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Abstract: According to the recommendations of the IFCC
and other organizations, medical laboratories should
establish or at least adapt their own reference intervals,
to make sure that they reflect the peculiar characteris-
tics of the respective methods and patient collectives. In
practice, however, this postulate is hard to fulfill. There-
fore, two task forces of the DGKL (“AG Richtwerte” and
“AG Bioinformatik”) have developed methods for the
estimation of reference intervals from routine laboratory
data. Here we describe a visual procedure, which can
be performed on an Excel sheet without any program-
ming knowledge. Patient values are plotted against the
quantiles of the standard normal distribution (so-called
QQ plot) using the NORM. INV function of Excel. If the
examined population contains mainly non-diseased per-
sons with approximately normally distributed values, the
respective dots form a straight line. Very often the values
are rather lognormally distributed; in this case the straight
line can be detected after logarithmic transformation of
the original values. Values, which do not match with the
assumed theoretical distribution, deviate from the linear
shape and can easily be identified and eliminated. Using
the reduced data set, the mean value and standard devia-
tion are calculated and the reference interval (u+20) is
estimated. The method yields plausible results with simu-
lated and real data. With the increasing number of results,
which do not match with the model, it tends to underes-
timate the standard deviation. In all cases, where the QQ
plot does not yield a substantial linear part, the proposed
method is not applicable.
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Introduction

Most laboratory medical decisions are based on the com-

parison of measured values with reference intervals.

These determine which results are to be classified as

“normal” — or more precisely, which people are “not ill”.

Given its enormous relevance for diagnostics, prognostics,

and follow-up/treatment monitoring, one would assume

that the term reference interval should have been defined
clearly and that the procedures for determining decision
limits should have been established precisely. In theory,
this is true according to the current IFCC/CLSI guideline

from 2008 [1]:

— The reference interval is defined as the central 95%
range of observed values of an apparently healthy
population.

— Each medical laboratory must determine its own ref-
erence intervals for all analytes in use on the basis of
at least 120 reference individuals by way of the 2.5 and
97.5 percentiles, or must at least check existing infor-
mation on the basis of 20 healthy controls.

According to DIN EN ISO 15189, each laboratory must doc-
ument and communicate to users the foundations of the
corresponding decision values [2].

But these specifications are often deviated from in
real life. On the one hand, the term “healthy” is imprecise
(for example, concerning the elderly), and on the other
hand, medical laboratories are required to examine suit-
able reference individuals for hundreds, if not thousands,
of tests, which appears to be unrealistic and — in the case
of healthy newborns — even unethical [3, 4]. The require-
ment of 120 reference individuals may seem reasonable
at first sight, but this number must be multiplied by 2
for gender-based values and by even higher factors with
respect to age, so that the total number of individuals may
indeed reach a 1000 or more. As a result, most laboratories
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Table 1: Reference intervals published on the Internet for common
parameters (as of 05.10.2015).

Source Sodium, Calcium, Fibrinogen, Total protein,

mmol/L mmol/L mg/dL g/dL
DocCheck.com 135-148 2.20-2.65 180-350 6.6-8.3
Laborlexikon.de 135-145 2.02-2.60  150-450 6.1-8.1
Thieme.de 135-150 2.3-2.6 200-400 6.0-8.4
Wikipedia.org 135-145 2.2-2.6 180-350 6.0-8.0

accept the information provided by the manufacturers of
diagnostic products or other authors without the neces-
sary verification and documentation. This can produce
substantial discrepancies between different sources [5].
For example, the reference intervals for electrolytes or
proteins stated on much-visited Internet sites differ by as
much as 30% (Table 1).

One way out of this dilemma is to resort to indirect
methods using routine laboratory results for estimation
of reference intervals. The underlying idea is to eliminate
values that do not fit the expected distribution based on
model hypotheses. Then, theoretic percentiles are calcu-
lated from the remaining values. The foundation for this
method was laid as early as around 1960 (see overview in
Ref. [6]), but it was not until the arrival of the personal
computer in the 1980s that enough computing power was
available to apply it generally.

