/L, standard deviation 2.5 mmol/L, total number 
1000). On the right, an S-shaped distribution function Φ(x), indicating which theoretical proportion comprises all the values to the left of 
the indicated value x (up to mean 140, for example, 50%).
Relative frequency is the number in each column divided by the total number.

1 An inverse function does not calculate y from x, but x from y – in 
the present case, the appropriate quantile and/or test result (x) from 
a given cumulative frequency distribution (y).
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Visual check for normal distribution

The visual methods presented here are based on two-
dimensional diagrams in which observed and theoreti-
cal probabilities are plotted against each other. At its 
simplest, this is done without a computer using a prob-
ability probability plot (PP-plot). Figure 3 demonstrates 
the approach using the simulated sodium levels from 
Table 2 as an example: If the points form a straight line, 
a normal distribution can be assumed (black symbols in 
Figure 3). The reference interval (μ±2σ) then lies between 
the intersections of the straight line with the 2.5 and/or 
97.5 percentiles. Values deviating from this straight line 

(red symbols in Figure 3) represent “outliers” (in this case, 
hyponatremia).

QQ-plot method

We chose the quantile quantile plot (QQ-plot) to recreate 
the historical method in Excel. Unlike the PP-plot (Figure 3) 
described above, it is the inverse function (NORM.INV) 
that is used here: the x- and y-axes are swapped, so that 
the diagram appears rotated by 90 degrees, and the (new) 
x-axis can be scaled linearly by converting the probabili-
ties to quantiles (Figure 4).

Figure 2: Simulation of lognormally distributed values using the example of ALT. (original representation in the German Excel version with 
deimal commas; the same applies to figures 4, 5, and 8).
In column A, normally distributed values (3.0±0.4) were generated, representing exponents to base e; in column B, these were delogarith-
mized with the exponential function EXP. The theoretical maximum of the histogram is therefore e3.0 = 20, and of the 97.5 percentile e3.8 = 45.
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The practical approach in Excel is similar to that 
employed in the above simulations of sodium and ALT 
levels. The NORM.INV function is used to calculate theo-
retical quantile of a standard normal distribution (μ = 0, 
σ = 1), by entering in the formula a systematically ascend-
ing series of probabilities between 0 and 1 instead of 
random numbers (Figure 4). Thanks to computers, it is not 
necessary to limit oneself to a few points, as depicted in 
Figure 3. Instead, one can create a separate class for each 
measured value, and then compare its actual quantile 
with the theoretical one.

As for the above example of sodium, one thus obtains 
1000 classes to which a 1000 theoretical quantiles are 
assigned in the diagram. The extreme probabilities 0 and 
1 must be left aside, because they would correspond to 
minus and/or plus infinity quantiles that could not be 
represented (cf. y-axis in Figure 3)2.

Results
Figure 5 illustrates the two examples described in the pre-
vious section for sodium (normally distributed) and ALT 

Table 2: Simulation of 1000 sodium levels by means of the NORM.
INV function.

Sodium, 
mmol/L

   Non-diseased subjects 
only

   20% diseased  
subjects

Class Number  Cumulative Number  Cumulative

117.5   0  0.0%  0  0.0%
120.0   0  0.0%  1  0.1%
122.5   0  0.0%  7  0.8%
125.0   0  0.0%  22  3.0%
127.5   0  0.0%  27  5.7%
130.0   0  0.0%  54  11.1%
132.5   0  0.0%  30  14.1%
135.0   19  1.9%  48  18.9%
137.5   142  16.1%  137  32.6%
140.0   335  49.6%  277  60.3%
142.5   325  82.1%  255  85.8%
145.0   158  97.9%  125  98.3%
147.5   20  99.9%  16  99.9%
150.0   1  100.0%  1  100.0%

The left side shows random values of a normal distribution (μ = 140, 
σ = 2.5), which represent the results of non-diseased subjects. On 
the right, the parameters for 20% of values were modified to simu-
late hyponatremia (μ = 130, σ = 4.5).

2 This is why the formula in Figure 4 is divided by n+1 rather than n. 
This yields for the highest probability 1000/1001 = 0.9990, and not 
1000/1000 = 1.

