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Hannes Leitgeb

A CLASS OF n-VALUED STATEMENT CALCULI:
MANY UNIVERSES STATEMENT CALCULUS

0. Introduction

Since the arrival of many-valued logic in
the 1920’s (Lukasiewicz[1], Post[2]) sev-
eral suggestions for many-valued state-
ment calculi (for an overview see e.g.
Rosser[3], Zinovév[4], [5]) have been
made; our considerations are based on a
many-valued logic that was proposed by
Gotthard Günther in the 1950’s – 1970’s
(most of his papers are collected in
Günther[6]). Starting from Hegelian
philosophy Günther partly worked out his
logic in formal terms and discussed his
ideas with some of the leading logicians of
the time (e.g. Kurt Gödel). Holding an
assistant professorship at the Biological
Computer Laboratory (BCL) in Urbana,
Illinois (later being professor of philo-
sophy in Hamburg, Germany) Günther had
the possibility to develop his logic in tight
connection with the arising disciplines of
cybernetics and artificial intelligence.
Although his work was continued by
several authors (Kaehr[7], [8], Mitter-
auer[9], [10], Thomas[11], Ditterich[12],
Na[13]) of which Mitterauer’s papers have
been most important for us, no
semantic/axiomatic description of the
Günther-logic, in association with ex-
amples and an interpretation, has been
proposed. The purpose of this paper is t o
fill this gap (at least partially) by defining
what we call “Many Universes Logic”
(from now on abbreviated: MUL) in form
of a many-valued statement calculus. T o
avoid any confusation (and because we are
aware of the fact that our work is already
an interpretation of Günther’s) we will not
use the terminology of Günther and his
followers but more usual terms, plus that
of a logical universe, which will be defined
later. From our point of view the
attractiveness of Gün-

ther’s ideas lies in the fact that he does not
increase the number of truth values from 2
– the classical ones – to n (and interpret
them afterwards), but increases the number
of domains (that will be called logical
universes), in which classical 2-valued logic
holds, leading to n truth values, the
interpretation of which may be raised
from the interpretation of the 2 classical
truth values. Zinovév[5] characterized the
Günther-logic as follows: “[It is a]
description of connections between
different semantic levels of knowledge,
every level of which is ruled by a two-
valued logic.”

Before we introduce definition, semantics
and axiomatization of MUL together with
some hypotheses regarding its application,
we will give examples (and thereby a
motivation) of how the step from classical
to Many Universes Logic can be taken. In
these examples we will try to show how
simple operations on computer programs
that are written in the language of classical
2-valued logic may lead to MUL.

1. Motivation

Have a look at the following simple
program routine (in a PASCAL/MODULA
like notation):

Example 1

1. IF P(a)=TRUE THEN
2.   Q(b):=FALSE;
3. ELSE
4.   Q(b):=TRUE;
5. END;
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(where P and Q are predicates, a and b
variables defined on the domain of P and
Q, and TRUE and FALSE constants
representing e.g. integer values 1 and 0; we
will always say “TRUE” and “FALSE”, if
we refer to the so-called constants in
computer programs, we will say “True”
and “False” or respectively “T” and “F”,
if we refer to the usual truth values of
classical 2-valued logic, and we will say
“true” and “false”, if we refer to their
usual meaning, i.e. applied to statements ).

IF the truth value of P(a) is set to, say,
TRUE at the start of the program, the
truth value of Q(b) will be set to FALSE
and the program stops. Mark that nothing
essential is changed in the program (and of
course its output), if we replace line 3
(“ELSE”) by the following:

3’. ELSIF P(a)=FALSE THEN

(but also mark that lines 3 and 3’ will
differ essentially, if the range of P(a) is
larger than the set {TRUE, FALSE} !)

Also everything stays the same, if we
define the constants TRUE and FALSE
not as integers 1 and 0 but, say, 1 and 2 (if
all logical connectives that could occur in
the program like “NOT”, “AND”, “OR”
etc. are redefined in the same manner, if
they haven’t been defined using the
constants TRUE and FALSE but directly
integers 1 and 0). So much for trivialities.

Now consider two computers that
communicate with each other (here t o
communicate means: to share common
objects). Call the program of computer 1
program 1 and respectively that of
computer 2 program 2. To enable
experiments we will simulate (not
adequately, but – for our purpose –
sufficiently) computer 1-2 interaction by
implementing program 1 and 2 as
procedures of a

simulation program (that could then be run
on one computer), which mutually calls
program 1 and 2 (first program 1,
secondly program 2, thirdly program 1,...)
continuing until the user stops the
simulation.