Worthy of special mention here is the reference limit
estimator (RLE) method published by Arzideh et al. in 2007
[7]. It was developed by the “Reference Values Working
Group” of the German Society for Clinical Chemistry and
Laboratory Medicine (DGKL) by means of the statistical
software package R. This mathematically sophisticated
method is based on transformed raw data, calculates the
theoretical density function at the center of the distribu-
tion, and eliminates potential outliers due to local devia-
tions from this function at “truncation points”. The group
succeeded in estimating the reference values of enzymes
[7], electrolytes [8] and blood count parameters [9], which
was also evaluated in multicenter studies [10, 11]. But the
RLE method requires very large datasets of several 1000
cases, which are not always available. In addition, the soft-
ware package R often poses an obstacle to users without
experience in computer science and statistics.

This is why we evaluated less sophisticated methods,
which should be manageable with little effort and without
programming experience. In a joint activity of the DGKL
working groups Reference Values and Bioinformatics
[12], we focused in particular on the original methods
of J. Pryce 1960 [13] and R. Hoffmann 1963 [14] that were
based on real data with theoretical normal distributions,
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and performed then without computers, using “probabil-
ity paper” instead [15]. In this paper, we present a method
where the visual approach is simulated via Microsoft
Excel [16], and compare it to another “modified Hoffmann
method” [4] from the more recent literature.

Materials and methods

Analysis results from 246 healthy test subjects from a
study done by the Hanover Medical School (MHH) were
available for the evaluation of the method. The founda-
tions of the study are described in Ref. [17]. The reference
for the comparison of methods was the RLE method of
the Reference Values Working Group [7]; Dr. F. Arzideh,
University of Bremen, supplied validated patient datasets.

The calculations shown in Figures 1 and 9 were done
using the English version of R; the others were perfomed
with the German version of Microsoft Excel. There were
no fundamental differences between the different Excel
versions. Only when calling the function NORM.INV (see
below), one must keep in mind that there was no period in
older versions (prior to 2010) (NORMINV instead of NORM.
INV). To simplify the generation of random numbers, his-
tograms, etc., one should install the “Analysis ToolPak”
add-in included in Excel (for instructions, see http://
support.office.com, for example).

Probability plots (“probability paper”) for the visual
check of distributions without the use of computers are
available on the Internet (for example, http://gpr.physik.
hu-berlin.de/Downloads/Papiere.html). This is a kind of
graph paper whose scale on the Y-axis has been adapted
to a density function. In the case of Gaussian bell-shaped
curve, the lines are thus the densest in the center at a
probability of 50%, and drawn far apart at the margins
beyond 1% and 99%.

For the reference method [7], the freely accessible
statistics package R (www.r-project.org) with the add-on
packages geoR and msm was used. To facilitate the use,
the Reference Values Working Group developed an Excel
frontend called “Reference Limit Estimator”, which is
also available online (www.dgkl.de, look for “Arbeits-
gruppe Richtwerte” under the menu item “AGs & Sek-
tionen” — only available in the German version of the
website).

Practical implementation

The following section is to help readers reproduce the
results presented and to enable them to run their own
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Figure 1: On the left, a histogram of normally distributed sodium levels (mean 140 mmol/L, standard deviation 2.5 mmol/L, total number
1000). On the right, an S-shaped distribution function ®(x), indicating which theoretical proportion comprises all the values to the left of

the indicated value x (up to mean 140, for example, 50%).

Relative frequency is the number in each column divided by the total number.

evaluations. The basis of the QQ-plot method is the NORM.
INV function in Excel [18]. The name (norm=normal,
inv=inverse) designates the inverse function of the
s-shaped distribution function' of a normal distribution
(Figure 1), and it has the following syntax:

x=NORM.INV(p, u, 6)

p=probability, u=mean, c=standard deviation.

In order to simulate, for example, a random sodium
value from a normal distribution with the parameters
u=140 and 6=2.5, one enters the following formula in cell
A1 of an Excel sheet:

=NORM.INV (rand();140; 2.5)

The “rand()” function in this formula yields equally
distributed decimal numbers between 0 and 1 and thus
covers the entire range of possible probabilities p.