(lognormally distributed). The x-axis represents the theo-
retical quantile of the standard normal distribution (μ = 0, 
σ = 1); so, similar to the y-axis in Figure 3, it shows the devi-
ations from the mean in multiples of the standard devia-
tion, only this time in linear scaling. In the case of sodium, 
the QQ-plot produces the straight line, as expected. As for 
ALT, the result is a curved plot without a linear portion. 
But it can be transformed into a straight line by scaling the 
y-axis logarithmically (Figure 5, bottom). Alternatively, 
the ALT levels can be logarithmized prior to the analysis, 
and a linear y-axis can be used.

Figure 6 shows typical QQ-plots for mixed pop-
ulations. Among the 1000 normal sodium levels 
(140±2.5  mmol/L), 100, 200 and/or 300 were replaced 
by reduced levels (130±4.5) to simulate 10%, 20% and 
30% outliers. As one can see, the points are set off by 
a kink in the line. The mean and standard deviation of 
a (sub-)population were then calculated in the usual 
manner from the values that were on a straight line in 
the QQ-plot. In the present case, the kink was localized 
in the range between 136 and 137 mmol/L.

Table 3 shows that with the addition of reduced 
values, the standard deviations in the uncorrected data-
sets increase (row 1), while the mean values keep decreas-
ing (row 3), thus producing a reference interval that is 
too wide and the mean value is too small (for example 
with a 30% addition of reduced values, 126–148 mmol/L). 
However, the elimination of the outliers on the basis of the 
QQ-plot yields a remarkably stable approximation: The 
mean value now remains constant (row 5), and the stand-
ard deviation decreases only slightly (row 6). Due to the 
somewhat smaller standard deviation, the lower reference 
limit changes by no more than 1 mmol/L, while the upper 
limit is not affected at all.

In a further series of simulation experiments, we 
wanted to find out about the effect of the subjective reading 
of the “kink” on the final result. We have been able to show 
that the mean values are virtually not affected by inexact 
readings of up to 5%, while standard deviations tend to be 
under- rather than overestimated. Figure 7 shows, by way 
of an example, that the standard deviation – as expected 
– keeps decreasing, the more measured values are cut off 
as outliers (in other words, the further the point of meas-
urement is moved to the linear part). Meanwhile, the refer-
ence limits in this example, too, changed only slightly by a 
maximum of 1 mmol/L.

Real data from a study involving 246 clinically incon-
spicuous students (male and female) were available 
for the practical verification of the method [17]. As the 
test subjects were not standardized with respect to their 
fasting status, one had to expect mostly inconspicuous 
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Figure 4: Generating a QQ-plot with Excel in four steps.
Step 1: In column A you create a series of numbers i from 1 to n. Step. 2: In column B, using the NORM.INV function (p, μ, σ), calculate the 
quantiles of a standard normal distribution. The probability p is calculated from the index i divided by n+i. For example, for n = 1000, enter in 
cell B1:  = NORM.INV(A1/1001); 0; 1). This formula is copied to all n cells of column B. Step 3: Copy the measurement results to column C and 
sort them in an ascending order. Step 4: In order to obtain the desired QQ-plot, highlight columns B and C, and insert a scatter chart.

Figure 3: Visual check of the sodium levels in Table 2 for normal distribution using a probability probability plot.
Black: non-diseased, Red: mixed population with 20% hyponatremia. The blue lines represent the 2σ or 95% range that corresponds to the 
reference interval (here, about 135–145 mmol/L).
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value 2.2  mmol/L or 40  mg/dL) and hyperglycemias 
(highest value 17.5  mmol/L or 315 mg/dL) were found. 
Conspicuously elevated levels were also found for choles-
terol, GGT, ALT and AST. Prior to the QQ-plot analysis, the 
original values for the three enzymes were logarithmized 
in order to transform the curved plot into a straight line 
(cf. Figure 5, bottom).

The triglyceride levels (lower diagram) exhibited 
a complex distribution consisting of subpopulations, 
which demonstrated the limits of the method presented 
herein. Two, about equally long, straight portions 
emerged in the QQ-plot: One marked a hypoglycemic 
range between 0.34 and 0.80  mmol/L (30–70 mg/dL), 
while the other one covered the range between 0.80 and 
2.0  mmol/L (70–175 mg/dL). Hypertriglyceridemia was 
also observed up to 3.74 mmol/L (327 mg/dL). This is not 
surprising, however, because the test subjects were not 
examined under standardized conditions. The division 
into two linear portions with different slopes remained 
intact even after the values had been logarithmized (not 
shown). As explained in the more detailed discussion 
(Figure 10), such data cannot be evaluated with this 
method.