Let e.g. program 1 and 2 be the following:

Example 2

1. PROCEDURE Program1;
2. IF P(a)=TRUE THEN
3.   Q(b):=FALSE;
4. ELSIF P(a)=FALSE THEN
5.   Q(b):=TRUE;
6. END;

1. PROCEDURE Program2;
2. IF P(a)=TRUE THEN
3.   Q(b):=TRUE;
4. ELSIF P(a)=FALSE THEN
5.   Q(b):=FALSE;
6. END;

(with the same definitions as used in
example 1).

If the initial value of P(a) is, say, set t o
TRUE, the output of the simulation
program (which mutually calls program 1
and 2) will be:

Output of Example 2

in integer notation:
P(a) Q(b)

Initial value:   1       –
(After calling) PROGRAM 1:   1       0
(After calling) PROGRAM 2:   1       1
(After calling) PROGRAM 1:   1       0
(After calling) PROGRAM 2:  . . . . . . .

(“–” means that Q(b) has no truth value
assigned at the start of the simulation; “. .
. .” marks that the output repeats
cyclically).
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The transition to Many Universes Logic is
now accomplished by two steps:

Step 1:
Recall that each program in our examples
was formulated in the language of classical
2-valued logic, i.e. there is a set of truth
values {Ti , Fi} defined for each program i
= 1, 2, with Ti , Fi  Œ lN0 (and of course T i

≠ Fi).

Step 2:
To remain within classical 2-valued logic
means to choose T1 = T2 and F1 = F2 ; t o
enter MUL means to generalize by
defining a set of (classical) truth values
{T1, F1} for program 1, and a set of
(classical) truth values {T2, F2} for
program 2, leaving open the relationship
(which is identity or difference between
the truth values) between the two sets.
This leads to the following definition:

Def. 1: By a (logical) universe we mean an
ordered pair U = (S, t), where S is a set of
two elements, and t is a function, such that
t: S Æ {T, F} with t bijective.

When we talk about a logical universe Ui =
(Si, ti) we will often say T i (the “True”
value of universe Ui) instead of t i

-1(T) and
Fi  (the “False” value of universe Ui)
instead of ti

-1(F) (and mostly Si will be a
subset of lN0).

In the case of two universes U1 = (S1, t1),
U2 = (S2, t2) there are 7 types
(possibilities) of relations between them
(up to isomorphy):

  (1) T1 = 1; F1 = 0; T2 = 1; F2 = 0;
  (2) T1 = 1; F1 = 0; T2 = 0; F2 = 1;
  (3) T1 = 1; F1 = 2; T2 = 2; F2 = 3;
  (4) T1 = 1; F1 = 2; T2 = 3; F2 = 2;
  (5) T1 = 2; F1 = 1; T2 = 2; F2 = 3;
  (6) T1 = 2; F1 = 1; T2 = 3; F2 = 2;
  (7) T1 = 1; F1 = 2; T2 = 3; F2 = 4;

(up to isomorphy means of course that
e.g.  T1=1, F1=2, T2=1, F2=2 would fall un-

der type 1, because T1 = T2 and F1 = F2 ,
whereas T1 = 3, F1 = 1, T2 = 3, F2 = 2
would fall under type 5, because T 1 = T 2

and F1 ≠ F2 , etc.).

Remember that S has to be a set of two
elements: Therefore always T i ≠  Fi

(otherwise {Ti, Fi} could not be interpreted
as set of classical truth values).

Type 1 represents 2 universes that cannot
be differentiated (i.e. the case of classical
2-valued logic is restored). Type 2 consists
of two kind of inverse universes – one
universe contradicting the other – but is
also 2-valued. Types 3 – 6 are 3-valued: S1

has exactly one element in common with
S2. Type 7 is 4-valued, but S1 and S2 have
no element in common: In this sense we
may view type 7 as the case of 2
“unrelated” classical 2-valued logics.

Now what does all this mean ?