In this present study, the simulation of such random
numbers of known distribution plays a major role,
because it yields predictable results on the basis of which
the quality of a model-based statistical method can be
assessed (for example, see Figure 3, Tables 3 and 6). If
one takes the above formula in cell Al and copies it to
the 999 cells from A2 to A1000 below in the Excel sheet,
one obtains a total of 1000 normally distributed random
numbers that represent realistic sodium values with a

1 An inverse function does not calculate y from x, but x from y - in
the present case, the appropriate quantile and/or test result (x) from
a given cumulative frequency distribution (y).

typical frequency around the mean of 140: In the range
between -1 and u+1c, one expects 68% and between
u—26 and p+26 95%. This 26- or 95% range corresponds to
the required reference interval.

If the Analysis ToolPak has been installed, one may
simply select the “Data Analysis” submenu item in the
“Data” menu item. Calling up the “Random Number
Generation” function, a screen opens for the input
of parameters (for example, for a variable with 1000
random numbers, “Standard” distribution, mean 140,
standard deviation 2.5).

Even skewed distributions can be simulated using
the NORM.INV function. For example, to obtain lognor-
mally distributed random values for alanine aminotrans-
ferase (ALT) in men with a mode near 20 U/L (e*°) and a
97.5 percentile near 45 U/L (e*®), one generates in column
A a normal distribution 3.0+0.4 and enters in cell Bl the
formula

=EXP(Al).

This is, then, copied to the 999 cells A2 to A1000
below in the Excel sheet to obtain lognormally distributed
values in column B (Figure 2).

Finally, using this method, it is possible to generate
also mixed populations that approximate the real, clini-
cal situation, such as 800 inconspicuous sodium levels
(140+2.5) and 200 reduced levels (130+4.5). The result
is shown in Table 2: The stated relative frequencies are
obtained via the “Frequency” Excel function and/or the
“Histogram” menu item in Analysis Tools.
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Bl v £ | =EXP(A1)

A B C D E F G H
E 2,88 18_ Class Frequency Relative frequency Cumulative
2 2,49 12 5 0 0,000 0,000
3 3,10 22 10 38 0,038 0,038
4 3,51 33 15 210 0,210 0,248
5 3,48 32 20 242 0,242 0,490
6 3,69 40 25 197 0,197 0,687
7 2,13 8 30 135 0,135 0,822
8 2,91 18 35 83 0,083 0,905
9 3,44 31 40 46 0,046 0,951
10 2,57 13 45 28 0,028 0,979
11 2,72 15 50 8 0,008 0,987
12 2,32 10 55 8 0,008 0,995
13 2,26 10 60 2 0,002 0,997
14 2,61 14 65 2 0,002 0,999
15 2,69 15 70 1 0,001 1,000
16 2,15 9
17 2,77 16
18 2,34 17
19 3,05 21
20 2,85 17 ALT (simulated)
zal 2,87 18 25% -
22 2,85 17
23 3,54 34 LE 20% -
24 2,97 19 g
25 2,93 19 g =%
2 2,79 16 B g
27 3,79 a4 5
28 3,35 28 $ 5% -
29 3,95 52
0 S = . 5 10 15 20 25 30 35 40 45 50155I60165'70' |
31 3,66 39

u/L

32 2,36 11
33 3,22 25
34 3,36 29

Figure 2: Simulation of lognormally distributed values using the example of ALT. (original representation in the German Excel version with

deimal commas; the same applies to figures 4, 5, and 8).

In column A, normally distributed values (3.0+0.4) were generated, representing exponents to base e; in column B, these were delogarith-
mized with the exponential function EXP. The theoretical maximum of the histogram is therefore e3°=20, and of the 97.5 percentile e>#=45.

Visual check for normal distribution

The visual methods presented here are based on two-
dimensional diagrams in which observed and theoreti-
cal probabilities are plotted against each other. At its
simplest, this is done without a computer using a prob-
ability probability plot (PP-plot). Figure 3 demonstrates
the approach using the simulated sodium levels from
Table 2 as an example: If the points form a straight line,
a normal distribution can be assumed (black symbols in
Figure 3). The reference interval (u+26) then lies between
the intersections of the straight line with the 2.5 and/or
97.5 percentiles. Values deviating from this straight line

(red symbols in Figure 3) represent “outliers” (in this case,
hyponatremia).

QQ-plot method

We chose the quantile quantile plot (QQ-plot) to recreate
the historical method in Excel. Unlike the PP-plot (Figure 3)
described above, it is the inverse function (NORM.INV)
that is used here: the x- and y-axes are swapped, so that
the diagram appears rotated by 90 degrees, and the (new)
x-axis can be scaled linearly by converting the probabili-
ties to quantiles (Figure 4).
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Table 2: Simulation of 1000 sodium levels by means of the NORM.
INV function.