But apart from this example, all QQ-plots were linear 
over a large section (sometimes after the values had been 
logarithmized). Any outliers were set off clearly by way of 
a kink and were excluded from further calculations. The 
reference intervals obtained in this way corresponded 
well to the information established at the MHH despite the 
relative small number of cases (fewer than 250) (examples 
in Table 4).

Two extensive datasets from clinical practice were 
made available to us for a comparison of methods: 17,506 
creatinine readings between 0.26 and 22.61 mg/dL, and 
56,137 AST readings between 1 and 200 U/L. The analysis 
was done separately for men and women. Figure 9 shows 
the two graphics for creatinine levels in women (n = 9.393), 
which were obtained using the two methods. In the his-
togram of the comparison method (left), one can see the 
symmetrically distributed population of healthy subjects, 
who are represented in the QQ-plot (right) by a straight 
line. When analyzing the AST data, we also tested the 
hypothesis that the values were lognormally distributed 
[19]. To do so, the original data were logarithmized prior 
to the analysis, and the reference limits derived from this 
were then delogarithmized.

Table 5 shows the agreement between the two 
methods. The difference for creatinine was a maximum of 
0.1 mg/dL, and 3 U/L for AST. In the case of AST, the loga-
rithmic transformation produced a slight widening and 
rightward shift of the reference interval.

results, as well as a limited number of pathological find-
ings, in connection with nutrition-related factors.

Figure 8 illustrates the frequency distributions and 
QQ-plots of total protein, glucose and triglycerides. 
Total protein (top) represents non-disturbed measured 
values that appeared in the QQ-plot as almost nor-
mally distributed without any significant deviations. 
Albumin, sodium, potassium, calcium and creatinine 
exhibited patterns similar to total protein. Glucose read-
ings (diagram in the middle) yielded in the central area 
a straight line as well, but some hypoglycemias (lowest 

Figure 5: QQ-plots for one thousand simulated readings each.
Normally distributed sodium values form a straight line (top); 
from their regression equation, one can estimate the mean μ and 
the standard deviation σ. The reference interval (135 mmol/L–145 
mmol/L, μ±2σ) can be obtained between the –2 and +2 quantiles of 
the standard normal distribution (green area). Lognormally distrib-
uted ALT levels produce a curved plot (center) that becomes linear 
after logarithmic scaling of the y-axis (bottom).
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Figure 6: Simulation of one thousand sodium levels each with a variously-sized percentage of hyponatremia (color highlighted area).
One can see a line segment against which the reduced values are offset by means of a kink.

Table 3: Estimation of reference intervals for sodium (target 135–
145 mmol/L) from mixed populations with 0%–30% reduced levels.

  0%  10%  20%  30%

(A)        
Mean   140  139  138  137
Standard deviation  2.6  4.1  5.1  5.7
Lower limit   135  131  128  126
Upper limit   145  147  148  148
(B)        
Mean   140  140  140  140
Standard deviation  2.6  2.4  2.3  2.3
Lower limit   135  135  136  136
Upper limit   145  145  145  145

(A) Calculation from all one thousand values. (B) After visual elimi-
nation of values that are not on the straight line in the QQ-plot.

Figure 7: Identical simulation experiment as in Figure 6.
As part of an error analysis, the localization of the kink, however, 
was shifted left by 10–50 measurement points (negative values) 
and/or right (positive values). The resulting flawed estimation of the 
standard deviations from the target (dashed line) was a maximum 
of 15%.

Discussion
The method presented herein is not fundamentally new, 
but only represents the last link (for the time being) in 
a chain of precursor versions, which can all be traced 
back to the American biostatistician Robert G. Hoffmann 
[14]. He was the first to propagate in 1963 the concept of 
“indirect estimation” of reference intervals from meas-
urements taken from outpatients and inpatients, rather 

than reference subjects. Two conditions needed to be 
met for this: The measured values were to follow, more 
or less, a Gaussian normal distribution, and the majority 
of patients should be clinical inconspicuous with respect 
to the analyte examined. As proof of concept, he dem-
onstrated his approach on the basis of glucose measure-
ments in non-diabetics by sorting the measured values 
in an ascending order and marking the cumulative fre-
quency of each value on probability paper (cf. Figure 3). 
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He determined the reference interval visually by placing 
a straight line through the central part of the points and 
identifying their intersections using the 2.5 and 97.5 per-
centiles. His approach has been adopted, sometimes in its 
original form, sometimes in a modified version, in several 
medical papers [20–22].