Let us – at first – give the pragmatic
answer: We will rewrite example 2, but
now we will replace TRUE and FALSE in
program 1 by T1 and F1, and TRUE and
FALSE in program 2 by T2 and F2:

Example 2’

1. PROCEDURE Program1;
2. IF P(a)=T1 THEN
3.   Q(b):=F1;
4. ELSIF P(a)=F1 THEN
5.   Q(b):=T1;
6. END;

1. PROCEDURE Program2;
2. IF P(a)=T2 THEN
3.   Q(b):=T2;
4. ELSIF P(a)=F2 THEN
5.   Q(b):=F2;
6. END;
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Now we have to decide of which type
(1–7) the 2 universes should be: the
selection of type 1 results in the same
output as example 2; type 2 corresponds
to exchange of line 3 and 5 in program 2;
so we select e.g. type 3 and define
therefore:

T1 := 1; F1 := 2; T2 := 2; F2 := 3;

The initial value of P(a) in example 2 was
set to TRUE: In analogy we may set it
now to T1 (= 1) or T 2 (= 2); let us choose
e.g. T1 :

P(a) := 1;

The output of example 2’ will then be the
following:

Output of Example 2’

in integer notation:
P(a) Q(b)

Initial value:   1       –
(After calling) PROGRAM 1:   1       2
(After calling) PROGRAM 2:   1       2
(After calling) PROGRAM 1:   1       2
(After calling) PROGRAM 2:  . . . . . . .

interpretation by program 1:
P(a) Q(b)

Initial value:   T1      –
(After calling) PROGRAM 1:   T1      F1

(After calling) PROGRAM 2:   T1      F1

(After calling) PROGRAM 1:   T1      F1

(After calling) PROGRAM 2:  . . . . . . .

interpretation by program 2:
P(a) Q(b)

Initial value:   #      –
(After calling) PROGRAM 1:   #      T2

(After calling) PROGRAM 2:   #      T2

(After calling) PROGRAM 1:   #      T2

(After calling) PROGRAM 2:  . . . . . . .

If you look at the simulation results (in
integer notation), you will see that
program 1 is started and sets the truth
value of Q(b) to F1 = 2, because the truth
value of P(a) is T 1 = 1. Afterwards
program 2 is called and – doesn’t do
anything!! As you can see, the truth value
of P(a) is 1, which means beyond  the
alternative of T2 = 2 and F2 = 3, and this is
the reason why neither the case P(a) = T 2

nor  the case P(a) = F2 is considered in
program 2. In classical 2-valued logic this
is of course impossible because of the
proposition of the excluded middle. In
MUL the situation changes in a subtle way:
If you stay within a logical universe, the
excluded middle still holds rigorously (this
means practically that when you use
program 1 and 2 separately – without
“communication” – they still behave as
classical 2-valued programs including the
validity of the excluded middle, no matter
which  logical universe they have been
assigned to), but the excluded middle of
one universe may fail in respect t o
another (different) universe !

That’s why we say that in such a case (like
example 2’) the statement P(a) is
irrelevant in respect to universe U2, though
it is relevant – namely true – in respect to
universe U1; or generally:

Def. 2: A statement p is called irrelevant in
respect to a universe U = (S, t), if the truth
value of p is not element of S.
Otherwise p is called relevant in respect to
U, which means p is either true in respect
to U or false in respect to U.

(The first, who stated that the concept of
“relevance” could have something to do
with the Günther logic was John W.
Campbell, but Campbell’s remark was not
taken up by Günther; Campbell[14].)
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In this sense truth is always relative in
MUL – depending on the universe you
consider (and a statement may even be
neither true nor false, i.e. irrelevant, in
respect to a universe).

Regarding the phenomenon of irrelevance
the reader will certainly be reminded of
some typical 3-valued logics, wherein two
values are interpreted as True and False,
and the third value may be interpreted as
“ u n d e f i n e d ”  ( K l e e n e [ 1 5 ] ) ,
“indeterminate” (Lukasiewicz [16]) or
“ p a r a d o x ” (Bocvar[17]). All these
concepts differ from MUL by the fact that
a statement in MUL is always true or false
in respect to (at least) one universe, but
may be irrelevant in respect to another
universe, i.e. irrelevance is no (absolute)
truth value but a (relative) interpretation
of a truth value that is true or false in
respect to some (at least one) universe.
With so-called “Relevance Logic” the
irrelevance concept of MUL only shares
part of the name: the former proposing a
new theory of implication, namely
entailment.