Sodium, Non-diseased subjects 20% diseased
mmol/L only subjects
Class Number Cumulative Number Cumulative
117.5 0 0.0% 0.0%
120.0 0 0.0% 1 0.1%
122.5 0 0.0% 7 0.8%
125.0 0 0.0% 22 3.0%
127.5 0 0.0% 27 5.7%
130.0 0 0.0% 54 11.1%
132.5 0 0.0% 30 14.1%
135.0 19 1.9% 48 18.9%
137.5 142 16.1% 137 32.6%
140.0 335 49.6% 277 60.3%
142.5 325 82.1% 255 85.8%
145.0 158 97.9% 125 98.3%
147.5 20 99.9% 16 99.9%
150.0 1 100.0% 1 100.0%

The left side shows random values of a normal distribution (u=140,
6=2.5), which represent the results of non-diseased subjects. On
the right, the parameters for 20% of values were modified to simu-
late hyponatremia (u=130, 6=4.5).

The practical approach in Excel is similar to that
employed in the above simulations of sodium and ALT
levels. The NORM.INV function is used to calculate theo-
retical quantile of a standard normal distribution (u=0,
6=1), by entering in the formula a systematically ascend-
ing series of probabilities between 0 and 1 instead of
random numbers (Figure 4). Thanks to computers, it is not
necessary to limit oneself to a few points, as depicted in
Figure 3. Instead, one can create a separate class for each
measured value, and then compare its actual quantile
with the theoretical one.

As for the above example of sodium, one thus obtains
1000 classes to which a 1000 theoretical quantiles are
assigned in the diagram. The extreme probabilities 0 and
1 must be left aside, because they would correspond to
minus and/or plus infinity quantiles that could not be
represented (cf. y-axis in Figure 3)2.

Results

Figure 5 illustrates the two examples described in the pre-
vious section for sodium (normally distributed) and ALT

2 This is why the formula in Figure 4 is divided by n+1 rather than n.
This yields for the highest probability 1000/1001=0.9990, and not
1000/1000=1.
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(lognormally distributed). The x-axis represents the theo-
retical quantile of the standard normal distribution (u=0,
6=1); so, similar to the y-axis in Figure 3, it shows the devi-
ations from the mean in multiples of the standard devia-
tion, only this time in linear scaling. In the case of sodium,
the QQ-plot produces the straight line, as expected. As for
ALT, the result is a curved plot without a linear portion.
But it can be transformed into a straight line by scaling the
y-axis logarithmically (Figure 5, bottom). Alternatively,
the ALT levels can be logarithmized prior to the analysis,
and a linear y-axis can be used.

Figure 6 shows typical QQ-plots for mixed pop-
ulations. Among the 1000 normal sodium levels
(140+2.5 mmol/L), 100, 200 and/or 300 were replaced
by reduced levels (130+4.5) to simulate 10%, 20% and
30% outliers. As one can see, the points are set off by
a kink in the line. The mean and standard deviation of
a (sub-)population were then calculated in the usual
manner from the values that were on a straight line in
the QQ-plot. In the present case, the kink was localized
in the range between 136 and 137 mmol/L.

Table 3 shows that with the addition of reduced
values, the standard deviations in the uncorrected data-
sets increase (row 1), while the mean values keep decreas-
ing (row 3), thus producing a reference interval that is
too wide and the mean value is too small (for example
with a 30% addition of reduced values, 126-148 mmol/L).
However, the elimination of the outliers on the basis of the
QQ-plot yields a remarkably stable approximation: The
mean value now remains constant (row 5), and the stand-
ard deviation decreases only slightly (row 6). Due to the
somewhat smaller standard deviation, the lower reference
limit changes by no more than 1 mmol/L, while the upper
limit is not affected at all.

In a further series of simulation experiments, we
wanted to find out about the effect of the subjective reading
of the “kink” on the final result. We have been able to show
that the mean values are virtually not affected by inexact
readings of up to 5%, while standard deviations tend to be
under- rather than overestimated. Figure 7 shows, by way
of an example, that the standard deviation — as expected
— keeps decreasing, the more measured values are cut off
as outliers (in other words, the further the point of meas-
urement is moved to the linear part). Meanwhile, the refer-
ence limits in this example, too, changed only slightly by a
maximum of 1 mmol/L.