The method described herein combines various mod-
ifications of the original method so as to achieve estima-
tions as solid as possible with the least possible effort. 
The basis for this is a “modified Hoffmann approach”, 
published in 2014 [4], in which the quantiles of a QQ-plot 

Figure 8: Selected application examples of the QQ-plot method.
(A) Linear QQ-plot without conspicuous values. (B) Linear QQ-plot with few pathological values on both sides. (C) Complex QQ-plot with two 
approximately equal straight segments and pathological values at the top.

Table 4: Estimation of reference intervals with the QQ-plot method 
for a population of clinically inconspicuous students whose blood 
was collected under non-standard conditions [17].

  MV  SD  Estimated 
reference interval

  MHH 
specification

Total protein, g/L   73.8  3.7  66–81  65–80
Albumin, g/L   43.8  4.0  36–52  35–52
Sodium, mmol/L   140  1.8  136–143  135–145
Potassium, mmol/L  4.29  0.29  3.7–4.9  3.6–5.4
Calcium, mmol/L   2.38  0.09  2.2–2.6  2.15–2.6
Glucose, mmol/L   4.95  0.44  4.1–5.8  3.9–5.5
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are calculated using Excel, as described in Figure 4. But 
the authors follow this up with a segmented regression 
analysis using the statistical software package R, which 
was not adopted in this context due to its complexity 
and susceptibility to errors. Instead, we determine the 
linear part of the QQ-plot visually and estimate the ref-
erence interval μ±2σ [23] by eliminating potential outli-
ers directly by way of calculating the mean and standard 
deviation.

This approach is not only much easier, but it also 
appears to produce more solid results. Our experiments 
with simulated data show that the readings from diseased 
subjects and subjective reading inaccuracies have only 
little effect on the estimation of reference intervals. By 
contrast, Shaw et al. [4], using the more complex regres-
sion-based method, obtained results some of which were 
extremely flawed – the authors attributed this to a high 
percentage of diseased test subjects.

Figure 10 provides an explanation for the error-
proneness of the regression-based approach in con-
nection with mixed populations: Three populations of 
different sizes (300 healthy, 200 moderately ill and 100 
severely ill subjects) were simulated with normally dis-
tributed, arbitrary measured values (100±20, 150±40, and 
250±50). In total, this produces a typical left-skewed dis-
tribution reminiscent of a lognormal distribution. In the 
QQ-plot, one can see three sections that are more or less 
linear, but their intersections with the y-axis do not match 
the expected mean values: Instead of 100, 150 and 250, 
one reads 120, 100 and 180. The slopes of the pitch lines 
in Figure 10 do not correspond to the expected standard 
deviations either.

To arrive at a correct calculation, one would have to 
isolate the data of the three line segments and plot them 
against the quantiles of matching standard normal dis-
tributions with n = 300, 200 and 100, respectively. In a 

Figure 9: Method comparison of the reference interval estimation based on routine clinical data, with the example of creatinine in 9393 
women.
On the left, the RLE method of the Reference Values Working Group (calculation via R); the green line indicates the density of the assumed 
normal distribution, and the red line shows the density of the elevated levels that do not fit the model (x-axis is cut off on the right). On the 
right, the corresponding QQ-plot (calculation in Excel); the data of the non-pathological primary population are represented as a straight 
line, and the outliers are clearly distinguishable due to the kink.

Table 5: Method comparison of the reference interval estimation based on routine clinical data.

Parameter and distribution model   Men   Women

Method 1  Method 2 Method 1  Method 2

Creatinine, mg/dL (N)   0.6–1.4  0.7–1.3  0.5–1.2  0.5–1.1
AST, U/L (N)   12–33  9–33  12–29  10–29
AST, U/L (LN)   13–36  13–38  13–32  13–33

Despite a high proportion of outliers, both methods provide quite similar estimations. Explanations on the model hypotheses can be found 
in the text. Method 1 = QQ-plot method, Method 2 = comparison method of Reference Values Working Group. N, Normal distribution model; 
LN, lognormal distribution model.
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patient readings are generally appropriate for calcu-
lating reference intervals.

–– If the graph produces a continuous line (Figure 5, 
top), one can assume a normal distribution and esti-
mate the reference interval from μ±2σ.

–– Any outliers are usually easy to identify by deviations 
from the line shape (Figure 8, center, Figure 9, right) 
and can be eliminated from the calculation of μ and σ 
up to a proportion of 20%–30% (Table 3).