Besides the integer notation of the output
of example 2’ we have also written down
the output values as they are interpreted
from the “point of view” of program 1
and 2, i.e. in respect to universes U1 and
U2: While P(a) is true ( T1) in respect t o
U1, it is irrelevant (“#” shall stand for
irrelevant) in respect to U2. Q(b) is false
(F1) in respect to U1 and true ( T2) in
respect to U2. As you can see, in MUL
statements may be true and false at the
same time, but just in respect to different
universes. In this sense the proposition of
the forbidden contradiction still holds in
respect to one  universe but may fail to
hold in respect to different universes
(Gupta[18] gives the semantics of a 4-
valued statement calculus with one truth
value interpreted as “both true and false”:
the difference is again that there is no
truth value for “both true and false” in
MUL, but a truth value may be true

in respect to one universe and false in
respect to another).
Mark that the output of our example
program is crucially dependent on the type
of relation between universes 1 and 2.

Now we will extend our “motivational”
view of MUL by the introduction of
logical connectives.

2. Logical Connectives

By a logical connective we mean of course
an element of the alphabet (we will define
an appropriate alphabet in the next
section) that has associated a function

f: Mk Æ M,

where k is the number of places of the
connective (M is the set of truth values).
We will restrict our study to 1- and 2-place
logical connectives (as usual in many-
valued logic). The number of 1-place
connectives is of course nn (n = card(M)),
the number of 2-place connectives is  n(n

⋅n).

Because of the vast number of connectives
for n ≥  3 (e.g. the number of 2-place
connectives in a 3-valued logic is 3(3 ⋅3) =
19683)  the i r  interpretation and
classification is of special significance.
One way to classify them is to apply usual
mathematical concepts (e.g.: which
connectives are associative? which
connectives are T-norms? etc.) Even
more important is  the semantic
interpretation of connectives. This is the
reason why, from the beginning, various
authors in many-valued logic tried t o
extend the interpretation of classical 2-
valued connectives to the many-valued
case.

In MUL a general semantic interpretation
of an arbitrary logical connective C with
an associated function f on a set {a} Õ M
of an
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arbitrary truth value a, if C is 1-place, or
on a set {(a,b)} Õ  M x M of a pair of
arbitrary truth values a,b, if C is 2-place,
can be given. As the interpretation of a
truth value always is in respect to a
u n i v e r s e , the interpretation of  a
connective also is always in respect to a
universe Ui = (Si, ti).

We distinguish between the following
cases:

1.)C is 1-place (therefore f: M Æ M):
a Œ Si or a œ Si

f(a) Œ Si or f(a) œ Si

(which leads to 4 possible cases).

2.)C is 2-place (therefore f: M x M Æ M):
   a Œ Si or a œ Si

b Œ Si or b œ Si

f(a, b) Œ Si or f(a,b) œ Si

(which leads to 8 possible cases).

We said that we will interpret C with its
associated function f on a domain
consisting of one truth value (if C is 1-
place) or of one pair of truth values (if C
is 2-place): But because the truth value or
the pair of truth values is arbitrary, we will
get an interpretation of C on the total
domain M (if C is 1-place) or M x M (if C
is 2-place).

We have not the place here to interpret
each case, but to give an impression we
will give two short examples:

Example of 1-place connectives:
case a Œ Si , f(a) Œ Si

Because of a Œ Si and f(a) Œ Si , C may be
interpreted as classical 2-valued
connective on {a} in respect to Ui.

An example is T1 := 1; F1 := 2; T2 := 2;     
F2 := 3; and f(T1) = F1;

in this case C may be interpreted as
classical 2-valued negation (associated
function:    f(T) = F, f(F) = T) or
contradiction (associated function: f(T) =
F, f(F) = F) on {1} = {T1} in respect t o
U1. If additionally

f(F1) = T1,

C may (only) be interpreted as classical 2-
valued negation on {1,2} in respect to U1

(which shall say that C may be interpreted
as negation or contradiction on {1} and as
negation or tautology – associated
function : f(T) = T, f(F) = T – on {2}, but
if you take both truth values together, C
may only  be interpreted as classical 2-
valued negation on {1,2} in respect to U1).

Another example: T1 := 1; F1 := 0; T2 :=
0; F2 := 1; and f(1) = 0; f(0) = 0;

Here C may (only) be interpreted as
classical 2-valued contradiction on {0, 1}
in respect to U1 and at the same time as
classical 2-valued tautology on {0, 1} in
respect to U2.

This means: In MUL one and the same
connect ive  may have dif ferent
interpretations in respect to different
universes and the interpretation of
connectives does not only depend on their
associated value functions but also on the
chosen set L of logical universes (the
interpretation of the other three cases of
1-place connectives on a set {a} Õ M is in
terms of relevance: In these cases
relevance is – so to say – “shifted” from
one universe to another). Mark that in
general a 1-place connective will be
interpreted according to all four cases at
the same time (but in respect to different
universes).