Real data from a study involving 246 clinically incon-
spicuous students (male and female) were available
for the practical verification of the method [17]. As the
test subjects were not standardized with respect to their
fasting status, one had to expect mostly inconspicuous
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Figure 3: Visual check of the sodium levels in Table 2 for normal distribution using a probability probability plot.
Black: non-diseased, Red: mixed population with 20% hyponatremia. The blue lines represent the 2c or 95% range that corresponds to the
reference interval (here, about 135-145 mmol/L).

Step 1 Step 2 Step 3
A A B c A B c
1 1 1 1] =NORM.INV(A1/1001;0;1) il 1 -3,09 120
T 2 2 2 2 -2,88 120
3 3 3 3 3 -2,75 121
a 4 4 4 4 -2,65 121
= 5 5 s s -7 8Q 171
Index 1 ton Theoretical quantiles Sorted measured results
160 -
Step 4
150 44
Other Line  Column
| Point (XY) £
1 /,f\! E 110
L_
100
/ \ /’\ 90 -
=l
il AlDiagiam types... -400 -300 -200 -100 000 100 200 300 4,00

Figure 4: Generating a QQ-plot with Excel in four steps.

Step 1: In column A you create a series of numbers i from 1to n. Step. 2: In column B, using the NORM.INV function (p, L, ©), calculate the
quantiles of a standard normal distribution. The probability p is calculated from the index i divided by n+i. For example, for n=1000, enter in
cell B1: =NORM.INV(A1/1001); 0; 1). This formula is copied to all n cells of column B. Step 3: Copy the measurement results to column C and
sort them in an ascending order. Step 4: In order to obtain the desired QQ-plot, highlight columns B and C, and insert a scatter chart.



DE GRUYTER

mmol/L

-4 -3 -2 -1 0 1 2 3 4
Fe———-- qm—m - P --420 ------ qm—mm——- R qmm——--
—————————————————————————— e R, S
__________________________ 77, RO | (S S

-

"

-4 -3 -2 -1 0 1 2 3 4
Theoretical quantiles

Figure 5: QQ-plots for one thousand simulated readings each.
Normally distributed sodium values form a straight line (top);

from their regression equation, one can estimate the mean p and
the standard deviation o. The reference interval (135 mmol/L-145
mmol/L, u£20) can be obtained between the -2 and +2 quantiles of
the standard normal distribution (green area). Lognormally distrib-
uted ALT levels produce a curved plot (center) that becomes linear
after logarithmic scaling of the y-axis (bottom).

results, as well as a limited number of pathological find-
ings, in connection with nutrition-related factors.

Figure 8 illustrates the frequency distributions and
QQ-plots of total protein, glucose and triglycerides.
Total protein (top) represents non-disturbed measured
values that appeared in the QQ-plot as almost nor-
mally distributed without any significant deviations.
Albumin, sodium, potassium, calcium and creatinine
exhibited patterns similar to total protein. Glucose read-
ings (diagram in the middle) yielded in the central area
a straight line as well, but some hypoglycemias (lowest
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value 2.2 mmol/L or 40 mg/dL) and hyperglycemias
(highest value 17.5 mmol/L or 315 mg/dL) were found.
Conspicuously elevated levels were also found for choles-
terol, GGT, ALT and AST. Prior to the QQ-plot analysis, the
original values for the three enzymes were logarithmized
in order to transform the curved plot into a straight line
(cf. Figure 5, bottom).

The triglyceride levels (lower diagram) exhibited
a complex distribution consisting of subpopulations,
which demonstrated the limits of the method presented
herein. Two, about equally long, straight portions
emerged in the QQ-plot: One marked a hypoglycemic
range between 0.34 and 0.80 mmol/L (30-70 mg/dL),
while the other one covered the range between 0.80 and
2.0 mmol/L (70-175 mg/dL). Hypertriglyceridemia was
also observed up to 3.74 mmol/L (327 mg/dL). This is not
surprising, however, because the test subjects were not
examined under standardized conditions. The division
into two linear portions with different slopes remained
intact even after the values had been logarithmized (not
shown). As explained in the more detailed discussion
(Figure 10), such data cannot be evaluated with this
method.