–– Where the entire curve deviates from the line shape 
(Figure 5, center), the measured values can be loga-
rithmized and the QQ-plot recreated. If this pro-
duces a straight line, points 2 and 3 are repeated 
with logarithmized values, and the results are then 
delogarithmized.

–– Where even this fails to generate a straight line 
(Figure 10, bottom right), one must expect consider-
able mistakes in the estimation (Table 6). In this case, 
a more suitable patient cohort should be assembled 
– or better yet, a cohort of non-diseased reference 
subjects.

Aside from the simple logarithmic transformation, a 
number of other transformation procedures have been 

summary analysis of all 600 data points, the respective 
quantiles are shifted by a distance equivalent to the data 
from the other lines. As a result, the mean values tend to 
be over- and sometimes underestimated, while the stand-
ard deviations are overestimated consistently. In extreme 
cases, these errors actually produce negative lower limits 
(Table 6, right-hand column).

Five recommendations can be derived from what has 
been said up to this point:

–– The QQ-plot method described herein is especially 
suited for a quick visual assessment as to whether 

Figure 10: Histograms (left) and the QQ-plots for a mixed patient cohort.
Three normally distributed sets of values were generated using a simulation (blue areas), which produce in total a left-skewed distribution 
(gray area). The three subpopulations can be distinguished visually well in the QQ-plot (top, right), but the position of the straight sections 
(slope and intercept) does not allow for conclusions to be drawn about the underlying mean values and standard deviations. Even after a 
logarithmic transformation of the y-axis (bottom, right), the three linear segments are visible, but are substantially flattened by the auto-
matic scaling in Excel.

Table 6: Estimation of reference intervals of a mixed population 
(Figure 10) with the method presented herein, as well as by way of 
the segmented regression calculation according to Shaw et al. [4].

  Target (simulation)  Current method  Shaw et al.

1 (n = 300)   60–140  62–125  66–177

2 (n = 200)   70–230  83–257  –124 to 324

3 (n = 100)   150–350  262–350  45–305

The degree of red color symbolizes the extent of each flawed esti-
mation; in extreme cases, the regression method yields a negative 
lower limit.
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recommended to approximate skewed distributions to a 
normal distribution [23]. For example, in the RLE method 
of the Reference Values Working Group, the Box-Cox 
transformation, part of the group of power transforma-
tions, was used by default [7]. Some authors propose that 
the original data should generally be transformed prior to 
the application of statistical models where the distribu-
tion function is unknown [19, 24]. But one must keep in 
mind that conspicuous data structures may be hidden by 
transformations (cf. Figure 10) and that one should always 
look for physiological or clinical causes in the event of 
skewed distributions before they are “normalized” on a 
purely statistical basis.

In a study published in 2015, Tate et  al. [25] recom-
mend the use of indirect methods particularly to adapt 
published reference intervals to local circumstances 
(analysis, pre-analysis, special patient populations, etc.). 
The authors demand that the majority of readings must 
be from clinically inconspicuous subjects and that the 
conspicuous readings be clearly distinguishable statisti-
cally. The present paper takes this demand into account in 
a straight-forward manner: As Figure 9 shows, the outliers 
are clearly visible to the naked eye because of the “kink” 
in the QQ-plot, while deviations from the bell-curve shape 
of the normal distributions are less clear, for example.

The method described herein does not compete with 
other methods, but represents a useful addition. Com-
pared to the IFCC reference method [1], this method works 
without recruiting healthy test subjects, and compared to 
the RLE method of the Reference Values Working Group 
[7], it does not require installation of the statistics soft-
ware R, while still delivering plausible results even with 
only around 200 measured values. The visual assessment 
of the QQ-plot may be seen as problematic, because it is 
subjective and cannot be automated. A way to automate 
it, however, is being worked on.

Still, visualization also provides some advantages 
over purely computational methods, because it offers 
at a glance a lot of information on data quality and the 
form of distribution, on any outliers and subpopula-
tions, etc. Thus, measured values that could affect the 
estimation of reference intervals are identified with rela-
tive certainty. After all, even for hand-picked reference 
subjects, it is impossible to rule out that they suffer from 
clinically “silent” diseases (fatty liver, atherosclerosis) 
or take substances (alcohol, drugs) that could affect the 
outcome. This is particularly true of laboratory data rou-
tinely obtained from clinical populations. Therefore, the 
QQ-plot method should generally be employed as a type 
of pre-filter regardless of the direct or indirect method that 
is ultimately used.
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