Remark: From the foregoing explanations
it follows that MUL is a logic of many
nega-
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tions (if card(M) ≥ 3) in the following two
senses:

(i) Different connectives may be both
interpreted as classical 2-valued negation
in respect to the same universe Ui = (Si, t i)
on Si:

E.g.: T1 := 1; F1 := 2; T2 := 2; F2 := 3; and

fC(1) = 2; fC(2) = 1; fC(3) = 3;
fD(1) = 2; fD(2) = 1; fD(3) = 1;

(fC and fD being the associated functions of
connectives C and D).

In this example C and D may both be
interpreted as classical 2-valued negation
on {1, 2} in respect to U1 though they are
different (fC(3) ≠ fD(3)).

(ii) For every universe Ui = (Si, ti) there
are connectives that may be interpreted as
classical 2-valued negation on Si in respect
to Ui, but must not be interpreted as
classical 2-valued negation on an arbitrary
subset of M with one element in respect t o
any universe Uk = (Sk, tk) with Si ≠ Sk:

E.g.: Let L = {U1 = ({1, 2}, t1), .....} be a
set of logical universes and

f(1) = 2; f(2) = 1; f(m) = m
(for all m Œ M\{1, 2}).

The property we claimed holds because
this connective may be interpreted as
classical 2-valued negation on {1, 2} in
respect to U1, but must not be interpreted
in that way on an arbitrary subset of M
with one element in respect to all
universes Uk = (Sk, tk) with      Si ≠ Sk.

Summing up: Every universe Ui “induces”
connectives that may be interpreted as
classical 2-valued negation on Si in respect
to Ui. Maybe the most elementary of
those are

 of the following form: If we say
elementary negation of universe Ui (let Si

= {a, b}), we mean a 1-place connective Ni

with associated function f: M Æ  M such
that f(a) = b,       f(b) = a and f(x) = x for
all x Œ M\{a, b}.

Now we will turn to an example of 2-place
connectives.

Example of 2-place connectives:
case a Œ Si , b Œ Si , f(a, b) Œ Si

Because of a, b Œ  Si and f(a, b) Œ  Si the
connective C may be interpreted as
classical 2-valued connective on {(a, b)}
in respect to Ui.

Let us examine this case by another
program example (at first formulated
classically 2-valued):

Example 3

1. PROCEDURE Program1;
2. IF (P(a) AND Q(b))=TRUE THEN
3.   Q(b):=FALSE;
4. ELSIF (P(a) AND Q(b))=FALSE 

THEN
5.   Q(b):=TRUE;
6. END;

1. PROCEDURE Program2;
2. IF (P(a) AND Q(b))=TRUE THEN
3.   P(a):=TRUE;
4. ELSIF (P(a) AND Q(b))=FALSE
      THEN
5.   P(a):=FALSE;
6. END;

Let e.g. the initial value be  P(a) := TRUE;
Q(b) := TRUE (this time a initial value has
to be assigned to P(a) and Q(b), because
the result of “(P(a) AND Q(b))” is of
course determined by the truth values of
P(a) and Q(b) ).
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The output of example 3 is this:

Output of Example 3

in integer notion:
P(a) Q(b)

Initial value:   1       1
(After calling) PROGRAM 1:   1       0
(After calling) PROGRAM 2:   0       0
(After calling) PROGRAM 1:   0       1
(After calling) PROGRAM 2:   0       1
(After calling) PROGRAM 1:   0       1
(After calling) PROGRAM 2:  . . . . . . .

If we want to translate example 3 into the
language of MUL (as we have done in the
previous examples), we have to ask
ourselves which function(s) correspond t o
the function associated with the classical
2 -va lued  “AND”  -  connective
(conjunction): Naturally a connective may
be interpreted as “AND” on a set {(a, b)}
of a pair of truth values, if its associated
function f acts as the function associated
with the classical 2-valued “AND”, and a
connective may be interpreted as “AND”
on Si x Si (Si = {Ti, Fi}), if its associated
function f acts as the function associated
with the classical 2-valued “AND” if
restricted to the domain Si x Si, i.e.:

f(Ti, Ti) = Ti ; f(Ti, Fi) = Fi ;
f(Fi, Ti) = Fi ; f(Fi, Fi) = Fi ;