But apart from this example, all QQ-plots were linear
over a large section (sometimes after the values had been
logarithmized). Any outliers were set off clearly by way of
a kink and were excluded from further calculations. The
reference intervals obtained in this way corresponded
well to the information established at the MHH despite the
relative small number of cases (fewer than 250) (examples
in Table 4).

Two extensive datasets from clinical practice were
made available to us for a comparison of methods: 17,506
creatinine readings between 0.26 and 22.61 mg/dL, and
56,137 AST readings between 1 and 200 U/L. The analysis
was done separately for men and women. Figure 9 shows
the two graphics for creatinine levels in women (n=9.393),
which were obtained using the two methods. In the his-
togram of the comparison method (left), one can see the
symmetrically distributed population of healthy subjects,
who are represented in the QQ-plot (right) by a straight
line. When analyzing the AST data, we also tested the
hypothesis that the values were lognormally distributed
[19]. To do so, the original data were logarithmized prior
to the analysis, and the reference limits derived from this
were then delogarithmized.

Table 5 shows the agreement between the two
methods. The difference for creatinine was a maximum of
0.1 mg/dL, and 3 U/L for AST. In the case of AST, the loga-
rithmic transformation produced a slight widening and
rightward shift of the reference interval.
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Figure 6: Simulation of one thousand sodium levels each with a variously-sized percentage of hyponatremia (color highlighted area).
One can see a line segment against which the reduced values are offset by means of a kink.

Table 3: Estimation of reference intervals for sodium (target 135—
145 mmol/L) from mixed populations with 0%—-30% reduced levels.

0% 10% 20% 30%
G)]
Mean 140 139 138 137
Standard deviation 2.6 4.1 5.1 5.7
Lower limit 135 131 128 126
Upper limit 145 147 148 148
(B)
Mean 140 140 140 140
Standard deviation 2.6 2.4 2.3 2.3
Lower limit 135 135 136 136
Upper limit 145 145 145 145

(A) Calculation from all one thousand values. (B) After visual elimi-
nation of values that are not on the straight line in the QQ-plot.

Discussion

The method presented herein is not fundamentally new,
but only represents the last link (for the time being) in
a chain of precursor versions, which can all be traced
back to the American biostatistician Robert G. Hoffmann
[14]. He was the first to propagate in 1963 the concept of
“indirect estimation” of reference intervals from meas-
urements taken from outpatients and inpatients, rather

Percentage of hyponatremia = 10% =20% =30%

4

mmol/L
N
N

=50

-40 -30 -20 -10 0 10 20 30 40 50

Reading inaccuracy (data points)

Figure 7: Identical simulation experiment as in Figure 6.

As part of an error analysis, the localization of the kink, however,
was shifted left by 10-50 measurement points (negative values)
and/or right (positive values). The resulting flawed estimation of the
standard deviations from the target (dashed line) was a maximum
of 15%.

than reference subjects. Two conditions needed to be
met for this: The measured values were to follow, more
or less, a Gaussian normal distribution, and the majority
of patients should be clinical inconspicuous with respect
to the analyte examined. As proof of concept, he dem-
onstrated his approach on the basis of glucose measure-
ments in non-diabetics by sorting the measured values
in an ascending order and marking the cumulative fre-
quency of each value on probability paper (cf. Figure 3).



DE GRUYTER

58

120

Number
85 8

g/L

Hoffmann et al.: Simple estimation of reference intervals from routine laboratory data =— 9

Total protein

8

88 94 -3 -2 -1 0 1 2 3
Quantiles

Glucose
20 -

15 4

9 >=10 -3

-2

-1

0

1

100 -
80 -
+
10 +
20 ;OM'
0 - T 11 1 r T T 5] T T 1
2 3 4 5 6 7 8

2

3

mmol/L

Triglycerides

Quantiles

T T T T T 1 1 T 1 T
04 08 1,2 16 20 24 28 32 36 40-3
mmol/L

Figure 8: Selected application examples of the QQ-plot method.
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(A) Linear QQ-plot without conspicuous values. (B) Linear QQ-plot with few pathological values on both sides. (C) Complex QQ-plot with two
approximately equal straight segments and pathological values at the top.