If e.g. T1 := 1; F1 := 2; T2 := 2; F2 := 3
then e.g. f1(x, y) = max(x, y) may be
interpreted as function associated with
“AND” on {1, 2} x {1, 2} in respect to U1

and on {2, 3} x {2, 3} in respect to U2.
But of course this also holds for other
functions, like e.g.

  f2(x, y): 1  2  3
           1  1  2  1
           2  2  2  3
           3  1  3  3

Another example:

U1 = ({1, 2}, t1),
with t1(1) = T, t1(2) = F and f(2,2) = 2;

Here f may be interpreted as a function
associated with classical 2-valued “AND”,
“OR” (disjunction), etc. (and 6 further
connectives) on {(2, 2)} in respect to U1.
If additionally

  f(1, 1) = 1; f(1, 2) = 1; f(2, 1) = 1;

f may only be interpreted as the function
associated with classical 2-valued “OR” on
{1, 2} x {1, 2} in respect to Ui.

Now let us rewrite example 3 using f(x, y)
= max(x, y) as function associated with
the connective C by which we will replace
the classical 2-valued “AND” in program 1
and 2 of example 3 (with: T1 := 1; F1 := 2;       
T2 := 2; F2 := 3; and initial values P(a) :=
1; Q(b) := 2):

Example 3’

1. PROCEDURE Program1;
2. IF f(P(a), Q(b))= T1 THEN
3.   Q(b):= F1;
4. ELSIF f(P(a), Q(b))= F1 THEN
5.   Q(b):= T1;
6. END;

1. PROCEDURE Program2;
2. IF f(P(a), Q(b))= T2 THEN
3.   P(a):= T2;
4. ELSIF f(P(a), Q(b))= F2 THEN
5.   P(a):= F2;
6. END;

This results in:

Output of Example 3’

in integer notation:
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P(a) Q(b)
Initial value:   1       2
(After calling) PROGRAM 1:   1       1
(After calling) PROGRAM 2:   1       1
(After calling) PROGRAM 1:   1       2
(After calling) PROGRAM 2:   2       2
(After calling) PROGRAM 1:   2       1
(After calling) PROGRAM 2:   2       1
(After calling) PROGRAM 1:   2       1
(After calling) PROGRAM 2:  . . . . . . .

interpretation by program 1:
P(a) Q(b)

Initial value:   T1      F1

(After calling) PROGRAM 1:   T1      T1

(After calling) PROGRAM 2:   T1      T1

(After calling) PROGRAM 1:   T1      F1

(After calling) PROGRAM 2:   F1      F1

(After calling) PROGRAM 1:   F1      T1

(After calling) PROGRAM 2:   F1      T1

(After calling) PROGRAM 1:   F1      T1

(After calling) PROGRAM 2:  . . . . . . .

interpretation by program 2:
P(a) Q(b)

Initial value:   #       T2

(After calling) PROGRAM 1:   #       #
(After calling) PROGRAM 2:   #       #
(After calling) PROGRAM 1:   #       T2

(After calling) PROGRAM 2:   T2     T2

(After calling) PROGRAM 1:   T2      #
(After calling) PROGRAM 2:   T2      #
(After calling) PROGRAM 1:   T2      #
(After calling) PROGRAM 2:  . . . . . . .

A fixpoint is reached with P(a) = 2 and  
Q(b) = 1.

Note that similar properties hold as in the
case of 1-place connectives regarding
different interpretation of one and the
same connective in respect to different
universes (e.g. T1 := 1; F1 := 0; T2 := 0; F2

:= 1; and f(x, y) = min(x, y): in this
example C may be interpreted as classical
2-valued “AND” on {0, 1} x {0, 1} in
respect to U1, but at the same

time as classical 2-valued “OR” on   {0, 1}
x {0, 1} in respect to U2; this underlines
why we said that universes of the relation
type 2 are kind of “inverse” !) and also
regarding the  interpreta t ion of
connectives that depend on their
associated functions and on the chosen set
L of logical universes. E.g. if T1 := 1; F1

:= 2; T2 := 3 ;  F2 := 2 ; and f(x, y) =
max(x, y) would accomplish no adequate
translation of example 3 into MUL,
because C may only be interpreted as
classical 2-valued “OR” on {2, 3} x {2, 3}
in respect to U2, but not as “AND”; one
adequate possibility for f would be:

   f(x, y):  1  2  3
           1   1  2  1
           2   2  2  2
           3   1  2  3

Also note that each program Pi will still
behave classically 2-valued if restricted t o  
M = Si (or if you choose universes of
relation type 1) and communication being
cancelled. The other 7 cases of the
interpretation of a 2-place connective on
a set {(a, b)} have again no classical
analogue (but new interesting properties
regarding relevance that we have not the
place to elaborate more intensively).