Table 4: Estimation of reference intervals with the QQ-plot method
for a population of clinically inconspicuous students whose blood
was collected under non-standard conditions [17].

Estimated MHH
reference interval specification

Total protein, g/L
Albumin, g/L
Sodium, mmol/L
Potassium, mmol/L
Calcium, mmol/L
Glucose, mmol/L

MV  SD
73.8 3.7
43.8 4.0
140 1.8
4.29 0.29
2.38 0.09
4.95 0.44

He determined the reference interval visually by placing
a straight line through the central part of the points and
identifying their intersections using the 2.5 and 97.5 per-
centiles. His approach has been adopted, sometimes in its
original form, sometimes in a modified version, in several
medical papers [20-22].

66-81 65-80
36-52 35-59 The method described herein combines various mod-
136-143 135-145 ifications of the original method so as to achieve estima-
3.7-4.9 3.6-5.4 tions as solid as possible with the least possible effort.
Z'i'i'z 2'31;'!2;'2 The basis for this is a “modified Hoffmann approach”,

published in 2014 [4], in which the quantiles of a QQ-plot
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Figure 9: Method comparison of the reference interval estimation based on routine clinical data, with the example of creatinine in 9393

women.

On the left, the RLE method of the Reference Values Working Group (calculation via R); the green line indicates the density of the assumed
normal distribution, and the red line shows the density of the elevated levels that do not fit the model (x-axis is cut off on the right). On the
right, the corresponding QQ-plot (calculation in Excel); the data of the non-pathological primary population are represented as a straight

line, and the outliers are clearly distinguishable due to the kink.

Table 5: Method comparison of the reference interval estimation based on routine clinical data.

Parameter and distribution model Men Women

Method 1 Method 2 Method 1 Method 2
Creatinine, mg/dL (N) 0.6-1.4 0.7-1.3 0.5-1.2 0.5-1.1
AST, U/L(N) 12-33 9-33 12-29 10-29
AST, U/L (LN) 13-36 13-38 13-32 13-33

Despite a high proportion of outliers, both methods provide quite similar estimations. Explanations on the model hypotheses can be found
in the text. Method 1=QQ-plot method, Method 2=comparison method of Reference Values Working Group. N, Normal distribution model;

LN, lognormal distribution model.

are calculated using Excel, as described in Figure 4. But
the authors follow this up with a segmented regression
analysis using the statistical software package R, which
was not adopted in this context due to its complexity
and susceptibility to errors. Instead, we determine the
linear part of the QQ-plot visually and estimate the ref-
erence interval p+2c [23] by eliminating potential outli-
ers directly by way of calculating the mean and standard
deviation.

This approach is not only much easier, but it also
appears to produce more solid results. Our experiments
with simulated data show that the readings from diseased
subjects and subjective reading inaccuracies have only
little effect on the estimation of reference intervals. By
contrast, Shaw et al. [4], using the more complex regres-
sion-based method, obtained results some of which were
extremely flawed — the authors attributed this to a high
percentage of diseased test subjects.

Figure 10 provides an explanation for the error-
proneness of the regression-based approach in con-
nection with mixed populations: Three populations of
different sizes (300 healthy, 200 moderately ill and 100
severely ill subjects) were simulated with normally dis-
tributed, arbitrary measured values (10020, 150+40, and
250+50). In total, this produces a typical left-skewed dis-
tribution reminiscent of a lognormal distribution. In the
QQ-plot, one can see three sections that are more or less
linear, but their intersections with the y-axis do not match
the expected mean values: Instead of 100, 150 and 250,
one reads 120, 100 and 180. The slopes of the pitch lines
in Figure 10 do not correspond to the expected standard
deviations either.

To arrive at a correct calculation, one would have to
isolate the data of the three line segments and plot them
against the quantiles of matching standard normal dis-
tributions with n=300, 200 and 100, respectively. In a
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Figure 10: Histograms (left) and the QQ-plots for a mixed patient cohort.

Three normally distributed sets of values were generated using a simulation (blue areas), which produce in total a left-skewed distribution
(gray area). The three subpopulations can be distinguished visually well in the QQ-plot (top, right), but the position of the straight sections
(slope and intercept) does not allow for conclusions to be drawn about the underlying mean values and standard deviations. Even after a
logarithmic transformation of the y-axis (bottom, right), the three linear segments are visible, but are substantially flattened by the auto-

matic scaling in Excel.