For the semantics that we will give
afterwards the following classic result is of
importance (this result you can e.g. find in
Zinovév[5]; the proposition itself goes
back to Webb):

Proposition 1 (Webb):
Let M = {1, 2, ..., n}, F = {f, p} with          
f: M x M Æ M and p: M Æ M, such that
f(x, y) = max(x, y) and
p(x):  1  2  ...  n-1 n .
          2  3  ...   n   1
Then F is functionally complete (i.e.
every function associated with an arbitrary
connective can be composed of f and p).
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Now, this f has the nice property that for
every universe Ui Œ  L (= set of logical
universes; i Œ I with I a set of indices) with
Ui = (Si, ti) and Si Õ lN0 f is the associated
function of classical 2-valued “OR” (if
t i(max(Si)) = T) or “AND” (if t i(max(Si))
= F) on Si in respect to Ui. If additionally
the graph G = (V, E) such that V = M and
E = {{a, b} Á  $  i Œ  I: Si = {a, b}}, is
connected, it is easy to show that p can be
composed of the set Tr = {pi  Á pi = ( Ti Fi)
and i Œ I} (I is again the set of indices: see
the definition of L; by (Ti Fi) we mean the
transposition p i( Ti) = Fi, p i(Fi) = Ti) and
pi(x) = x for all x Œ  M\Si), since: if G is
connected, it contains a spanning tree; see
e.g. Berge[19], p. 141 for the proposition
that a set Tr of n-1 transpositions
generates the symmetric group Sn, if and
only if (M, Tr) is a tree with Tr viewed as
set of edges; and since p Œ Sn, we are done.
The p i have the nice property that they
are exactly the elementary negations of
universes Ui, which we have defined
previously: In this sense the set F = {f =
max(x, y)} »  Tr is not only functionally
complete, if G is connected, and consists
of functions with a nice interpretation, but
can also be understood as kind of an
extension of the classical 2-valued case,
where for M = {0, 1} and F = {associated
functions of ⁄ , Ÿ , ÿ } also functional
completeness can be proved.

This is the reason why we will base the
semantics of MUL (in the next chapter)
on this set F = {f = max(x, y)} » Tr of
functions (by the way: we have now
another reason for the decision to restrict
ourselves to 1- and 2-place connectives,
because – as we have seen – every
connective can be defined by connectives
with associated functions in F and the
functions in F are just 1- or 2-place !)

We are now in the position to define
semantics for MUL.

3. Semantics

(i) Let L be the set of logical universes, i.e.
L = {Ui Á Ui = (Si, ti) and i Œ I}  (L ≠ ∅),
where I is a set of indices, for all i Œ I Ui is
a logical universe and for all i Œ I: Si Õ lN0.

(ii) Let V be the set of statement variables,
i.e. V = {p, q, r, p1, p2, p3, ...}.

(iii) Let A be the alphabet,
i.e. A = V » {C} » {Ni Á i Œ I} » {(, )}.

(iv) Let S be the set of statements (we will
not speak of “statement forms”), i.e. S is
defined inductively in the following way:

(a) "v Œ V: v Œ S
(b) "s Œ S: (Ni s) Œ S
(c) "s, t Œ S: (s C t) Œ S

(v) Let M be the set of truth values,
i.e. M = U Si  ; i Œ I

(vi) Let D  be the set of designated truth
values, i.e. D = {a Œ M Á $ i Œ I: ti

-1(T) =
a }  (as you can see the notion of a
“designated truth value” in MUL is drawn
back to the one designated truth value in
classical 2-valued logic, namely True).

(vii) Let e be the evaluation function, i.e.
e: S Æ M, with:
(a)  "s Œ S: "i Œ I: e((Ni  s)) = (ai bi) ⋅

e(s), where Si = {ai, bi}; (ai, bi) is the
transposition of ai and bi; “ ⋅ ” shall
mean: to apply the transposition (ai bi)
to the value of e(s).

(b) "s, t Œ S: e((s C t)) = max(e(s), e(t))

(viii) Let s Œ S.