Table 6: Estimation of reference intervals of a mixed population
(Figure 10) with the method presented herein, as well as by way of
the segmented regression calculation according to Shaw et al. [4].

Target (simulation)  Current method Shaw et al.
1 (n=300) 60-140 62-125 66-177
2 (1=200) 70-230 83-257 |DIUOSN
3 (n=100) 150-350 262-350 45-305

The degree of red color symbolizes the extent of each flawed esti-
mation; in extreme cases, the regression method yields a negative
lower limit.

summary analysis of all 600 data points, the respective
quantiles are shifted by a distance equivalent to the data
from the other lines. As a result, the mean values tend to
be over- and sometimes underestimated, while the stand-
ard deviations are overestimated consistently. In extreme
cases, these errors actually produce negative lower limits
(Table 6, right-hand column).
Five recommendations can be derived from what has
been said up to this point:
— The QQ-plot method described herein is especially
suited for a quick visual assessment as to whether

patient readings are generally appropriate for calcu-
lating reference intervals.

If the graph produces a continuous line (Figure 5,
top), one can assume a normal distribution and esti-
mate the reference interval from p+2c.

— Any outliers are usually easy to identify by deviations
from the line shape (Figure 8, center, Figure 9, right)
and can be eliminated from the calculation of i1 and
up to a proportion of 20%-30% (Table 3).

—  Where the entire curve deviates from the line shape
(Figure 5, center), the measured values can be loga-
rithmized and the QQ-plot recreated. If this pro-
duces a straight line, points 2 and 3 are repeated
with logarithmized values, and the results are then
delogarithmized.

— Where even this fails to generate a straight line
(Figure 10, bottom right), one must expect consider-
able mistakes in the estimation (Table 6). In this case,
a more suitable patient cohort should be assembled
— or better yet, a cohort of non-diseased reference
subjects.

Aside from the simple logarithmic transformation, a
number of other transformation procedures have been
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recommended to approximate skewed distributions to a
normal distribution [23]. For example, in the RLE method
of the Reference Values Working Group, the Box-Cox
transformation, part of the group of power transforma-
tions, was used by default [7]. Some authors propose that
the original data should generally be transformed prior to
the application of statistical models where the distribu-
tion function is unknown [19, 24]. But one must keep in
mind that conspicuous data structures may be hidden by
transformations (cf. Figure 10) and that one should always
look for physiological or clinical causes in the event of
skewed distributions before they are “normalized” on a
purely statistical basis.

In a study published in 2015, Tate et al. [25] recom-
mend the use of indirect methods particularly to adapt
published reference intervals to local circumstances
(analysis, pre-analysis, special patient populations, etc.).
The authors demand that the majority of readings must
be from clinically inconspicuous subjects and that the
conspicuous readings be clearly distinguishable statisti-
cally. The present paper takes this demand into account in
a straight-forward manner: As Figure 9 shows, the outliers
are clearly visible to the naked eye because of the “kink”
in the QQ-plot, while deviations from the bell-curve shape
of the normal distributions are less clear, for example.

The method described herein does not compete with
other methods, but represents a useful addition. Com-
pared to the IFCC reference method [1], this method works
without recruiting healthy test subjects, and compared to
the RLE method of the Reference Values Working Group
[7], it does not require installation of the statistics soft-
ware R, while still delivering plausible results even with
only around 200 measured values. The visual assessment
of the QQ-plot may be seen as problematic, because it is
subjective and cannot be automated. A way to automate
it, however, is being worked on.

Still, visualization also provides some advantages
over purely computational methods, because it offers
at a glance a lot of information on data quality and the
form of distribution, on any outliers and subpopula-
tions, etc. Thus, measured values that could affect the
estimation of reference intervals are identified with rela-
tive certainty. After all, even for hand-picked reference
subjects, it is impossible to rule out that they suffer from
clinically “silent” diseases (fatty liver, atherosclerosis)
or take substances (alcohol, drugs) that could affect the
outcome. This is particularly true of laboratory data rou-
tinely obtained from clinical populations. Therefore, the
QQ-plot method should generally be employed as a type
of pre-filter regardless of the direct or indirect method that
is ultimately used.
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