Def. 3: s is called tautology, if for all
evaluation functions e holds: e(s) Œ D.
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Regarding the axiomatization of MUL the
following proposition is decisive.

4. Axiomatization

Proposition 2: For the semantics of MUL
((i) – (viii)) with M = {1,..., n} and D = {1,
..., d} (d < n) there is a sound and complete
axiomatization concerning tautologies, if
the graph G = (V, E) such that V = M and
E = {{a, b} Á  $  i Œ  I: Si = {a, b}} is
connected.

The axioms are the following:

(i) Choose some two-place connective …
and some one-place connectives Jk (1 £  k
£  n), which are plausible or satisfy
standard conditions (for the definition of
these terms see Rosser[3]).

(ii) A “chain symbol” G  is defined
recursively:
                             v

  (a) If v < u, then G Pi Q := Q.
                            i = u

                             v                     v - 1

  (b) If v ≥ u, then G Pi Q := Pv … G Pi Q.
                            i = u                   i = u

(iii) Then for all statements P, Q, R, and
P1, P2, the following statements are
theorems:

A 1.  Q … (P … Q).
A 2.  (P … (Q … R)) … (Q … (P … R)).
A 3.  (P … Q) … ((Q … R) … (P … R)).
A 4.  (Jk(P) … (Jk(P) … Q)) … (Jk(P) … Q)
         with 1 £ k £ n.
         n

A 5.  G (Ji(P) … Q)Q.
        i = 1

A 6. Ji(P) … P with i = 1, ..., d.
A 7. Jp2(P2) … (Jp1(P1) … Jmax(p1, p2)((P1 C P2)))   
        with p1, p2 Œ M, and:
        Jp1(P1) … J(a  b) (p1)((Ni P1))
        with p1 Œ M for all Ui Œ  L: Si = {a,
b}.

R1. If P is a theorem and P …  Q is a
theorem, then Q is a theorem.

(mark that the condition that G is
connected is just needed to get functional
completeness from the connectives C and
Ni with i Œ I.)

Proof: For the proof see Rosser[3]. The
connectives used by Rosser[3] can be
composed by C and Ni (i Œ  I) because of
functional completeness; the definition of
tautology (or, in their terminology:
acceptable statement) used by Rosser[3]
corresponds to our definition of tautology.

�

5. Discussion

To study a logic like MUL has got
different reasons: One is to get new views
on classical 2-valued logic. E.g. may some
of the most important tautologies of
classical 2-valued logic like the law of
double negation or the de Morgan rules be
shown to have interesting extensions in
MUL (which lead to permutation groups in
general and automorphism groups in
particular).

Another way to study MUL is to give a
philosophical interpretation of its
formalism: This may lead to an ontology
of “many realities” (each human being
confronted with her/his reality), each
reality inducing a classical 2-valued logic (a
logical universe). For more on this see
Günther[6] and Mitterauer[10]. In the
opinion of Günther everyone that makes
statements uses classical 2-valued logic.
But: According to Günther it is an
unfounded assumption that everyone uses
the same  classical 2-valued logic ! It is
only known that they use some classical 2-
valued logic, but the classical 2-valued
logics different persons (machines) may
use, need not coincide (in the sense that
their truth values may differ) !
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If you accept this idea as a working
assumption, it leads immediately to a
logic, where a parameter has been added t o
classical 2-valued logic by which the latter
is being multiplied. The usage of this
parameter should be to define in a strict
and formal way the bearer of logic “into”
logic itself (a parameter of “point of
view”, if you want) ! MUL is additionally
characterized by the facts that each
statement has a unique truth value, which
may be interpreted as classical truth value
in respect to at least one universe, and
each universe is definitely 2-valued.

Another question is: To what area(s)
(outside mathematical logic) could MUL
be applied ?

In general, the area in which we would
expect the greatest chance of useful
application of MUL is that of
communicat ion  (human- to-human,
human- to-computer ,  computer - to-
computer): Communication is the area in
which statements are made by different
humans (or computers) based on different
realities with different meanings (and we
feel that most communication problems
stem from these differences in reality and
meaning). If MUL could play a role in
communication, the decisive question of
communication would be: To which
universe (out of a set of logical universes)
should I  assign your  statement ? By
formalizing and answering such questions
MUL could be a helpful tool in the area of
distributed artificial intelligence (as an
example the Müller-Lyer visual illusion
can be shown to have a – though simple –
model in MUL: two computer agents
“discussing” the illusion from different
point of views; the programs of the agents
written in the language of MUL).
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